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A novel patterning method achieves two-dimensional nano-
patterning of metal nanofibers by depositing a platinum—cerium
alloy film on a silicon wafer and inducing phase separation in an
oxygen—carbon monoxide atmosphere. The resulting nano-patterned
thin film, Pt#CeO,/Si, consists of platinum and cerium oxide with an
average pattern width of 50 nm and exhibits potential as a hydrogen
sensor with sensitive electrical responses to hydrogen ad/desorption.
The patterning method introduced herein addresses the challenge of
wavelength limitations in traditional optical lithography, offering
a scalable approach for sub-50 nm patterns, which are crucial for

advanced sensor and electronic applications.

Introduction

Nano-patterned thin films play a pivotal role in optics, elec-
tronics, and sensing technologies. They are characterized by
nanometre-wide metallic phases arranged in fibrous patterns on
solid-state substrates such as silicon (Si) wafers." These films
exhibit diverse patterns, including stripes, lattices, and
networks.” While several nanostructures have been implemented
as a sensor head,*® nanonetwork-patterned thin films func-
tioning as sensors for various chemical species capitalize on their
high-density metal surfaces. Molecular ad/desorption on these
surfaces can be detected in a highly sensitive manner as changes
in electrical resistance within the nano-patterned network. This
functionality positions network-patterned thin films as effective
sensors with the potential to respond to various chemical stimuli
across a range of applications.®

Efforts to enhance the performance of patterned thin films
are actively focused on reducing the patterning size.
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Lithography techniques, particularly those employing visible-
light lasers, have been widely used to pattern metal thin films
at the nanoscale, achieving patterns of around 100 nm.*
However, a challenge arises when attempting nano-patterning
at sizes smaller than 50 nm, referred to as sub-50 nm
patterning, as limitations imposed by the wavelength of light
are encountered.'*> Although techniques such as electron
beam lithography (EBL) and focused ion beam lithography (FIB)
can achieve sub-50 nm patterning, their adoption is limited by
their low throughput due to intricate processes required and
their use of ultra-fine manufacturing equipment.”® Block
copolymer (BCP) lithography is a template-free patterning
technique that represents a promising approach for nano-
lithography; nevertheless, its drawbacks such as material limi-
tation, direct assembly and pattern transferring pose significant
challenges for achieving sub-50 nm feature sizes with high
fidelity and yield.™

Herein, we report that thin films can be patterned at the
nanoscale by taking advantage of the spontaneous nanophase
separation of alloys.*™*” Thin films of an alloy of platinum (Pt)
and cerium (Ce), Pt-Ce, were deposited on Si substrates at
a thickness of 50 nm using vacuum sputtering. Pt-Ce alloy
thin films were then subjected to a stream of a gas mixture
of carbon monoxide (CO) and oxygen (O,) at elevated tempera-
tures to promote the selective oxidation of Ce (Fig. 1). As
a result of the selective oxidation of the Pt-Ce film, a two-
dimensional, fibrous nano-network of Pt and cerium dioxide,
i.e., Pt#tCeO,/Si, emerged, covering the Si surface (Fig. S1 and
S2t). A set of gold-titanium (Au-Ti) terminals was finally depos-
ited onto Pt#fCeO,/Si, maintaining a gap of 25 pm. Pt#CeO,/Si
exhibited a reversible change in two-terminal resistance when
exposed to hydrogen (H,) and O, atmospheres in sequence due
to the adsorption of the various chemical species onto the Pt
nano-network. The demonstrated chemo-electric function of
Pt#CeO,/Si positions it as a potential alternative to traditional
palladium (Pd)-based H, sensors*®*® with the added advantage of
reduced material costs (Pt cost: $28 per g compared to Pd cost:
$40 per g).
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Fig. 1 Schematic diagram illustrating the proposed nanopatterning
method. A thin film of Pt—Ce alloy is deposited onto a Si substrate
through vacuum sputtering (left). Ce and Pt atoms in the Pt—Ce film
are represented by red and green circles, respectively (middle). The
Pt-Ce film undergoes treatment in an O,-containing atmosphere,
resulting in the formation of a nanonetwork composed of Pt and
CeO,, with an average width of 50 nm (right); the maze-like red and
green phases correspond to Pt and CeO,, respectively.

