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Modelling the compression of a soft
ellipsoid fingertip

Ge Shi, Azadeh Shariati, Ian Eames and Helge Wurdemann *

A purely mechanical-driven haptic feedback system was developed for amputees by [G. Shi et al., IEEE

Trans. Haptics, 2020, 13, 204–210]. The fingertip ellipsoid modulates the compression force and trans-

mits it to the feedback actuator when the finger interacts with an object. In this paper, the haptic feed-

back system has been modelled using finite deformation theory. For the ellipsoid fingertip, the

compression behaviour between two rigid, flat surfaces has been studied and can predict the force-

indentation trend and deformed shape of the membrane with the contact area. For the feedback

actuator, the model for the flat membrane is developed with elastic theory, in which the deformation

resulting in contact area increase has been studied. The model has been validated with experimental

results, which consists of the fingertip ellipsoid membrane being compressed by a rigid surface and the

feedback actuator being pressurised. The results of force-indentation, pressure-indentation and the

deformation of the membrane from ellipsoid modelling lay within the experimental data and fit the non-

linear trend well. The results from modelling the feedback actuator have the same trend as the

experimental data in the force–pressure relationship. The haptic feedback system is consistent as a

functional tactile sensor after validation. We present the modelling and validation of the proposed model

for the mechanical driven haptic feedback system.

1 Introduction

Existing prosthetic devices for amputees with upper-limb
amputation range from cosmetic prostheses to body-powered
and highly dexterous myo-electronic hand prosthetic devices.
Extensive advancements have been achieved in providing
amputees with sensation through (non-)invasive haptic feed-
back systems.

Although research from ref. 1 and 2 provide reviews of
mechano, vibro, electrotactile and hybrid systems, purely
mechanical-driven feedback approaches, however, are seldom
investigated. In 1933, Rosset described how pressure at the
prosthetic fingertip could be transmitted to amputees.3 In
1953, Conzelman et al. were granted a patent on a similar
haptic feedback system with incompressible fluid.4 In ref. 5,
this initial idea resulted in a pneumatic closed-loop haptic
feedback system prototype, which used compressible air
instead of incompressible fluid, and was validated by subjects.
Technical challenges of the two aforementioned approaches
include the liability (i.e., appearance of leakages) and fabrica-
tion process. Pneumatic transmission has further limitations
due to its density and compressibility when displacement of
only a few millilitres in volume is required. In ref. 6, hydraulic

haptic feedback system with conductive fluid and electronics to
actuate was introduced and validated. The related PCBs and
battery squeezed into upper-limb prosthetic give the amputees
extra weight to carry. In ref. 7, we presented the development
and evaluation of a 3D printed mechano-tactile haptic feedback
system using a soft hydraulic tactile fingertip sensor.
This haptic feedback system is purely mechanical and relies
on a coupled hydraulic system. The latest technology in multi-
material additive manufacturing, such as the Stratasys
Objet500 Connex3, allows printing of dual material such as
VeroClear, a polymethyl methacrylate, and Agilus 30, a thermo-
plastic elastomer with flexible, rubber-like qualities. Our haptic
feedback system is made of an Agilus 30 fingertip sensor
integrated with a VeroClear finger linked to a wearable haptic
mechano-tactile actuator with an Agilus 30 membrane. The
sensor and actuator are 3D printed and can be easily integrated
into (3D printed) body-powered upper-limb prostheses. In the
case of distal amputations, such as transradial amputees, the
haptic feedback actuator can be interfaced with the residual
limb/forearm through a socket. The range of forces that can be
transmitted using our haptic feedback interface relies on the
dimension of the design of the fingertip and haptic feedback
actuator as well as the used material.

In this paper, we propose an analytical modelling approach
for a fluidic haptic feedback system by understanding the
deformation of the ellipsoid soft membrane (resulting in fluidic
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pressure change) and then the transmission of pressure to the
haptic feedback membrane resulting in tactile forces. On the
other hand, our analytical model will be able to provide
the basis for future optimisation problems for the design for
sensing interfaces based on ellipsoid membranes, for instance.
In this sense, the design of membranes could be optimised by
considering a defined force range as input and understanding,
what material and geometric dimensions a sensor should be
made of.

