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1 Introduction

Charging dynamics of electrical double layers
inside a cylindrical pore: predicting the effects
of arbitrary pore sizet

Filipe Henrique, (2@ Pawel J. Zuk (2 °¢ and Ankur Gupta (2 *®

Porous electrodes are found in energy storage devices such as supercapacitors and pseudocapacitors.
However, the effect of electrode-pore-size distribution on their energy storage properties remains
unclear. Here, we develop a model for the charging of electrical double layers inside a cylindrical pore
for arbitrary pore size. We assume small applied potentials and perform a regular perturbation analysis to
predict the evolution of electrical potential and ion concentrations in both the radial and axial directions.
We validate our perturbation model with direct numerical simulations of the Poisson—Nernst—Planck
equations, and obtain quantitative agreement between the two approaches for small and moderate
potentials. Our analysis yields two main characteristic features of arbitrary pore size: (i) a monotonic
decrease of the charging timescale with an increase in relative pore size (pore size relative to Debye
length); (ii) large potential changes for overlapping double layers in a thin transition region, which we
approximate mathematically by a jump discontinuity. We quantify the contributions of electromigration
and charge diffusion fluxes, which provide mechanistic insights into the dependence of charging time-
scale and capacitance on pore size. We develop a modified transmission circuit model that captures the
effect of arbitrary pore size and demonstrate that a time-dependent transition-region resistor needs to
be included in the circuit. We also derive phenomenological expressions for average effective
capacitance and charging timescale as a function of pore-size distribution. We show that the capaci-
tance and charging timescale increase with smaller average pore sizes and with smaller polydispersity,
resulting in a gain of energy density at a constant power density. Overall, our results advance the
mechanistic understanding of electrical-double-layer charging.

are limited by their available specific surface area.’ In view of these
characteristics, supercapacitors bridge the gap between traditional

Batteries and fuel cells are traditional porous-material-based
electrochemical devices. Over the past 60 years, new devices such
as supercapacitors’ have started to emerge. They are comprised
of porous electrodes - typically made up of dispersions of
activated carbon spheres — immersed in aqueous, organic, or
ionic liquid electrolytes. The electrodes store charge through
the physical adsorption of dissociated ions onto their pore
surfaces, forming a charged region commonly referred to as
the electrical double layer.>® Obviating the need for redox
reactions, these devices charge faster than batteries and present
better cyclability. Nevertheless, their energy density and capacitance
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capacitors and batteries, being used in situations where fast
response and moderate energy output are required, e.g., stabili-
zation of energy fluctuations in power grids* and memory
protection in electronic devices.> More recently, hybrid capaci-
tors have been designed in an effort to utilize the energy storage
mechanisms of both electrical double layers and reduction-
oxidation (redox) reactions.*” They consist of two distinct
electrodes, one supercapacitor-like which stores charge physically
into double layers, and another metal oxide pseudocapacitor-like
which accumulates energy by performing fast oxidation surface
reactions.® While there have been significant advances in the
material design of supercapacitors and hybrid capacitor electrodes,
the effect of pore-size distribution on the energy storage properties
of these devices remains unclear.’

The earliest models for electrode charging address the geo-
metry of an electrolyte between flat plates, dating back to the
works of Gouy,® with later contributions from Chapman® and
Stern'” to consolidate the well known Gouy-Chapman-Stern model.

This journal is © The Royal Society of Chemistry 2022
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Notably, a wealth of different effects have been studied to complete
this simplified geometrical picture of flat plate charging. Bazant
et al™ reviewed the previous flat plate charging studies and
developed an approach to solve the Poisson-Nernst-Planck (PNP)
equations, from the linear regime at low voltages to the nonlinear
effects at high voltages. Feicht et al.'> compared one-dimensional
PNP solutions with the experimentally observed reverse peaks in
electrolytic cell discharging. Kilic and Bazant'*** derived modified
PNP equations including ion-radius effects to study the influence
of ion crowding in charge storage. For higher electrolyte concen-
trations, other effects such as multi-component diffusion given by
Stefan-Maxwell fluxes,'®> and ion correlations'®™*® have been
studied, for instance in some continuum models.*?*