Experimental

A sputtering target of Pt,Ce alloy was prepared by melting Pt
and Ce metal ingots in an atomic ratio of Pt: Ce = 2: 1 using an
arc torch in a pure Ar atmosphere (see powder X-ray diffrac-
tometry (pXRD) data in Fig. S37). Thin films of the Pt-Ce alloy
with an approximate thickness of 50 £ 1 nm were deposited
onto a Si substrate (Si wafer: 380 pm thick) at room temperature
through sputtering of the Pt,Ce target with an (MB-501010)
electron-beam evaporator (Fig. S4 and S5%). The as-deposited
Pt-Ce film exhibited chemical stability in air at room temper-
ature and/or in a pure argon (Ar) atmosphere up to 600 °C
(Fig. S6t). Subsequently, the Pt-Ce film underwent an atmo-
sphere treatment in a stream of a gas mixture of CO, O,, and Ar
in a specific volumetric ratio of 2 ml min ", 1 ml min~*, and 47
ml min~", respectively, at 600 °C for 1 hour.

Results and discussion

X-ray photoemission spectroscopy (XPS) was conducted to
examine the chemical nature of as-deposited and atmosphere-
treated Pt-Ce films (Fig. 2). In (a), the black curve represents
pure Pt, and the red curve represents the film after atmospheric
treatment; in (b), the black, red, and blue curves represent
CeO,, the Pt-Ce film after atmospheric treatment, and the Pt-
Ce film before treatment, respectively. Peak positions for 4f;,-
and 4fs5, emissions from the atmosphere-treated Pt-Ce film
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Fig. 2 XPS spectra in the Pt 4f region (a) and Ce 3d region (b) for
deposited films and the control. In (a), black and red curves represent
pure Pt and the atmosphere-treated film, respectively. In (b), black, red,
and blue curves correspond to CeO,, the atmosphere-treated Pt—Ce
film, and the as-deposited Pt—Ce film, respectively.
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exhibited a 0.20 eV shift towards deeper binding energies with
respect to corresponding peaks from pure Pt (Fig. 2a).2**' This
shift in the Pt 4f emission peaks suggests that Pt atoms are
partially deprived of valence electrons by adjacent oxygen (O)
atoms, which are more electrophilic than Pt. The XPS spectrum
of the atmosphere-treated Pt-Ce film closely resembles that of
the control material, CeO,, in terms of the peak positions and
intensities (Fig. 2b). Based on the XPS analyses in Pt- and Ce
core regions, we conclude that the atmosphere-treated Pt-Ce
film is a composite of Pt and CeO, phases, where the Pt phase
maintains atomistic contact with the CeO, phase through Pt-O
bonds.

In the Ce 3d spectrum of the as-deposited Pt-Ce film, there is
arecognizable finite shift in the peak positions towards binding
energies 0.61 eV shallower than those for CeO, or the
atmosphere-treated Pt-Ce film (Fig. 2b).?* This shift indicates
that Ce atoms in the as-deposited Pt-Ce film exist in a low
valence state, as in metals. Note that a peak appears in the Ce 3d
spectrum of the as-deposited film, which is attributed to Ce°
atoms in alloys such as CePd;.”* The low-valence Ce atoms in
the as-deposited film undergo selective oxidation to CeO,
through the atmosphere treatment. This results in a phase
separation to form a composite of the Pt and CeO, phases. This
transformation is accompanied by the formation of the Pt-O
bonds, solidifying the interconnected structure of the Pt and
CeO, phases in the film.

Scanning electron microscopy (SEM) showed the uniformity
of the as-deposited Pt-Ce film (Fig. 3a). Energy-dispersive X-ray
spectroscopy (EDX) mapping confirmed a uniform distribution
of Pt and Ce throughout the as-deposited film. The atomic ratio
of Pt and Ce was determined to be Pt/Ce = 1.95 + 0.05, with no
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Fig. 3 SEM images of the as-deposited Pt—Ce film (a) and atmo-
sphere-treated Pt—Ce film (b). EDX mapping images of the atmo-
sphere-treated Pt—Ce film (c), in which red, cyan, green, and blue
images represent the elemental mapping of Pt, Si, Ce, and O,
respectively.
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traces of other elements present (Fig. S7, S8, and Table S97). In
contrast, nanophase separation became evident in the
atmosphere-treated Pt-Ce film (Fig. 3b and c, see also Fig. S10
and S117 for more details on the nanophase separation).
Fibrous Pt phases formed an interconnected network with
a width of less than 40 nm, developing a two-dimensional nano-
network of Pt metal. This metal nano-network allowed the Si
substrate to be visible between adjacent Pt phases, resulting in
a negative image of Pt distribution (Fig. 3c). Ce and O were
mainly concentrated over the Pt phase. The average atomic ratio
of Pt and Ce as quantified using EDX was Pt/Ce = 1.86 £ 0.05
(Fig. S12, and Table S13+). Hereafter, the nano-pattern of Pt and
CeO, that is spontaneously formed over the Si surface is
denoted as Pt#CeO,/Si.