Despite the application of our proposed model to the fluidic
haptic feedback system in this paper, there are a number of soft
robotic areas that might benefit from our mathematical for-
mulation. In general, our approach might support kinematic
modelling of robotic structures that are made of a number of
soft elastic membranes. Input such as the dimension of the
membrane, material properties and membrane thickness will
then return the overall deformation and compression of each.
In particular, examples might include the locomotion of a bio-
inspired robot made of a series of silicone elastomer spheres
that are deformed by shape memory allow coils8 or a robotic
manipulator made of stackable Hyperelastic Ballooning
Membranes.9 Our analytical model would be able to determine
the deformed shape of the membranes under certain forces
and, hence, the motion of the actuators. Other examples
concern the creation of tactile sensing elements that are pre-
shaped ellipsoid membranes.10–13 Here, our mathematical
model would be suitable to establish a calibration curve
between the compression and the force acting on the mem-
branes. For instance, the BioTac SP tactile sensor by Syntouch
is made of an ellipsoid membrane which is filled with incom-
pressible fluid inside the cavity able to measure mechano- and
vibro-tactile forces through the pressure change. With our
proposed analytical model, any deformation would return an
increase in hydrostatic pressure and result in a force response.
Beyond the application in the field of soft material robotics,
ellipsoid membranes further exist in biological cells (fat cells
and liver hepatocytes), tumours and organs (glands), which our
analytical model could be applied to.14–16 Examples include
studies on mechanical properties of capsules and biological
cells with ellipsoid shapes.17–19 Applying our analytical model
could help to diagnose unhealthy soft tissue and distinguish
cancerous from healthy tissue during palpation and compres-
sion procedures.20

2 Background on modelling
deformation of elastic pockets

The compression of an elastic membrane pocket by a rigid
surface was first proposed by Mooney and Rivlin in 1940 and
1948.21,22 They established a theory of large deformations of
elastic membrane pockets, which applies the hyper-elastic
model to describe the relationship between deformation and
stored energy. Based on the material theory, Adkins et al. solved
the problem of thin elastic membrane inflation23 and proposed
an approach based on the conversion of boundary conditions

into an initial condition problem for an axisymmetric
membrane. Hence, a number of problems have been studied
based on the large deformation theory with different geome-
tries, e.g., circular or square elastic membrane inflation was
reformulated by simplified governing equations.24,25 By using
the modified governing system of equations, the problem can
be solved by a standard analytical method with appropriate
boundary conditions, which was extended by Bouremel et al.
for the free inflation and compression problem.26

The problem of inflation and compression with different
geometries rather than flat membrane inflation have been
investigated in detail. For instance, Feng et al. studied the
inflation of an axisymmetric semi-spherical elastic membrane
that compressed with a flat rigid plate with a rigid support
underneath.27 This model has been widely applied and its
feasibility validated through applications such as micro-
capsule and cell wall modelling,18,19,28,29 safety airbag
modelling,30 modelling the behaviour of the membrane in
contact with curved surfaces.31 Inflation and compression of
toroidal membranes, in which the geometry has positive and
negative curvatures, have also been studied.32,33 In addition,
the inflation and compression of an elliptical membrane as a
fingertip pulp model has been modelled by Serina.34 However,
the mismatch of the angle in the parametric equation and polar
coordinator causes the model to be less accurate.

In addition to the continuous elastic deformation theory,
other methods have been applied to model the fingertip, such
as Finite Element Analysis (FEA) and the static elastic model. In
ref. 35, fingertip pulp was modelled as a solid elastic semi-
sphere composed of an infinite number of vertical springs. In
ref. 36 and 37, the compression of a fingertip was modelled by
FEA methods and the force response fits the results of the
model in ref. 34.

Fingertip modelling in the existing literature either requires
tremendous computation like FEA or assumes the fingertip
behaves as an elastic chunk and cannot predict the shape of
deformation. As a result, the analytical method for calculating
the compression of an ellipsoid fingertip membrane is still
undeveloped. Hence, the contribution of our paper lies in a new
analytical model for an ellipsoid geometry membrane allowing
us to understand the change in shape, volume and, hence,
pressure during deformation. We distinguish the non-linearity
caused both by the ellipsoid shape and hyperelasity of materi-
als. The results of our proposed model have been used to model
and experimentally validate the response of the feedback
actuator in order to predict the performance of a haptic feed-
back system with different material, different dimensions.

