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Mariano Phielipp® and Alan Aspuru-Guzik?

We introduce Group SELFIES, a molecular string representation that leverages group tokens to represent
functional groups or entire substructures while maintaining chemical robustness guarantees. Molecular
string representations, such as SMILES and SELFIES, serve as the basis for molecular generation and
optimization in chemical language models, deep generative models, and evolutionary methods. While
SMILES and SELFIES leverage atomic representations, Group SELFIES builds on top of the chemical
robustness guarantees of SELFIES by enabling group tokens, thereby creating additional flexibility to the
representation. Moreover, the group tokens in Group SELFIES can take advantage of inductive biases of
molecular fragments that capture meaningful chemical motifs. The advantages of capturing chemical
motifs and flexibility are demonstrated in our experiments, which show that Group SELFIES improves
distribution learning of common molecular datasets. Further experiments also show that random
sampling of Group SELFIES strings improves the quality of generated molecules compared to regular
SELFIES strings. Our open-source implementation of Group SELFIES is available at https://github.com/
aspuru-guzik-group/group-selfies, which we hope will aid future research in molecular generation and

rsc.li/digitaldiscovery optimization.

1 Introduction

The discovery of functional molecules for drugs and energy
materials is crucial to tackling global challenges in public
health and climate change. Different types of generative models
can suggest potential molecules to synthesize and test, but the
performance of the models and molecules heavily relies on the
underlying molecular representation. Several models generate
molecules represented as SMILES strings," but their generated
output can be invalid due to syntax errors or incorrect valency.
SELFIES® is a molecular string representation that overcomes
chemical invalidity challenges by ensuring that any string of
SELFIES characters can be decoded to a molecule with valid
valency. This not only makes it a natural representation for
chemical language models that output molecular strings, but
also for genetic algorithms such as GA+D, STONED, and
JANUS®**® for molecular optimization.

SELFIES improves string-based molecular generation by
encoding prior knowledge of valency constraints into the
representation independently of the optimization method. The
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representation has been shown to improve distribution
learning by language models," as well as image2string and
string2string translation™"* and molecular generation in data-
sparse regimes."* Additionally, simple add/replace/delete edits
to SELFIES strings can generate new but similar molecules,
enabling genetic algorithms that directly manipulate strings to
generate molecules.® Alternatively, guiding these simple string
edits with Tanimoto similarity can interpolate between mole-
cules as performed in STONED by Nigam et al.,” which can then
be applied as crossover operations in genetic algorithms such as
JANUS.* Molecular interpolation has also been used to find
counterfactual decision boundaries that explain a molecular
classifier's decisions.*

While SMILES and SELFIES represent molecules at the
individual atom and bond level, human chemists typically think
about molecules in terms of the substructures that they contain.
Human chemists can distinguish molecular substructures
based solely on the image of a molecule and induce the
molecular properties those substructures usually imply. Many
fragment-based generative models take advantage of this
inductive bias'®* by constructing custom representations
amenable to fragment-based molecular design. However, these
approaches are not string-based, thereby losing desirable
properties of string representations: easy manipulation, and
direct input into established language models.

Similar to how SELFIES incorporates prior knowledge of
valency constraints, we can also incorporate prior knowledge in

© 2023 The Author(s). Published by the Royal Society of Chemistry
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the form of functional groups and molecular substructures into
the representation. In this work, we combine the flexibility of
string representations with the chemical robustness of SELFIES
and the interpretability and inductive bias of fragment-based
approaches into a novel string representation: Group SELFIES,
a robust string representation that extends SELFIES to include
tokens which represent functional groups or entire substruc-
tures (Fig. 1).

In Section 2, we discuss how Group SELFIES fits into related
research and then formally introduce the representation in
Section 3. Specifically, we outline how molecules are encoded
into and decoded from Group SELFIES, and we show that
arbitrary Group SELFIES strings can be decoded to molecules
with valid valency. The representation enables users to easily
specify their own groups or extract fragments from a dataset,
leveraging the wide area of cheminformatics research available
there. In Section 4, we find that Group SELFIES is more
compact than SMILES or SELFIES and improves distribution
learning. Additionally, we compare molecules generated via
randomly sampling SELFIES and Group SELFIES strings and
find that Group SELFIES improves the quality of generated
molecules. Molecular generation via random sampling
provides greater emphasis on the representation itself by
abstracting away the complexities of the type of generative
method used, which we leave to future work as described in
Section 5.