The porous geometry is incorporated in the form of equivalent
circuit representations, widely used in the modeling of pore
charging in supercapacitor electrodes,”*>® stemming from the
pioneering work of de Levie.””*® Later, Biesheuvel and Bazant®
extended the circuit to high potentials for capacitive deionization
applications. Recent papers®®*® further discuss the relationship
between the equivalent circuit and the corresponding transmis-
sion line continuous equation for pores with finite lengths.
Throughout most pore charging models, common assumptions
are either of thin double layers>*”****% within the pores, ie.,
such that the length of the charged region is much smaller than
the pore size, or overlapping double layers,*'**> where the charged
regions extending from the opposite sides of the surface meet.
However, pore sizes can range from less than 2 nm for micropores
to more than 50 nm for macropores.>*> Thus, a first-principles
approach that extends pore charging models to arbitrary pore
sizes is required in order to accurately describe the charging of
supercapacitors and predict their properties, such as capacitance,
energy density, and power density. Some of the works which
address pore-size dependence focus on the equilibrium response,*
while others propose transient transport-equation-based numerical
schemes that describe porous network charging for arbitrary pore
sizes.>*?> However, to the best of our knowledge, the relative
importance of charge transport mechanisms for arbitrary pore
sizes and their implications on transmission line circuits have
not been reported.

In our previous work,*® an analytical model based on the
PNP equations was proposed to describe the charging of pores
at low applied potentials in the limit of overlapping double
layers. Here, inspired by perturbation models on electro-
kinetics,’” ** we develop a perturbation expansion model for
arbitrary pore sizes - i.e., pore radii — in the limit of small
applied potentials. We compare the predictions of the model to
direct numerical simulations to show that the perturbation
solution yields good results even for moderate applied poten-
tials (=50 mV). We demonstrate that a modified transmission
line circuit (compared to classic supercapacitor literature®’>®)
includes a resistor representing finite changes in electric
potential at a thin entrance region at the mouth of a pore.
We derive an effective capacitance to study the effect of pore-
size distribution on energy and power densities. Besides
addressing transient charging, the solution developed here
quantifies the contributions of diffusion and electromigration
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Fig. 1 A schematic of the problem setup. (@) A porous electrode is
subjected to an applied voltage. The electrode pores are filled with an
electrolyte with cations (in red) and anions (in blue). The pore electrolyte is in
contact with a static diffusion layer. (b) Schematic representation of a single
cylindrical pore (using dimensionless variables) and the division of the domain
into bulk, static diffusion layer (SDL), transition, and pore regions. The bulk has
¥ = 0 and equal concentration of both ionic species c.. = 1. The SDL radial
boundary, with vanishing normal gradients, is represented by dashed lines.
The potential at the surface of the pore is ¥p, the lengths of the static
diffusion layer and pore are /s//, and 1, respectively. The radii of SDL and the
pore are as/a, and 1, respectively, and the Debye length is //ap.

and provides mechanistic insights into the charging process of
pores of arbitrary sizes.

2 Problem formulation

We consider an ideally conducting porous electrode that consists
of tortuous pores of different radii, filled with an electrolyte; see
the schematic in Fig. 1a. Once a voltage difference is applied,
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counterions are attracted to the pore surfaces, forming electrical
double layers of thicknesses that may be thin or comparable to
the pore size.>** We follow common practice®"*® in assuming
the formation of a static diffusion layer (SDL), an electroneutral
region beside the electrode. Fig. 1b shows a simplified setup with
a cylindrical pore of length 7, and radius a;,, where the radial and
axial directions are denoted by r and z, respectively. The SDL, of
length /5 and radius as, is adjacent to the pore. We denote the
cation and anion concentrations by c¢. (7, z, £) and electric potential
by Y(r, z, t), where ¢ is time. The position z = 0 represents
the interface between the pore and the SDL. We assume that
the SDL is in contact with the bulk such that ¢, (r, —/, ) = ¢, and
W(r, =45, t) = 0. At ¢ = 0, the concentration of ions everywhere is
c4(r, 2, 0) = co. At t > 0, since the electrode material is an ideal
conductor, the potential at the surface of the pore y(ap, z, t) = Yp.
We also assume that the pore surface is ideally blocking, i.e., the
flux of ions across the pore surface is zero. In addition, we assume
tmﬁi<L§:
b 2
sivities inside the pore are equal and given by D,. The ion
diffusivities outside the pore are also assumed equal and are
given by D;. We note that the ion diffusivities inside and outside
the pore may be different due to confinement effects. As we show