3 Mathematical model
3.1 Ellipsoid membrane model

The assumptions and conditions of this analysis are:
� The ellipsoid membrane is axisymmetric in both unde-

formed and deformed conditions, and the shear stresses are
zero from the profile view.
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� The thickness of the ellipsoid membrane h0 is small
relative to the entire dimensions, and therefore the change of
thickness during deformation is considered negligible.
� The volume of the ellipsoid membrane is constant during

compression due to the fluid being relatively incompressible.
� The pressure under the contact region is evenly distributed

and equal to the pressure inside.
The fingertip is assumed as an ellipsoid membrane that is

compressed vertically and quasi-statically by a flat, rigid,
smooth plate from the top as shown in Fig. 1. The membrane
is modelled as an axisymmetric, ellipsoid membrane with rigid
fixed support underneath and filled with incompressible, invis-
cid fluid. The membrane is fitted into the cylindrical coordi-
nates (x,y,y) to describe the shape in its undeformed state. The
centroid of the ellipsoid membrane is located at the origin with
a major principal axis length a0 on the x axis and the minor
principal axis length b0 on the y axis. The second cylindrical
coordinates (r,Z,y) are used for compressed ellipsoid mem-
branes. The xG denotes the value of x corresponding to the
boundary G between the contact and free inflation regions.
Elastic materials that can be fitted by a hyperelastic model, e.g.,
the Mooney–Rivlin model, Yeoh, or neo-Hookean model, are
compatible with our model. In general, compatible materials
would need to satisfy a number of criteria such as: it can be

assumed that the material is incompressible, capable of large
deformations and able to return to its initial state.

3.1.1 Potential energy function. The incompressible elastic
material of the membrane is modelled using the Mooney–Rivlin model
and the potential strain-energy density function W is defined by

W = C1(I1 � 3) + C2(I2 � 3), (1)

with C1, C2 as material constants, and the principal strain invar-
iants I1 and I2 related to the principal stretch ratios, l1, l2 are:

I1 ¼ l12 þ l22 þ
1

l12l22
;

I2 ¼
1

l12
þ 1

l22
þ l12l22:

(2)

3.1.2 Free-inflation region. Along the meridian direction,
the infinitesimal arc length of the undeformed membrane is
defined as ds, which is located by horizontal position x in the
coordinate, and the deformed arc length is dS:

ds ¼ ðdx2 þ dy2Þ1=2 ¼ ð1þ eðxÞ2Þ1=2dx;

dS ¼ ðdr2 þ dZ2Þ1=2;
(3)

where eðxÞ ¼ �2b0x
a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a02 � x2

p
 !1=2

obtained by ellipse standard

equation
x2

a02
þ y2

b02
¼ 1. Throughout the paper, subscripts 1 and 2

indicate the variates in meridian and circumferential direction,
respectively. The prime in the equations denotes the derivatives
with respect to horizontal position x.

The principal stretch ratio l1 is in meridian direction sub-
scripts 1 and l2 is in circumferential direction with subscripts
2, defined as the ratio between the undeformed lengths of an
infinitesimal arc element and the deformed lengths, are:

l1 ¼
dS

ds
¼ ðr

0ðxÞ2 þ Z0ðxÞ2Þ1=2
ð1þ eðxÞ2Þ1=2 ;

l2 ¼
rðxÞ
x
:

(4)

The equilibrium equations for the membrane in both meridian
tangential and normal direction are:27

dT1

dr
þ 1

r
ðT1 � T2Þ ¼ 0;

k1T1 þ k2T2 ¼ P;

(5)

where P is the hydrostatic pressure inside the ellipsoid membrane.
The stress resultants of each membrane segment are given by:

Ti ¼ 2h0
1

l1l2
li2
@W

@I1
� 1

li2
@W

@I2

� �
; ði ¼ 1; 2Þ: (6)

Fig. 1 (a) Overview of the ellipsoid membrane in Cartesian coordinates.
(b) Schematic of the axisymmetric membrane model showing the undeformed
and compressed configurations. Half of the model and one plate are shown.
a0 and b0 are the major and minor axes of the ellipsoid, respectively. xG is the
boundary position between the contact region and free inflation region.
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By substituting equations eqn (1) and (2), the T1, T2 is

T1 ¼ 2h0C1
l1
l2
� 1

l13l23

� �
1þ C2

C1
l22

� �
;

T2 ¼ 2h0C1
l2
l1
� 1

l13l23

� �
1þ C2

C1
l12

� �
;

(7)

where h0 is the membrane thickness. The principal curvature k1 and
k2 is determined by:

k1 ¼
ðr0Z00 � Z0r00Þ
ðr 02 þ Z 02Þ3=2;

k2 ¼
�Z0

rðr 02 þ Z 02Þ1=2:
(8)