SELFIES:

[c][c][=c][c][=Cc][Branch1i][Branch1][C][=C][Ringl][=Branchi] D
[c]l[=c][c][=Branch2][Ringl][#Branchl][=N][N][Ringl][Branchi]
[c]l[=c][c][=C][Branchi][Branchl1][C][=C][Ringl][=Branch1][S]
[=Branch1][C][=0][=Branchi1][C][=0][N][C][Branchli][C][F]
[Branch1][C][F][F]

Group SELFIES:

[=Branch][pop][ :0sulfonamide ]

[:0toluene][Ring2][:2pyrazole][Ring2]
[pop][Branch][C]
[=c][c][=C][Branch][C][=C][Ring1]
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Overall, Group SELFIES provides the flexibility of group
representation, the ability to represent extended chirality via
chiral group tokens and chemical robustness as summarized in
Table 1.

2 Related work

2.1 Fragment-based string representations

Group SELFIES is not the first fragment-based string represen-
tation that has been proposed. Historical string representa-
tions, such as Wiswesser Line Notation (WLN),>*?® Hayward
Notation,” and Skolnik Notation,* all predate SMILES and
represent molecules non-atomically. They use tokens that
represent functional groups, such as carboxyls or phenyls, as
well as ring systems. WLN strings are usually shorter and
sometimes easier for trained humans to understand than
SMILES, as it is easier to recognize functional groups encoded
as single characters than functional groups encoded atomically.
SYBYL Line Notation (SLN)** allows for “macro atoms” which
specify multiple atoms in a substructure. The Hierarchical
Editing Language for Macromolecules (HELM)** represents
complex biomolecules by declaring monomers and then con-
necting them in a polymer line notation. Human-Readable
SMILES* applies common abbreviations for chemical substit-
uents to process and compress SMILES strings into a more
human-readable format. SMILES Pair Encoding® breaks down

AR A, “\\L.Hj HO— e~

—c—o J’</\*’\ N x\,gl‘( (=
s s

I A E
P 1 re R /J:::l\\\j;grﬂ‘#
~ \B :; m‘< s

Fig.1 Visual overview of SELFIES and Group SELFIES. SELFIES is robust, so shuffling tokens around will yield new molecules with correct valency.
Group SELFIES maintains robustness while adding group tokens, highlighted in color. When Group SELFIES tokens are shuffled, structures like
benzene rings are more often preserved, while shuffled SELFIES strings rarely ever preserve structures. Incidentally, Group SELFIES also improves
the readability of molecular string representations since chemists can see what substructures are present.

Tablel Comparison of the capabilities of SMILES, SELFIES, and Group SELFIES. Group SELFIES provides group representation, representation of
extended chirality, and chemical robustness. Additionally as shown in Section 4, Group SELFIES improves distribution learning compared to other

representations

Representation Robustness Substructure control Extended chirality Distribution learning
SMILES No No No ~

SELFIES Yes No No ~

Group SELFIES Yes Yes Yes Improved
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SMILES strings by tokenizing them in a data-driven way that
recognizes common substructures.

2.2 Genetic programming

A string representation of molecules such as SELFIES can be
thought of as a programming language where programs specify
how to construct molecules. Genetic programming®® uses genetic
algorithms to design programs that fulfill desired constraints.
In particular for linear genetic programming,* programs are
represented as linear sequences of atomic instructions, rather
than as a tree of expressions. Linear sequences of atomic
instructions are easily mutated by changing any instruction in
the sequence, since any sequence of atomic instructions will
still be a runnable program. In this way, SELFIES and Group
SELFIES can be thought of as domain-specific languages for
linear genetic programming.