O(1), the ions are monovalent, that ion diffu-

later, the ratio of diffusivities - ie., Fp - dictates the interaction

N

between the pore and the SDL. We denote Debye length by 4

ekgT . . e
such that 2 = \/g, where ¢ is the electrical permittivity. For
e-Cy

reference, a 1 M aqueous electrolyte at room temperature has a
Debye length 4 ~ 0.3 nm. The objective of this article is to
determine the value of y(r, z, ) and c.(r, 2, ¢) for an arbitrary

. . ap
relative pore size —.
A

Physically, when the potential is applied on the surface of a
pore, oppositely charged ions migrate inside the pore, while the
similarly charged ions transport out of the pore. This relative
transport of ions produces an electrical current. In addition,
due to the charge imbalance, an electrical double layer forms
adjacent to the surface. As time progresses, the potential drop
across the electrical double layer starts to saturate, ions stop
migrating, and the current ceases.

To solve for y and cy, we start by writing the Poisson-
Nernst-Planck equations**™*¢

86& +V Ny =0, (1a)
-V = e(cy — c), (1b)
where N are the ion fluxes. Inside the pore
N, =-D,Ve, F i gy, (1c)
and outside the pore
Dgec
N. = —D\Vey F o TiVl//. (1d)
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We note that Ny = e.Ny, + e,N., by angular symm%try We

introduce dimensionless charge density p = —, salt
€0
. ey +c- . . tD
concentration s = —- , potential ¥ :—l//, time © =2,
[&)) kBT épZ
. . z . . r .
axial position Z = radial position R =—, and gradient
p dp

_ 4 .
operator V = {,V. Note that —é—s < Z <1. In addition, 0 <
P
R < 1for0 < Z < 1 (ie., the pore region), and 0 < R < % for
dp
—é—s < Z <0 (ie., the static diffusion layer region; see Fig. 1b).
P
With these substitutions, the set of eqn (1) becomes

dp
— J=0, 2
5.+ V- (2a)
Os
— -W=0 2b
5.V ; (2b)
AR 2 p
- (g) VY = 5, (ZC)
1 Ny —
where V = eR( p) 6(1 + ezaaz D+ N ~ is the dimension-
N N_
less charge flux and W = e+ N is the dimensionless salt
DpCO/fp
flux. Inside the pore
—(Vp +sVYP), = —(Vs+pVYP), (2d)
and outside the pore
Dy ,— _ Dy ,— _
J=—"(Vp+sV¥), W=—(Vs+pVVP). (2e)
D, Dy,

At 7 = 0", inside the pore, the potential is constant and equal to
the wall potential since the electrical double layer hasn’t
developed yet. In contrast, the potential is linear in the SDL
due to electroneutrality. Therefore, eqn (1) are subjected to the
following initial conditions

p(R, Z,07) =0, (3a)

s(R, Z, 0") = 2, (3b)

W(R,Z <0,0") = ( Zf ) (30)
Y(R,Z>0,0")= ¥p. (3d)

The boundary conditions (BCs) at Z = ,;L are given by the

bulk condition, or P
I
R—27)=
p( ) €p> T) 0>

K (R, —ﬁ, r) =2,
lp

This journal is © The Royal Society of Chemistry 2022
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At the end of the pore, i.e., Z = 1, the BCs are that gradients
of potential and concentration vanish for [, > a,, implying

oY

9 _or
z=1 02

0z

_ 0Os

= =0. )
L. 0Z

z=1

Due to the symmetry, the BCs at the center of the system, i.e.,
R =0, are simply

op
OR

_bs
r=o OR

v

=2 0. (6)
k= OR

R=0

At the surface of the pore, i.e., R=1and Z > 0, the BCs are of
ideally blocking electrode and constant potential, which are
given by

Jrlr=1 =0, (7a)
Wgl|r=1 = 0, (7b)
Y(1,Z > 0,1) = ¥p. (7¢)

We note that eqn (1c) represents the ideally conducting electrode
. . . a
BC. Finally, at the boundaries of the SDL, i.e., R = —and Z < 0,

dp
the BCs are vanishing gradients, or
0 0Os oY
oy 95 9 . (8)
OR|g_a OR|g_a OR|p_a
ap ap ap

This assumption is valid for non-interacting pores where the
radial currents are identically zero, consistent with the treatment
of SDL in the literature.>**?® We solve the set of eqn (2)-(8)
numerically using OpenFOAM.*”*® The details of geometry, mesh,
and algorithm have been described in ref. 36. We refer to the
solution from OpenFOAM as direct numerical simulations (DNS).
Next, we perform a regular perturbation analysis* to obtain an
analytical expression for p(R, Z, 7) and ¥(R, Z, 1).