In the inflation region of the membrane, the variable o is defined

as o ¼ dl2x
dx

. By substituting equations eqn (4), (7) and (8) into

eqn (5), it is possible to obtain the equation set (l1,l2,o), which are:

l
0
1 ¼ �

o� l2
x

f2

f1
� o
l2x

T1 � T2

f1
;

l
0
2 ¼

o� l2
x

;

o0 ¼ � Pl1ð1þ eðxÞ2Þ1=2ðl12ð1þ eðxÞ2Þ � o2Þ1=2
T1

:

� l12ð1þ eðxÞ2Þ � o2

l2x
T2

T1
þ oðl1l

0
1ð1þ eðxÞ2Þ þ l1eðxÞeðxÞ

0 Þ
l12ð1þ eðxÞ2Þ

f1 ¼
@T1

@l1
; f2 ¼

@T1

@l2
:

(9)

The above governing system of equations applies to the inflation
region in both its inflated state (0 o x o a0) and compressed state
(0 o x o xG). The height of the inflation ellipsoid membrane is:

Ẑ ¼
ða0
0

ðl12ð1þ eðxÞ2Þ � r
02ÞÞ1=2 dx: (10)

The volumes within the membrane in the inflated state is:

Vinf ¼ 2p
ðẐ
0

r2 dZ: (11)

3.1.3 Contact region. In a compressed state, the rigid plate
flattens the ellipsoid membrane vertically and flattens where it
is in contact with the membrane. Hence, the geometry of a flat
membrane in the contact region (0 o x o xG) is described by:

Z0 = 0, (x o xG). (12)

Therefore, the principal stretch in the contact region is

l1 ¼
r0ðxÞ

ð1þ eðxÞ2Þ1=2;

l2 ¼
rðxÞ
x
;

(13)

assuming no friction between the contact surface of the rigid plate

and the membrane. Substituting eqn (7), (8) and (13) into eqn (5),
the system of equations (l1,l2,o) governing in the contact
region is:

l
0
1 ¼ �

o� l2
x

f2

f1
� o
l2x

T1 � T2

f1

l
0
2 ¼

o� l2
x

o0 ¼ l
0
1

f1 ¼
@T1

@l1
; f2 ¼

@T1

@l2
:

(14)

In response to compression, the reaction force on the contact area
is calculated by:

Fc = AcPc = pxG
2Pc, (15)

where Ac is the contact area and Pc is the hydrostatic pressure in
the compressed membrane. The height of the compressed
ellipsoid membrane is:

�Z ¼
ða0
xG

ðl12ð1þ eðxÞ2Þ � r
02Þ1=2 dx: (16)

Hence, the volumes within the compressed state are equal as:

Vcom ¼ 2p
ð�Z

0

r2 dZ: (17)

3.1.4 Boundary conditions. The boundary conditions for
the inflated state are:

x ¼ 0 l1 ¼ l2 ¼ l0 ¼ o
x ¼ a0 o ¼ 0

(18)

The boundary conditions for the compressed state are:

x ¼ 0 l1 ¼ l2 ¼ l0
x ¼ xG l1ðcontactregionÞ ¼ l1ðinflationregionÞ
x ¼ xG l2ðcontactregionÞ ¼ l2ðinflationregionÞ
x ¼ xG o ¼ l

0
1

x ¼ a0 l2ðinflationÞ ¼ l2ðcompressedÞ

(19)

3.1.5 Numerical solution procedure. Inflation and com-
pression of the membrane are required. Firstly, an ellipsoid
membrane is inflated to the desired shape with an inflated
height Ĥinf = Ẑ � b0. The inflated membrane can then be
compressed, with a maximum indentation depth of %Hmax = Ĥinf.
� Inflation: the membrane is first inflated with pressure P0

to the desired dimension with initial conditions l1 = l2 = li = o
at the pole of the ellipsoid membrane (x = 0). The bisection
method is applied to find the initial values li that satisfy the
condition o = 0 at x = a0 and record l2(inflation). This condition
shows that the membrane is still an ellipse shape with a
perpendicular tangent at x = a0. Once the dimension and shape
of the ellipsoid membrane are determined, the volume of the
inflated membrane Vinf is calculated using eqn (11).
� Compression: the second step requires assuming a liquid

pressure Pc and contact point xG for the compressed ellipsoid.
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According to the initial condition l1 = l2 = l0, apply the bisection
method to find the l0 that satisfies the second boundary condi-
tions as shown in Fig. 2, which is the l2(inflation) = l2(contact) at x = a0.
The volume of the compressed ellipsoid Vcom is then calculated by
eqn (17) to check if the volume is equal to the inflated volume Vinf.
If it is not equal, re-assume a contact boundary xG then repeat the
previous calculation until the results satisfy all the restrictions and
conditions shown in eqn (19).