2.3 Learned grammars

Data-Efficient Graph Grammar Learning (DEG)* is a recent
approach for extracting useful formal graph grammars from
small datasets of molecules. In this context, a “useful grammar”
means that molecules generated by applying random applicable
production rules usually have high scores. The learned
production rules of the graph grammar can be thought of as
similar to functional groups applied in Group SELFIES. Group
SELFIES allows for flexibility and fine control of substructures,
which can extracted from any procedure including DEG.

3 Representation
3.1 SELFIES framework

Before introducing in Group SELFIES in greater detail, we
summarize the primary features of SELFIES and the reasons
underlying its chemical robustness. SELFIES is equipped with
an encoder and a decoder. The encoder takes in a molecule and
converts it to a SELFIES string, and the decoder takes in
a SELFIES string and converts it to a molecule. To encode
a molecule in SELFIES, one traverses its molecular graph and
outputs the processed traversal as a string of SELFIES tokens.
To decode a SELFIES string, one reads through the string token-
by-token, building the molecular graph along the way until
arriving at the finished graph. Since the encoding and decoding
process alone does not guarantee chemical robustness, the
SELFIES decoder further includes two important features:

(1) Each token in SELFIES is overloaded to ensure that it can
be interpreted sensibly in all contexts. For instance, all tokens
in SELFIES can also be interpreted as numbers, which is useful
when expressing branch and ring lengths.

(2) SELFIES keeps track of the available valency at each step
in the decoding process; if a bond would be formed that would
exceed this valency, it changes the bond order or ignores the
bond. For instance, when decoding [C][O][=C], adding [=C]
would exceed the valency of [O], so SELFIES changes the bond
order and adds [C] instead.

By preserving these properties in the Group SELFIES
decoder, we ensure chemical robustness is preserved.

750 | Digital Discovery, 2023, 2, 748-758
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3.2 Basic tokens in group SELFIES

Group SELFIES strings consist of the following fundamental
tokens:

e [X] adds an atom with the atomic symbol X.

e [Branch] creates a new branch off the current atom and
saves the current atom as a branchpoint to return to later, and is
analogous to an opening parenthesis ( in SMILES. [pop] exits
the current branch, returning to the most recent branchpoint,
and is analogous to a closing parenthesis ) in SMILES. Unlike in
SMILES, however, [Branch] and [pop] tokens need not come in
pairs, which helps maintain robustness. A [Branch] that is never
followed by a [pop] means that the created branch continues
until the string ends. Any [pop] on the starting main branch is
ignored. If [pop] happens to return to an atom with full valency,
then decoding immediately ends. [Branch] is also different from
the [BranchX] tokens in SELFIES. Experiments in ESI Section
A5t indicate this change does not substantially affect the
performance of Group SELFIES.

e [RingX] indicates that a ring bond will be formed from the
current atom. The next X tokens immediately following [RingX]
will be interpreted as a number N, and we will count backwards
N atoms in placement order to determine the target of the ring
bond. For example, [Ring2] indicates that the next 2 tokens will
be interpreted as a 2-digit base-16 number N. Ring bonds are
stored until after all tokens have been read by the decoder; only
then are ring bonds placed, and only if it would not violate
valency. Due to the addition of groups, it is sometimes neces-
sary to form ring bonds to atoms that are added after the
current atom (e.g. ring bonds within groups). To indicate this,
we use the [->] token before the number token to specify that we
will count forwards instead of backwards.

All tokens except [pop] can be modified by adding =, #, \ or /
to change the bond order or stereochemistry of their parent
bond (e.g. [#Branch] or [/C]). The parent bond is the bond to the
previous atom.

3.3 Groups

The primary difference between SELFIES and Group SELFIES is
the addition of groups. Each group is defined as a set of atoms
and bonds representing the molecular group with its attachment
points, indicating how the group can participate in bonding.
Each attachment point has a specified maximum valency, which
allows us to continue tracking available valency while decoding.
These attachment points are labeled by attachment indices, and
the encoder and decoder will navigate around these attachment
indices as described in Section 3.4.

Users must specify the groups they want to use using
a dictionary that maps group names to groups. This tells the
encoder what groups to recognize, and tells the decoder how to
map group tokens to groups. We call this dictionary a “group
set”, and every group set defines its own distinct instance of
Group SELFIES. In particular, the decoder will not recognize
a Group SELFIES string that contains group tokens not present
in the current group set.