3 Regular perturbation analysis

In this section, we focus on the small potential limit, i.e., | ¥p|
« 1, and conduct a regular perturbation analysis to describe
the charge and potential inside the pore. To this end, we divide
the solution into three regions: (I) SDL, (II) inside the pore,
and (III) transition region between the SDL and the mouth of
the pore.

3.1 Static diffusion layer

The SDL is characterized by electroneutrality, ie., p = 0.
Furthermore, for |¥p| « 1, s = 2.>°° Therefore, as per
eqn (2¢) and the boundary conditions in eqn (4c), (6), and (8),

This journal is © The Royal Society of Chemistry 2022
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it is straightforward to show that ¥ is linear in Z and is
independent of R. Mathematically, we write

VYV = Yt <l + Zéep) for Z < 0, (9)

S

where Vi = (R, 0, 1), i.e., the centerline potential to the left
of the SDL-pore interface, and is to be determined.

3.2 Inside the pore

The region inside the pore consists of ion concentration and
potential varying in time as well as in both radial and axial
directions. In the low-potential limit, we propose regular
perturbation expansions of the dependent variables in the
small parameter ¥p, ie.,

p=pot p1¥p + O(¥p?), (10a)
5$=80+5%Pp +0(Pp?), (10b)
Y=o+ PP + O(Ph2). (10c¢)

We also introduce variables p,,(Z, t) and ¥,(Z, t) that represent
the centerline charge and density. As per our proposed pertur-
bation expansion,

Pm = Pmo + pmlqu + O('PDZ) (10d)

le = 'PmO + lel 'PD + O('PDZ)' (106)

In this article, we only focus on the leading-order and first-
order terms.

The leading-order terms, i.e., po, So and ¥, are obtained from
the response in the absence of an applied potential, i.e., ¥ = 0.
Thus, it can be seen that the leading-order coefficients
Po =0, =2 and ¥, = 0 satisfy the set of eqn (2) with the
initial conditions (3) and boundary conditions (5)-(7).

Inserting the expansions provided in eqn (10) (with po = 0,
s=2and ¥, = 0) in eqn (2a) and (2d) and collecting the first-
order terms in ¥}, yields

91

5 = Vip, + 2V,

(11)
Similarly, Poisson’s equation - eqn (1b) - after substitution of
the perturbation expansions takes the form

2\ 2 o
—(Z) vy, =L
(&) 7=

Only the known leading-order term in the salt concentration
enters eqn (11), such that eqn (11) and (12) suffice to determine
first-order corrections to charge density and potential in the
low potential regime. Therefore, we do not need to further solve
eqn (2b).

Since Z_p < 1, the diffusion in the radial direction is much

(12)

faster thaI}; in the axial direction and we can assume quasie-
quilibrium in the radial direction.*® Thus, with symmetry
and ideally blocking conditions (see eqn (6) and (7)), we have
Jr = 0. Utilizing this condition in eqn (2d) and collecting the

Soft Matter, 2022, 18,198-213 | 201


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1sm01239h

Open Access Article. Published on 06 2021. Downloaded on 04.11.25 19:45:49.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Soft Matter

first-order terms in the perturbation expansion, we get

0/)1 (r)q/[
JRi=——-2—=0 13
RT79Rr  “oR (13)
which implies that®®
p1+2¥1 = pmr + 2, (14)

where p,,1(Z, 1) and ¥,,4(Z, 1) are to be determined. Next, by
utilizing % < 1 in eqn (12), we get®®
p

10 IV rap\2p
*Eﬁ(Rﬁ) =-(P5 (15)
Integrating eqn (15) with % =0 and Y,(Z, 1, 1) = 1 yields
R=0

m a
lPl - g’ml _% 10( 71))
_ Pmi1 - (16)

2 ) I°(a7p>7

where I, is the modified Bessel function of the first kind of
order n. By substituting R = 0 in eqn (16), we obtain

17'111111

C2(Pn - 1)
Pmi [()(C;Ll)l.