Both steps are solved using the Runge Kutta method in
Matlab 2021 with a tolerance of 10�2%; the solution is usually
obtained in less than 20 iterations.

3.2 Feedback actuator model

The round membrane on the feedback actuator has diameter
+df; it is flat and elastic with thickness h0. The membrane is
pressurised with Pc from the ellipsoid compression. Fig. 3
shows the configuration for membrane pressurisation. The
elastic material of the membrane is incompressible, resulting
in a Poisson’s ratio (n) of 0.5 and causing the deformation on
top (the blue area in Fig. 3) to expand evenly on the side (the red
area in Fig. 3) to keep the total volume at the same level.
Assuming the contact between the membrane and rigid surface
is frictionless, there are no shear forces on the membrane
during the pressurisation. The Young’s modulus E is defined
as E = 6(1 + a)C1 as related by the Mooney–Rivlin model. The
increased diameter of the contact area is:

d f ¼
df

1� Pc

E

: (20)

With the increased diameter + %df in the contact area, the force
output under the membrane is the function of df, Pc and E
defined as:

Ff ¼ PcAf ¼
Pcp
4

df

1� Pc

E

0
B@

1
CA

2

; (21)

where Af is the contact area of the flat membrane on the
feedback actuator.

4 Experiments: characterisation of the
haptic feedback system
4.1 Introduction of the haptic feedback system

In our previous study, a purely hydraulic driven haptic feedback
system was created with a polyjet 3D printer (Stratasys Objet500
Connex3).7 On the one hand, a soft elastic membrane shapes
the outer surface of a rigid fingertip with an inner cavity. In this
paper, the fingertip sensor is approximated by an ellipsoid
membrane of 1 mm thickness inspired by the average size of a
human index fingertip.34 The authors analysed the geometric
dimensions of the index fingertip of 20 adults resulting in the
measurements of 14 mm in height and 17 mm in width. On the
other hand, a second elastic membrane is used for the base of
the feedback actuator. A rigid housing with a cylindrical cavity
is affixed on top of the elastic membrane. Water is used as the
fluid medium inside the two cavities as well as the connecting
hose. When forces are applied to the fingertip sensor, fluidic
pressure inside the system acts on the membrane of the feed-
back actuator resulting in mechano-tactile sensation.

4.2 Experimental protocol

This experiment was carried out to verify the results from the
analytical model, which demonstrates the relationship between
pressure, indentation and reaction force. The ellipsoid
membrane was indented 3 mm at a perpendicular direction
at a speed of 0.1 mm s�1, to minimised the effect of hysteresis.
Related data of loading test, including pressure, indentation,
the reaction force on the ellipsoid membrane and the force at
the feedback actuator, is recorded by hardware sensors. Each

Fig. 2 Flow chart of compressed state calculations.

Fig. 3 The two-dimensional configuration of a pressurised flat elastic
membrane on the feedback actuator. The solid line represents the unde-
formed membrane and the dotted line is the deformed shape of the
membrane. The red and blue patterned solid is the volume change of the
deformation volume during pressurisation.
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trial was repeated five times, and the average across the trials
was reported.

4.3 Experimental setup

The experimental workbench was constructed as shown in
Fig. 4. The setup consists of a liner rail (Zaber X LSM100A)
with 0.05 mm sensitivity, a 3-axis force sensor (IIT FT17) with
0.318 mN sensitivity, a pressure sensor (OMEGA PXM 319001G)
with 0.05 kPa sensitivity and a load cell (Honeywell FSA
XX001RC4C5) with 0.22 mN sensitivity. The liner rail controls
the indentation depth H0, and the fixed force sensor records the
reaction force Fc on the ellipsoid membrane. The pressure
transducer records the hydrostatic pressure Pc change during
the test. The feedback actuator was fixed into the socket, and
the elastic membrane was in contact with the load cell to
measure the blocked force Ff from the feedback actuator. The
elastic finger ellipsoid and elastic membrane in feedback
actuator is made from Agilus30 by a polyjet 3D printer
(Stratasys Objet500 Connex3) with 0.1 mm accuracy. The hyper-
elastic property of Agilus30 is determined by the strain–
stress curve, and the constant of Mooney–Rivlin model is C1 =
160 355 Pa and C2 = 46 559 Pa.38 The entire system was
immersed into water completely including the pipe and
degassed by a vacuum pump to remove the air bubble inside
of the closed cavity.