To distinguish group tokens from other tokens, we include
a : character at the front of the token (e.g. [:1parabenzene]). All

© 2023 The Author(s). Published by the Royal Society of Chemistry
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group tokens are of the form [:S<group-name>], where S is the
starting attachment index of the group, and <group-name> is
any alphanumeric string that does not contain dashes or start
with a number.

Optionally, a priority value can be specified for each group,
indicating the priority with which the group should be recog-
nized when encoding into Group SELFIES. Priority affects the
Group SELFIES encoder as described in Section 3.4. For each
group, one can also specify its index overload value, which is the
value the group token takes when the decoder must interpret
the token as a number.

3.4 Encoding and decoding

3.4.1 Encoding. To encode a molecule in Group SELFIES,
the encoder first recognizes and replaces substructure matches
of groups from the molecule. By default, the encoder iterates
through the group set and recognizes the largest groups first,
but users can override this by specifying a priority for each
group. Setting a high priority value for a group indicates that it
will be recognized first when encoding into Group SELFIES,
ensuring that other group replacements will not overlap with
this group. This encoding strategy implies that increasing the
size of the group set will increase the running time of the
encoder linearly. We then traverse the graph similar to the
encoding process for SMILES and SELFIES, while also placing
the correct tokens for tracking the attachment indices of where
the encoder entered and exited a group.

3.4.2 Decoding. When decoding Group SELFIES, the
process is essentially the same as regular SELFIES except when
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reading group tokens. When a group token is read by the
decoder, the group set dictionary determines the corresponding
group. Subsequently, all atoms of the group are placed and the
main chain is connected to the starting attachment point. The
decoder selects the next attachment point to branch off from by
reading in the next token as a relative index. By adding the current
attachment index to a relative index modulo the total number of
attachment points in the group, the decoder selects the next
attachment point. From the specified attachment point, the
decoder implicitly branches off of the group and continues
traversing until a [pop] token is read. Once the branch is “pop-
ped”, the decoder returns to the group and can navigate to the
next attachment point using another relative index. If the
selected attachment point is occupied, then the next available
attachment point is used. If all attachment points have been used
up, then the group itself is immediately “popped”, returning to
the most recent branchpoint before the group was placed.

In Fig. 2, encoding into Group SELFIES begins by placing
a toluene group in red, and its starting attachment point index
is 0. The next token is interpreted as a relative index, which
indicates that the main chain should continue from the (0 +2 =
2nd) attachment point of toluene. The next token places a pyr-
azole group in blue, and its starting attachment point index is 2.
The token after that is interpreted as a relative index equal to 2,
and then trifluoromethane is placed at the (2 + 2 mod 4 = 0th)
attachment point of pyrazole. A subsequent [pop] token returns
to the pyrazole group at the Oth attachment point. The next
token is interpreted as a relative index equal to 3, indicating that
the main chain should continue off of the (0 + 3 = 3rd)
attachment point of pyrazole. The final series of tokens places

E token index
o} [c] - o
N I F\c/ Cr= C\ [Ring1] — 1
=\ —NH, E/ / c [Ring2] - 2
N i\ O C\\ // [Branch] - 3
o 0 ; ’ c—C [=Branch] - 4
[#Branch] — 5
0] - 6
[N] - 7
[=N] - 8
[=¢] - 9
[#c] - 10
[s] - 11
[P] — 12
3rd 4th
*1 *1 ilid 151:1 i,id s 1551 oth
20d *1 1st
*1. F *2
F
= "D "l "
*1 *1 +2 *1/ \ Oth
1st oth ¥
toluene Egrasels i Tt pyzzols sulfonamide
[:0toluene][Ring2][ :2pyrazole][Ring2] [pop][Branch] C l[Branch] C [p(l)p][:Osulfonamide]
X X 1T | H i
% +2 3 4 3 2 1 0 D)