Next, by combining eqn (16) and (17), substituting the leading-
and first-order coefficients in eqn (10), and neglecting higher-
order terms, we get
dp
IO( z) :

n(Z) - n(Z) -t

Similarly, substituting eqn (16) and (17) into eqn (14) and
neglecting higher-order terms in the perturbation expansion
of p, we get

(17)

+ ¥b

(18)

2, — ¥)io (R
w(F) -1

Next, we note that since Jz = 0, so we can simplify eqn (11)
to obtain

p= (19)

o
0z?

op %p

ot 972 (20)

To determine the axial dependence, we average eqn (20) over
the cross-sectional area of the pore (integrating across the
radial direction) by utilizing the known radial dependence in
eqn (18) and (19). Mathematically,

lap 1 azp 182qj
JOERdR = JO@RdR + 2J0 7 RAR.

(21)

We emphasize that this crucial step enables us to derive a

solution for arbitrary %, thereby bridging the previously reported
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trends in thin and overlapping double layer limits.>*”**° Now,
substituting eqn (18) and (19) into eqn (21), we obtain

24, (ap
(%)
ap 2/ 0¥, OV,
= (22)

(@) oz

The boundary conditions for eqn (22) include ¥yjgne = ¥.(0%, 1)

oY . . .
6Zm = 0, where ¥,igns, L.€., the centerline potential to the
z-1

right of the SDL-pore interface, is to be determined.

and

3.3 Transition region

We now focus on the transition region between the SDL and the
mouth of the pore. First, we emphasize that the transition
region is only relevant for overlapping double layer limits.
In the thin double layer limit, p = 0 inside the majority of the
pore as well as the SDL region, and thus the transition region
becomes irrelevant. This is consistent with the derivations in
Biesheuvel et al.,>*° who assume a continuous variation in ¥
across the SDL-pore interface in the thin double layer limit,
thereby implicitly neglecting the transition region.

In contrast, in the overlapping double layer limit, p inside
the pore is non-zero whereas p in the SDL region is zero, and a
transition region is required to connect the two regions.
Accordingly, inside the transition region, p varies from zero
to the value inside the pore. To estimate the thickness of the
transition region ¢ (scaled by /), we emphasize that charge
density is related to the length scale of the charge gradients by
the Poisson equation; see eqn (2c). Because the radial variation
inside the SDL can be ignored, the dimensionless length scale
over which charge gradients could be present inside the SDL is

£ . )
FS = O(1). Therefore, using eqn (2¢) and assuming — = O(1),
P ap
p a\’
it is straightforward to show that o= 0(6—1’) < 1, enabling
D P
us to assume electroneutrality inside the SDL. In contrast,
the smallest length scale over which the charge gradients are
present inside the pore is Z—p, which implies ‘I’L = 0(1);?%14951
P D
see also eqn (29). Next, in the transition region, p varies from zero

to the value inside the pore. Therefore, p inside the transition

region is on the same order of magnitude as that inside the pore.

Accordingly, the relevant length scale is the same as that of the

pore, or § = 0(%) < 1. In summary, the transition region is
P

thin due to geometrica}l features of the pore.

In the limit of -2 = O(l), the transition region may
present finite electric potential and charge density changes.*®
Therefore, in our perturbation expansion model, we approxi-
mate this region as a jump discontinuity. Defining Jies = Jz| z-0
and Jighe = Jz|z=0+, the charge flux in the SDL is given by
Dy lPleftfp
Dy &
In contrast, the charge flux inside the pore is given by

Jieft = =2 where P = ¥,,(07, 7); see eqn (2¢) and (9).

This journal is © The Royal Society of Chemistry 2022
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20(3) ov,

(7)1,

Therefore, since the transition region is thin and thus has
negligible charge storage, we ensure current conservation
across it by requiring Jiepds = Jrightdp, L.€.,

~0(F) ow,
)

Jright = — ; see eqn (2d), (18) and (19).