5 Results and discussion
5.1 Experimental and computational results

Fig. 5(a) and (b) illustrate the reaction force Fc versus indenta-
tion H0 and the hydrostatic pressure Pc versus H0, respectively.
Both Fc and Pc show an identical non-linear increasing

behaviour. The reaction force Fc is sensitive with lower indenta-
tion depth, which from 0 N to 1.6 N accounts for 50% of total
indentation (0 mm to 1.5 mm). After 1.5 mm, the compression
force Fc and hydrostatic pressure Pc rises non-linearly with
further compression. The stiffness of the membrane shows
non-linear increasing behaviour in response, as the same
indentation step causes a larger increase in Fc and Pc. For an
indentation smaller than 2.4 mm, the results from the model
lay within the mean standard error (MSE) of the experimental
data; the MSE is 0.92 for Fc, 0.584 for Pc and 0.052 for Ac.
Meanwhile, increasing the initial stretch l0 results in the
membrane stiffening at all indentation levels, especially after
1.2 mm where the deviation from the linear relationship
behaves in a non-linear manner (Fig. 5(a)). If the initial stretch
l0 is assumed to be 2.3, the model results fit best to the average
of the experimental data at all indentation levels.

The contact area is a flat surface on top of the membrane
that reflects the configuration of deformation in the compres-
sion stage. The contact area Ac calculated using Fc and Pc, i.e.
(Ac = Fc/Pc). Fig. 5(c) shows that Ac increases rapidly at the initial
compression stage, with 60% of the total contact area achieved
at 4–5 N.

Fig. 6(a) shows the shape change of the membrane in the
inflation stage based on the results from the model. At the
initial inflation stage, the height rapidly increases, which in
turn increases the aspect ratio (t = b0/a0) as shown in Fig. 6(a).
After the initial shape change, the entire membrane expands
evenly by applying a higher pressure level with a larger initial
stretch ratio l0. Fig. 6(b) and (c) illustrate the stress resultant Ti

and the stretch ratio li versus the horizontal position x. Infla-
tion leads to nonuniform distribution of stress and strain. The
maximum stress resultant T1 and stretch ratio l1 in the
circumferential direction occurs at the pole of the ellipsoid
membrane (x = 0) and decreases towards the edge of the
membrane (x = a0). The stress resultant and the stretch ratio
in the meridian direction demonstrate an opposite behaviour
compared to the circumferential direction. The transition from
initial inflation to entire expansion depends on the material
property and aspect ratio. In order to inflate the ellipsoid
membrane from a0 = 4.5 mm,t = 0.6 to r = 9 mm
with t = 0.78. In this instance, it happens at l0 = 2.3 and
Pi = 2.1 kPa with Agilus30. The inflation determines the lower
bound of pressure in compression.

Under compression, the membrane is flattened on the top
by a rigid plate while the free inflation region bulges around the
membrane to keep the inside volume constant as shown in
Fig. 7(a). Further compression results in higher hydrostatic
pressure. Meanwhile, the stress resultant and the stretch ratio
in the meridian and circumferential direction increase at all
levels in response.

The points encircled with red in Fig. 7(b) and (c) are the
contact boundary x̃G, where x̃G = xG/a0. From x = 0 to x = xG, the
stretch ratio (l1,l2) and the stress resultant (T1,T2) remains
similar to their initial values but briefly decrease. In the free
inflation region (xG o x o a0), the stretch ratio and the stress
resultant change their behaviour by increasing in the meridian

Fig. 4 Experimental setup: as shown in (a), the hydraulic haptic feedback
system is mounted on a workbench. The ellipsoid fingertip membrane
opposes a FT17-Force sensor, which is fixed to a linear rail. The force
sensor is able to record readings during fingertip sensor indentations. The
fingertip sensor is connected to the feedback actuator via PVC pipe. An
additional load cell measures the force from the feedback actuator. A
pressure transducer connected to the PVC pipe monitors hydrostatic
pressure change. (b) Enlarged view of the finger ellipsoid membrane with
the force sensor and indentor and (c) compressed state of ellipsoid
membrane with indentation H0 and reaction force Fc.
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direction and decreasing in the circumferential direction. In
this instance, the edge of the ellipsoid membrane is con-
strained by satisfying l2(inflation) = l2(compressed) = 2 at (x = a0).