Fig. 2 Visual explanation of Group SELFIES encoding/decoding of celecoxib. Top-left: molecular structure of celecoxib. Top-middle: the
structure of celecoxib colored by its groups and atoms. Top-right: index overload table in Group SELFIES, indicating how tokens are interpreted
as numbers. Bottom: celecoxib represented in Group SELFIES. Tokens are colored by the groups and atoms they refer to. Index overloads are
shown where interpreted. Colored arrows indicate how the decoder navigates around the attachment points of the groups.
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individual carbons, creates a branch, and creates a ring, before
returning to the last branchpoint and placing the sulfonamide
group before terminating. We provide a detailed example of
encoding/decoding the molecule celecoxib in ESI Section A.1.}

We verified the robustness of Group SELFIES by encoding
and decoding 25 M molecules from the eMolecules database.’”

Group SELFIES manages chirality differently than SMILES
and SELFIES. Rather than use @-notation to specify tetrahedral
chirality, all chiral centers must be specified as groups. We
provide an “essential set” of 23 groups which encode all relevant
chiral centers in the eMolecules database. Equipped with this
essential set, every molecule can be encoded-decoded while
maintaining chirality. It is also an option to not use the essen-
tial set, or only use a subset of it, depending on what chiral
centers are relevant to the problem at hand. If a molecule has
a chiral center not specified in the group set, then encode-
decode will not preserve chirality.

3.5 Determining fragments

Group SELFIES has a built-in flexibility for assigning the set of
fragments that make up a group set. Hence, the construction of
a useful group set often remains an open design choice. Users can
specify groups using a SMILES-like syntax (Fig. 3), which could be
useful if one knows what groups are synthetically available or are
expected to be useful for their particular design task. Fragments
can also be obtained from several fragment libraries found in the
literature.*®*° Generally, a useful set of groups will appear in many
molecules in the dataset and replace many atoms, with similar
fragments merged together to reduce redundancy.

In our experiments, we also tested various fragmentation
algorithms that extract fragments from a dataset, including
a naive technique that cleaves side chains from rings and
a method based on matched molecular pair analysis.** Several
other fragmentation algorithms from cheminformatics can be
readily applied®**® because any fragment specified as
a SMILES string can be used as a group in Group SELFIES.
However, we leave exploration of different group sets and frag-
mentation strategies to future work.

4 Experiments

The experiments in the subsequent sections outline some of
the advantages of Group SELFIES compared to SMILES and

[:1parabenzene]
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regular SELFIES representations. Concretely, we show that: (1)
Group SELFIES is shorter and more compressible than SMILES
and SELFIES; (2) Group SELFIES preserves useful properties
during generation; (3) Group SELFIES improves distribution
learning.

4.1 Compactness

Group SELFIES strings are typically shorter than their
SMILES and SELFIES equivalents when using a generic set of
groups. In Fig. 4, this generic set was generated by taking
a random selection of 10000 molecules from ZINC-250k*”
and fragmenting them into 30 useful groups using various
algorithms (see Determining fragments). We then combined
these 30 groups with the 23 groups of the essential set. Fig. 4
shows histograms of the lengths of SMILES/SELFIES/Group
SELFIES strings of the entire ZINC-250k dataset. Length is
the number of characters in SMILES strings, and the number
of tokens in (Group) SELFIES strings. Group SELFIES strings
are usually shorter than their SELFIES and SMILES counter-
parts because group tokens can represent multiple atoms in
a molecule.

Since Group SELFIES has a larger alphabet than SMILES or
SELFIES, we estimate the complexity of each representation
with the compressed filesize of ZINC-250k. We find that out of
all representations, Group SELFIES can be compressed the most
(see ESI Section A.21).

[ SMILES (mean: 44.31)
1 Group SELFIES (mean: 29.87)
1 SELFIES (mean: 37.43)

12000 I
10000

8000 +

Count

6000

4000

2000

T T T T T
40 60 80 100 120

Length of encoding (# of tokens)
Fig. 4 Histogram of lengths of SMILES, SELFIES, and Group SELFIES

strings of the ZINC-250k dataset. Here, Group SELFIES uses a group
set of 53 groups.

from group_selfies import Group

pbenzene = Group(

name='parabenzene',
canonsmiles='clc(*1)ccc(*1)cl’

Fig. 3 Left: representation of a possible “parabenzene” group and its use in a corresponding group token. The *N notation represents an
attachment point with valency N. Each attachment point is labeled with its attachment index Oth, 1st... The starting attachment point represented
in the token is also highlighted. Right: Python code for defining a "parabenzene” group.