Dy 1y ag?
Dy ls ay

Plett (23)

Z=0"

Eqn (23) consists of two variables, i.e., Wier and ¥ g, and we
need an additional equation to solve ¥,,.

To relate Ve and Yiign, We require current conservation
also on the left surface of the transition region (see Fig. 1b),
relating its charge flux to that of the SDL. To do so, we define

Prete = Pm(07, T) = 0 and prigne = pm(0", 7). The charge flux inside

the transition region can be approximated by Jzin =

1
dimensionless thickness of the region,

P — P
—(pr'ght 4 o it 5 m) with a O(5) error, where & is the

scaled by /,. The

current conservation relation, Jzint = Jies, reads
pnght + 2lPr1ght Wieft _ 2Ds 'P]eftgp. (24)
0 0 D, /s

For 6 « 1, the right-hand side can be neglected, S0 prighe +
2% ighe = 2Wiere- EQn (17) can then be used to derive

Iy <7p> W ight — l1”1).
e

5) shows that when % > 1,

Plety = (25)

Eqn (2 lPleft = qlright) which is

ap
— |
2 Sh

¥.igne = b, which is also expected, since the potential will be
close to the surface potential everywhere inside the pore.
Substituting eqn (25) in eqn (23) yields

expected for thin double layers. In contrast, when

a'Pm . lIID
= Bi| Pyioht — ——2— |, (26)
9Z Iz b h(ﬂg
A
. D¢ty ad
where Bi = D—g—— is the Biot number.
s dp

3.4 Governing equation

We can now combine eqn (22) and (26) to rewrite the governing
equation for centerline potential as

dp ¢
8_T = @, (273)
a
(= ¥
where T = 37 <)"a> tand ¢ = ¥, — ;)p . Here, T and ¢ are
apll ( A ) 0( A )

the effective dimensionless time and potential, respectively.

This journal is © The Royal Society of Chemistry 2022
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O(zzp IW
“(;)

= 0. The analytical solution of eqn (27a)

Eqn (27a) is subjected to ¢(Z,0) =

Dya_ZZO

¢

Bi¢(0, 7)) and %z

4sinic, 2
-k, T W(Z—1)),
Dzmﬂmm xp(—16,2T)cos(,(Z 1),

(27b)

where Kntanlcn = Bi.

m ¢ +
fo (7)
p inside the pore using eqn (18) and (19). Finally, eqn (9) and

(25) enable us to evaluate ¥ inside the SDL.

We emphasize that eqn (18), (19) and (27) are the key result
of this paper. To the best of our knowledge, this is the first
solution of the charge density and potential profiles within a
cylindrical pore for arbitrary pore size in the limit of low
potentials, formally justified by a regular perturbation expan-
sion. This paper highlights that the mathematical structure of

Eqn (27b) can be used to derive

, which can then be used to evaluate ¥ and

o ) a a
¥ remains identical irrespective of —2. However, the effect of -2
A

L

modifies the charging timescale

(D),

fe=m=-L " P 27
7 @) o, (27¢)
. . A 204, .
In the thin-double-layer limit, i.e., — < 1, t, & ———, consistent
p ap Dy

with the results reported previously.”
07 . .
~ L consistent with the

In the overlapping-

A

—> 1, t
dp

results reported in Gupta et al.*® We illustrate this timescale
dependence on pore size with contour plots of the time evolu-
tion of the electric potential in Fig. 2, and rationalize its
mechanism in the following discussion.

In the thin-double-layer limit, the pore remains uncharged
except in the vicinity of its surface. As shown in Fig. 2 and the
ESI Video (ESI), for a,/4 = 10, T = 0.2 displays a charge density
profile very close to that of = 1, indicating an earlier saturation
of the profile and therefore a lower timescale. This is also
backed up by the calculations, which predict 7. ~ 0.19 for

double-layer limit, ie.,

a
-2 — 105 see eqn (27c). In contrast, when double layers are not
A

% =2, a radial distribution of charge propagates

throughout the pore, producing a transient axial gradient of
charge. The charge profiles continue to develop in both radial
and axial directions and appear to saturate around 7 = 1. This is
also consistent with our prediction since 7. ~ 0.7; see

thin, ie.,

eqn (27c¢). The charging of a—p =5 lies between the two other

scenarios described. Finally, we also note that while the
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Fig. 2 Contour plots of the time evolution of the charge density in the SDL-pore region for different relative pore sizes. Charge density profiles reveal
different charging timescales and screening lengths corresponding to different relative pore sizes. All the plots share the same axes.