After verifying the analytical model of an ellipse compres-
sion, the valve is open and forms a closed cavity with the

ellipsoid membrane and feedback actuator. Increased hydro-
static pressure can transmit to the +9 mm membrane of the
feedback actuator and pressurise the membrane to generate the
blocked force. The hydrostatic pressure Pc and force from
the feedback actuator Ff show a linear relationship in the

Fig. 5 Comparison between the model results and the experimental data. (a) Reaction force Fc on the membrane versus indentation H0. Reaction force
Fc from the model was calculated by eqn (21) (b) hydrostatic pressure Pc versus indentation H0. Hydrostatic pressure Pc in the model was assumed during
the calculation of eqn (9) to meet boundary conditions. (c) Contact area Ac versus reaction force Fc on the membrane. Contact area Ac from the model is
calculated by Ac = pxG

2.

Fig. 6 Inflated membrane. At the initial inflation stage, the height increases rapidly, causing the aspect ratio t to likewise increases. With higher pressure
inflation, the entire membrane inflates evenly. (a) Cross-section view of the inflated membranes with different initial stretch ratios l0 calculated by
eqn (10). (b) Principle stretch ratios l1 and l2 of an ellipsoid membrane calculated by eqn (9). (c) Resultant stress in the circumferential and meridian
directions calculated by eqn (7).

Fig. 7 Compressed membrane. With higher indentation, the membrane is flattened on the top and inflated on the side. (a) Profiles of compressed
membranes with different indentation and pressure. The position of the membrane is calculated by eqn (16). (b) Principle stretch ratios l1 and l2 of an
ellipsoid membrane calculated by eqn (14). (c) Resultant stress in the circumferential and meridian direction calculated by eqn (7).
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experimental data and model results (Fig. 8). Overall, the model
results show a higher force response than the experimental
data; the model result reach a maximum force of 1.98 N at
pressure 17.9 kPa while feedback force in the experimental data
is 1.68 N at same pressure.

5.2 Discussion

As we assumed that the undeformed status in the experimental
condition is equivalent to the inflated membrane in the analy-
tical model, which is different to the experimental setup with
no inflation (hence, the stress on the membrane is zero before
compression), the initial inflation pressure P0 has been con-
sidered in the compressed pressure Pc to compensate for the
pressure difference in the pre-compression condition between
the model and experiment. Our modelling results with mini-
mum inflation pressure P0 should be identical to the experi-
mental condition, which has no inflation at the beginning (see
Fig. 5). However, the force and pressure curve is lower than the
experimental results (P0 = 2.0 kPa, l0 = 2.2). This might be due
to the negligible friction between the membrane and rigid
plate. The membrane stiffens with a higher inflation pressure
P0 and stretch ratio l0, which results in a higher reaction force
and pressure at the same indentation depth. By stiffening the
membrane, it compensates for the friction disturbance and the
difference between the ideal and practical conditions. In fact,
the force and pressure curve shows a good agreement with the
experimental results (P0 = 2.1 kPa, l0 = 2.3).

After the membrane is inflated to the desired shape, the
volume and the edge of the membrane is constrained by
converging l2(inflation) = l2(contact) at x = a0 as it can be seen in
Fig. 7(a) and (b). Within the contact region x A (0,xG), the
stretch of the membrane is isotropic, i.e. 8l1 � l28 o 10�2. As
the membrane is compressed further and the contact region
increases, the zone of isotropic stretching likewise increases.
Where x A (xG,a0), the stretch in the meridian and circumfer-
ential directions are anisotropic. Meridian stress on the sym-
metry plane constrains the indention depth of the membrane.

Moreover, circumferential stress constrains the expansion of
the membrane in the vertical view.

As the indentation depth H0 increases close to %Hmax, the
initial stretch ratio l0 gradually increases. The stress resultant
Ti likewise increases with each compression step as it is evident
from (Fig. 7(b) and (c)). The membrane resists further compres-
sion by acting with higher stiffness of the material on all
membranes with a higher stretch ratio and stress. The max-
imum indentation depth %Hmax is determined by the inflated
height Ĥinf and original height b0, which means the inflation
stage provides the lower bound of the indentation.

During the inflation stage, slight pressure might lead to a
significant expansion in the geometry due to lack of constraints
at the edge of the membrane for the initial inflation. The initial
dimension of the ellipsoid membrane a0 and b0 with the
inflation condition P0 and l0 are varied and have different
combinations of values but can yield the same desired dimen-
sion. As a0 and b0 decrease with increasing inflation pressure
P0, Ĥinf increases as well as the maximum indentation depth
%Hmax evident by a good agreement with the experiment data in
Fig. 5 at higher inflation pressure values P0. Hence, the combi-
nation with a slightly larger inflation height Ĥinf at higher
inflation pressure P0 has been selected and compared with
the indentation depth %Hmax. The initial inflation produces a
nonuniform stretch and stress on the membrane as shown in
Fig. 6(b) and (c). As the inflation pressure increases, the
deviation level of stress and stretch ratio in the meridian and
circumferential direction increases. Hence, the ellipsoid
membrane shows anisotropy in the inflated states.