752 | Digital Discovery, 2023, 2, 748-758

© 2023 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00012e

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 31 2023. Downloaded on 05.02.26 16:10:49.

(cc)

Paper

4.2 Molecular generation

To specifically compare the suitability of the SELFIES and
Group SELFIES representations for molecular generation, we
use a primitive generative model which samples random
strings. First, we convert a subset of N = 100 000 molecules from
ZINC-250k into (Group) SELFIES strings. Then, we tokenize all
strings and combine them into a single bag of tokens. To
generate a new string, we first pick a random (Group) SELFIES
string from our chosen subset and take its length [. We then
randomly sample [ tokens from the bag, and concatenate into
a generated string. We generate N random strings for each
representation. For Group SELFIES, we use the same 53 groups
used for the length histogram in Section 4.1.
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Digital Discovery

find that Group SELFIES preserves many aromatic rings in contrast
to SELFIES, which rarely ever preserves aromatic rings.

4.3 Distribution learning

To further quantify the effectiveness of Group SELFIES in
generative models, we use the MOSES benchmarking frame-
work® to evaluate variational autoencoders (VAESs) trained with
both Group SELFIES and SELFIES strings. MOSES provides
metrics for distribution learning on the ZINC Clean Leads
dataset*” of 2 M molecules, which is separated into train, test,
and scaffold-test splits. The scaffold-test split (TestSF) contains
scaffolds not found in the train or test split. Models were
trained for 125 epochs. The group set for the Group SELFIES

Algorithm 1 Sampling random (Group) SELFIES

strings

—

S < {encoder(molecule) for molecule € D}
B <+ concatenate{tokenize(s) for s € S}
repeat

select random string s € S

length [ < length(s)

tokens < sample [ tokens from B

string <— concatenate(tokens)

output decoder string)
until enough molecules are generated

ORI N B2

_.
e

given molecule dataset D, and encoder, decoder from SELFIES or Group SELFIES

# (Group) SELFIES strings
# bag of tokens

# generated molecule

We show histograms of the SAScore*® and QED* of molecules
generated from ZINC in Fig. 5. The distributions of generated
Group SELFIES more closely overlap with the original ZINC dataset
than the generated SELFIES, showing that even with an extremely
simplistic generative model, Group SELFIES can preserve impor-
tant structural information. We perform a similar analysis for
a dataset of nonfullerene acceptors (NFA)* in ESI Section A.31 and

VAE was created by fragmenting the training set provided by
MOSES and selecting the 300 most diverse groups. A set of 100
000 molecules was then generated from each model and eval-
uated on the metrics provided by MOSES (Table 2).

For most metrics, Group SELFIES performs approximately
the same as SELFIES. Validity is the percentage of generated
molecules that are accepted by RDKit's parser. Uniqueness is

n =1 ZINC (0.0) i 1 ZINC (0.0)
5000 Group SELFIES (0.964) - ! Group SELFIES (0.294)
i [ SELFIES (1.686) [1 SELFIES (0.368)
i v
4000 - i E } i
] ) I
] ) 1
- 1 J 1
S 3000 - E ’ i i
Q \ 1
[&] 1 1
Ml g 1
2000 - - M Al !
e ;
1000 - s } :
=y . L ' :
T, F i IR
0 T Pr——— T o T n— T T
1 7 8 9 0.0 0.2 0.4 0.6 0.8
SAScore QED

Fig. 5 Molecules generated by our primitive generative model are binned by SAScore and QED. For both properties, generated Group SELFIES
have greater overlap with the original ZINC distribution. Bracketed values indicate the Wasserstein distance (a measure of overlap) to the ZINC

distribution. Dashed lines indicate the means.
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Table2 Group SELFIES VAE and SELFIES VAE evaluated on MOSES metrics. The Group SELFIES VAE mostly matches or outperforms the SELFIES

VAE
FCD (1) SNN (1)