Kelvin-force probe microscopy (KFPM)**** was employed to
investigate the surface potential distribution of Pt#CeO,/Si. A
finely pointed platinum needle served as the KFPM probe. In
Fig. 4, warm-colored areas indicate low surface potential, while
cold-colored areas signify high surface potential. The warm-
colored areas were assigned to the surfaces of the Si substrate,
while the cold-colored areas correspond to the Pt phase. The Pt
nano-network of Pt#CeO,/Si with low surface potential can act
as an effective adsorption site for various molecules due to
strong molecular dipole-surface dipole interactions. The Pt
nano-network develops an interconnected electrical network
throughout Pt#CeO,/Si, adding functionality as a sensitive
electric probe for different gas species.

Finally, the Pt##CeO, film was utilized as a gas-sensing probe.
Using an electron-beam evaporator (UEP-3000BS), a pair of
gold-titanium (Au-Ti) terminals was deposited onto the film
surface, maintaining a terminal gap of 25 um (Fig. S147%). The
electrical resistance between these electrodes on Pt#CeO,/Si was
measured through the two-terminal method (Fig. S15%). The
resistivity of Pt#CeO,/Si increased as the temperature decreased
(Fig. 5a). The trend in the temperature-dependence of the
electrical resistance shows that the Pt metal nano-network in
Pt#CeO,/Si was not entirely connected across the terminal gap,
leading to semiconducting conduction rather than metallic
conduction.
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Fig. 4 KPFM image of Pt#CeO,/Si, where the contrast from cold to
warm colors visualizes the surface potential of the sample relative to
the Pt probe surface.
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Fig. 5 (a) Resistivity of Pt#CeO,/Si at different temperatures. (b)
Schematic diagram of the hydrogen sensor setup featuring Pt#CeO,/
Si. Pt#CeO,/Si with Au-Ti terminals was placed in a glass chamber
with gas ports. Gold wires led electric terminals to an external current
source, allowing monitoring of the inter-terminal voltage. (c) Electrical
resistance of Pt#CeO,/Si at room temperature in various gas atmo-
spheres, with figure annotations indicating the correspondence
between gas type and resistance.

Pt#CeO,/Si was then introduced into a glass chamber
equipped with gas ports for inlet and outlet gases, as illustrated
in the experimental setup scheme (Fig. 5b). Nitrogen (N,) gas
was initially purged into the chamber to clean the surface of
Pt#CeO,/Si before gas sensing tests. The electrical resistance of
Pt#CeO,/Si was continuously monitored while hydrogen (H,)
and oxygen (O,) were alternately injected into the sensing
chamber for 5 minutes each (Table S16T). During exposure to
the H, gas atmosphere, the Pt surface of the Pt#CeO, film
adsorbed molecular H,, resulting in reduced electric resistance
of the Pt nano-network due to the inhibited electron scattering
as shown in Fig. 5c.*¢

When the hydrogen (H,) atmosphere was replaced by an O,
atmosphere, O, molecule occupied the Pt surface, displacing
physisorbed H, molecules. The resistance of Pt#CeO,/Si was
restored to its initial value during the first O, purge (Fig. S177).
This cyclic change in electrical resistance was consistently
observed each time the H, and O, atmospheres were alter-
nated.”””® Importantly, the switching of the atmospheres
induced no irreversible change in resistance, underscoring the
reversible nature of terminalized Pt#CeO,/Si as a reliable probe
for H, sensing.

Conclusion

In summary, our work leveraged the nanophase separation
phenomenon in alloys to successfully fabricate thin metallic
films with a network structure, achieving dimensions below
50 nm, which is challenging using traditional optical lithog-
raphy methods. By depositing a Pt and Ce alloy thin film onto
a Si substrate and subjecting it to an atmosphere containing O,

© 2024 The Author(s). Published by the Royal Society of Chemistry
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and CO at elevated temperatures, selective oxidation of Ce to
CeO, occurred, resulting in the emergence of a network-like Pt
nano-pattern over the Si surface, denoted as Pt#CeO,/Si. The
most appropriate temperature and time required for the
formation of the most suitable nano-networks in terms of
connectivity and reasonable separation were selected
(Fig. S181). Those Pt nano-patterns were uniformly spaced
approximately 50 nm apart. Pt#CeO,/Si exhibited sensitive and
repeatable responses in electrical resistance to the alternating
cycles of O, and H, atmospheres, showcasing its potential as
a probe in H, gas sensors with robust detection at different
concentrations of H, (Table S191 and Fig. S20t1) and high
selectivity (Table S211 and Fig. S221). The innovative nano-
patterning method reported in this work holds promise as
a breakthrough for diverse applications, including catalysts,
sensors, optical collectors, and integrated circuits. Its
simplicity, avoiding the need for complex and expensive
lithography equipment, enables the construction of uniform
nanostructures over large areas.
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