It is worth noting that we established a number of assump-
tions for our analytical model. In particular, the assumptions,
that the model considers the compression of a pre-inflated
membrane and that the thickness of the membrane remains
unchanged, might add errors to our modelling formulation. In
our paper, the membrane of the fingertip shows an anisotropic
behaviour in its inflated state. In the experiments, however, the
membrane is unstretched. When the inflated membrane is
compressed in the computational model, the offset of the stress
caused by the initial inflation remains. Hence, the results
might show higher stress levels compared to the experimental
results. On the other side, the change of thickness during the
deformation is neglected because the thickness of the
membrane is significantly smaller than the width and height
of the fingertip membrane. A limitation might occur if mem-
branes are considered that have larger thicknesses.

During the experimental procedure, the feedback actuator is
mounted on a socket. The deflated membrane is then in full
contact with the load cell restricting free inflation and generat-
ing blocked forces. The membrane exhibits a change in volume.
Volume change DV (Fig. 3) can be calculated by DV = dfDh.
Under 17.935 kPa, the volume change DV is 1.38 mm3, which
means the total volume change of the flat membrane being
pressurised by Pc is 0.432% of the volume of the inflated
membrane Vinf. Hence, the volume change of the ellipsoid
membrane, in which the fluid flows to the feedback actuator,
is negligible.

Fig. 8 Linear relationships between the output force (calculated by
eqn (21)) at the feedback actuator and the hydrostatic pressure for each
feedback actuator membrane.
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The maximum deviation between the experimental and
computational results for the feedback actuator is about
18.56% at a pressure value of 17.9 kPa in Fig. 8. It can be
observed that the deviation proportionally increases with the
hydrostatic pressure. The reasons for this discrepancy might be
manifold. One reason might be due to the increase in friction
between the surface of the elastic membrane and the load cell
preventing the membrane to stretch. This behaviour is
neglected in our computational model of the feedback actuator.
Another reason might relate to the manufacturing process of
the actuator. The membrane is fixed onto the solid structure by
the multi-material 3D printer by Stratasys. The bond between
these two materials might vary in strength.

The computational results of our analytical model are
compared to results reported in the literature as summarised
in Table 1. The table shows the calculated or measured reaction
force Fc at H0 = 0.5 mm and 2 mm indentation. As a reference,
the experimental results of force-indentation of a fingertip were
reported by Serina.39 Then, the computational results of an
FEA36 are listed in the table as well as the results of our model
using the material constants of skin tissue (C1 = 13 400 Pa,
C2 = 29 500 Pa)34 on the one hand and the material contestants
of Aglius30 on the other hand. Maximum errors are calculated
with respect to the experimental results of a fingertip compres-
sion. When considering the constants of Aglius30 material, the
maximum error is similar to the results of the FEA. The error is
lower (14.7%) for results taking the material constants of
human skin tissue as input.

6 Conclusions

This paper derived and validated an analytical compression
model for both an ellipsoid and a flat membrane as well as
validated the models based on experimental data. The model is
capable to capture the ellipsoid membrane’s non-linear force
response under compression in line with experimental data
(Fig. 5). In our approach, we used the Cartesian coordinate to
obtain the ODE equations, which differs from the use of a polar
coordinate by ref. 34 resulting in a simplified set of ODEs. By
inserting the dimension of the ellipsoid membrane (a0,b0),
material property (C1,C2) and thickness (h0), the inflation and
compression can be solved, considering the hydrostatic pres-
sure Pc, reaction force Fc and contact area Ac with membrane

shape deformation as illustrated in Fig. 5. In our case study, the
elastic ellipsoid membrane has a major axis length of 9 mm
with a minor axis length of 7 mm similar to the average size of a
natural human fingertip producing similar non-linear force-
indentation relationship of the human fingertip with a sembl-
able force level of 0–4 N at 0–2 mm indentation.39

Our theoretical computations can predict the inflated and
compressed states of the ellipsoid membrane. Hence, by
designing the haptic feedback system for different sizes of
fingertip membranes and feedback actuators with different
elastic materials, the model can predict the performance of
the haptic feedback system and optimise the design to replicate
the force-indentation curve. The deformation theory for the
ellipsoid membrane is not only limited to modelling the
fingertip compression but also has the potential to model
inflation and compression of an ellipsoid membrane in
generic cases.
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