Model Vvalid (1) Unique@1k (1) Unique®@10k (1) Test TestSF Test TestSF
Train 1.0 1.0 1.0 0.008 0.4755 0.6419 0.5859
Group-VAE-125 1.0(0) 1.0(0) 0.9985(4) 0.1787(29) 0.734(109) 0.6051(4) 0.5599(3)
SELFIES-VAE-125 1.0(0) 0.9996(5) 0.9986(4) 0.6351(43) 1.3136(128) 0.6014(3) 0.5566(2)

Frag (1) Scaf (1)
Model Test TestSF Test TestSF IntDiv (1) IntDiv2 (1) Filters (1) Novelty (1)
Train 1.0 0.9986 0.9907 0.0 0.8567 0.8508 1.0 1.0
Group-VAE-125 0.9995(0) 0.9977(1) 0.9649(21) 0.0608(65) 0.8587(1) 0.8528(1) 0.9623(7) 0.7187(11)
SELFIES-VAE-125 0.9989(0) 0.9965(1) 0.9588(15) 0.0675(37) 0.8579(1) 0.8519(1) 0.96(4) 0.7345(16)

the percentage of generated molecules that are not identical to
any other generated molecule. Similarity to nearest neighbor
(SNN) is the average Tanimoto similarity between generated

FCD_52

=3 MOSES (0)
=0 GroupVAE-125 (0.021)
=21 SELFIESVAE-125 (0.054)

FCD_290

=3 MOSES (0)
51 =1 GroupVAE-125 (0.026)
=3 SELFIESVAE-125 (0.091)

o o
-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25

molecules and the nearest neighbor in the reference set. Frag-
ment similarity (Frag) is a cosine similarity based on the
distribution of BRICS fragments*® of generated and reference

FCD_71
12 4 =1 MOSES (0)
=1 GroupVAE-125 (0.011)
=3 SELFIESVAE-125 (0.043)
10 -
8 4
2
2
S 6
o
4 g
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Fig. 6 Distribution of some values from the second-to-last layer of ChemNet for molecules generated by Group SELFIES and SELFIES compared
to the validation set. The difference in distributions is used to calculate FCD. Bracketed values in the legend represent the Wasserstein distance to

the original MOSES distribution.
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molecules. Scaffold similarity (Scaf) is a cosine similarity based
on the distribution of Bemis-Murcko scaffolds®* of generated
and reference molecules. Internal diversity (IntDiv) measures
the chemical diversity of the generated molecules using Tani-
moto similarity. Filters is the fraction of generated molecules
that pass filters for unwanted fragments. Novelty is the fraction
of generated molecules not in the training set.

The Group SELFIES model performs especially well on the
Fréchet ChemNet Distance (FCD) metric*® when compared to
SELFIES. FCD measures the difference between the activations
of the penultimate layer of ChemNet (a model trained to predict
the bioactivity of molecules) in the validation set and in the
generated set. Due to how ChemNet was trained, the activations
are likely to encode a mixture of biological and chemical
properties important to drug likelihood. This makes comparing
these activations more informative than comparing standard
properties like logP or molecular weight, where the correlation
to bioactivity is weaker and less deliberate. To visualize FCD,
some indices of the penultimate activations of ChemNet are
graphed in Fig. 6. Generated Group SELFIES match these
distributions more closely than generated SELFIES. Additional
plots comparing distributions of molecular weight, QED,
SAScore, and logP are shown in ESI Section A.6.7}

5 Discussion

Our experiments show that Group SELFIES has noticeable
advantages compared to SMILES and SELFIES representations,
including greater readability provided by the group tokens.
With regards to SMILES, the primary advantage is chemical
robustness. The comparison with SELFIES is more nuanced, as
discussed in the section below.

5.1 Group SELFIES vs. SELFIES

5.1.1 Substructure control. Group SELFIES provides more
fine-grained control of substructures, which creates the
following advantages: (1) an important scaffold can be
preserved during optimization; (2) chiral and charged groups
can be preserved during optimization, ensuring that charged
tokens do not proliferate and create radicals; (3) synthetically
accessible building blocks can be chosen as groups to improve
synthesizability.

5.1.2 Substructure control with SELFIES. Various tech-
niques applied to SELFIES can mitigate the challenges of
preserving structure. One such example is to simply combine
substrings of SELFIES strings together. Indeed, further experi-
ments in ESI Section A.47 show that simply replacing all group
tokens by their SELFIES substrings shows similar performance
to Group SELFIES. Within the SELFIES framework, however, an
inserted substring will not necessarily have that exact
substructure when decoded because the first token of the
inserted substring may need to be interpreted as a number,
which can have cascading effects for the rest of the substring. It
is also likely that upon further insertions, that substructure will
not be preserved. Additionally, it is also not clear how an
insertion based approach can create groups with 3 or more

© 2023 The Author(s). Published by the Royal Society of Chemistry
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branches, since creating a third branch requires insertion in the
middle of the group substring.

5.1.3 Computational speed. One tradeoff of Group SELFIES
is that encoding and decoding is usually slower than with
SELFIES, likely due to overhead of RDKit operations. The
encoder is particularly slow as it relies on performing
a substructure match for every group in the group set. The
decoder is faster than the encoder, though still slower than the
SELFIES decoder. See ESI Section A.7t1 for timing. To improve
computational performance in future work, one could exploit
substructure control of Group SELFIES to reduce the number of
encode/decode calls needed to obtain high performers. Addi-
tionally, the speed of encoding and decoding operations can be
improved with distributed computing, since Group SELFIES is
trivially parallelizable for a fixed group set.

5.2 Future work

5.2.1 Extended chirality. Group SELFIES is theoretically
capable of representing molecules with extended chirality
which are traditionally not able to be represented with SMILES
and SELFIES. These representations can only handle local
chirality - that is, chirality with a single atom as the chiral
center. This is in contrast to global chirality, where there may be
an axis or plane of chirality. Group SELFIES can handle global
chirality by taking an entire complex or chiral substructure and
abstracting it into a group, leaving attachment points on the
outside for varying functionalization. Fig. 7 shows examples of
groups with local and global chirality that Group SELFIES can
handle. We leave the proper implementation of generating
molecules with global chirality to future work.

Since extended chirality cannot be represented in SMILES or
RDKit, storing these chiral groups would require specification
of a new representation. One way this might be done is to
specify each chiral group in 3D coordinates, with special atoms
indicating attachment points, while maintaining nonchiral
components in a “2D” representation as in SMILES/SELFIES.

5.2.2 Fragment analysis. It would be interesting to study
how the set of groups used by Group SELFIES affects its
performance in a generative model. Many fragmentation algo-
rithms are available®***~*¢ to generate different sets of groups. In
particular, it would be interesting to determine how large and
diverse of a group set is needed to generate molecules with good
performance. Group sets can be compared to the size and
diversity of the original dataset, referencing fragment analysis
studies of common datasets such as Enamine REAL,*
ChEMBL,**”¢ and ZINC.”

One promising extension of Group SELFIES is to incorporate
more flexibility into the representation. In such a case, a group
token can represent an entire scaffold, except without the atom
identities. Other tokens can then identify the atom types on the
scaffolds. This would allow optimization of the atom types while
maintaining the topological structure of the scaffold. Another
current limitation of Group SELFIES is that groups cannot
overlap; more work is needed to develop a representation that
acknowledges how groups might overlap, particularly for

generating  polycyclic compounds. A  sequence-based
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Fig. 7 Examples of chiral groups that can be represented in Group SELFIES. Tetrahedral carbon, hexoses, and octahedral metal centers have
local chirality, whereas allenes, metallocenes, helicenes, and substituted biphenyls have global chirality.

representation of cellular complexes®® or hypergraphs might
suggest a promising direction.

Finally, given this paper's focus on the molecular represen-
tation, we only applied rather simple generative modeling
methods. We hope that future work can leverage Group SELFIES
to perform molecular generation with more advanced genera-
tive methods, including chemical language models, deep
generative models, and evolutionary methods.

Data availability

The code for Group SELFIES and experiments reported in this
work can be found at https://github.com/aspuru-guzik-group/
group-selfies.
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