overlapping double layers take longer to charge, they also store  diffusive and electromigrative fluxes by employing our analy-

more charge throughout the pore, resulting in a trade-off of

charge density and charging timescale. a
isti i i and -2 = 10, the radial diffusive flux is always balanced b

The characteristic feature that sets the charging timescale 2 ) y: y
of arbitrary pore sizes is the interplay of electromigrative and  the radial electromigrative flux, even though the radial diffusive
diffusive fluxes. Therefore, we construct a vector plot of and electromigrative fluxes increase with time; see Fig. 3.

. . . . . a
tical derivation; see Fig. 3. First, we note that for both -2 = 2

a,/ A =2 a,/A =10
— Electromigrative
— Diffusive
L 1y ) a,
2 0.75 Ma, 075}
ﬁ ~
L 05 0.5
0.25¢+ 0.25¢+
0 0
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
Z
1t 1t
'ﬂ‘ 0.75 0.75+
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0 0
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Fig. 3 Vector field plots of negative charge diffusive and electromigrative fluxes in the pore for different relative pore sizes. Arrow lengths are
logarithmically scaled. Charge flux is only driven by electromigration for thin double layers, but set by a balance of diffusion and electromigration for
overlapping double layers. All the plots share the same axes.
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This is a classical feature of double-layer charging; see ref. 11
for more details. Overall, the balance in the radial direction
implies that the timescale of pore charging is controlled by the
4 _
=
charge vanishes and electromigration is the only mechanism

promoting axial transport of charge, in consonance with the

fluxes in the axial direction. For 10, the axial gradient of

2,27,28,30

. a . .
literature. In contrast, for -~ = 2, both electromigration
A

and diffusion cooperate in driving charge transport; see Fig. 3.
However, this increase of charge flux in the overlapping double
layer limit is smaller than the boost in charge density, leading
to a longer charging timescale.

4 Results: potential, charge and
current

In this section, we analyze the analytical predictions of the
electrical potential and charge density profiles. We also validate
our analytical predictions with the results from DNS.

4.1 Axial dependence of potential and charge profiles

¥
The centerline potential, given by eqn (27b) with ¥, = ¢ + ———

aN
w(7)
and the charge density distribution, given by eqn (17), are shown
in Fig. 4. We note that we obtain excellent agreement between the
analytical results and DNS for both ¥, and p,.
Fig. 4b and d show that the centerline charge density

p

. . ap . c
increases monotonically as - I8 reduced, vanishing in the

thin-double-layer regime, andv approaching twice the applied

a) b)

0 0.5 1
Z
1 2
0.8} { 1.6
Q Q
= 0.6 1.2
S S
£0.4 < 0.8
= |
0.2/ ‘ ] 0.4
//—
—— 0 !
-0.5 0 0.5 1 -0.5 0 0.5 1
Z Z

Fig. 4 Centerlin% potential and charge as a function of the axial coordi-
nate for different 7". (a) and (b) for = 0.15. (c) and (d) for t = 0.42. yp = 0.4
and Bi = 8 for all plots. Smaller %" results in an increased centerline

potential and charge density, and a larger potential jump at the mouth
of the pore. The solid lines are predictions from the perturbation expansion
model and the dashed lines are results from DNS.
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potential for overlapping double layers. At steady state, ¢ — 0,

Y — ,and p,, — ; see eqn (17). The increase in

¥ 29
rap\ T ap\
0(3) n(3)
'\ \Z
centerline charge induces a larger potential change at the
SDL-pore transition in order to balance diffusion and electro-

migration in this region.

4.2 Radial dependence of potential and charge profiles

The radial dependence of the pore potential and charge dis-

tribution, given by eqn (18) and (19), are shown in Fig. 5 for

a—f’: 2. The charge distribution propagates gradually along
A

the Z-direction, being larger near the mouth of the pore.
The potential and charge distributions are related in the
radial direction in such a way that the net radial flux
vanishes for all times. Fig. 5a and b show opposite dependences
of charge density and electric potential on the axial coordi-
nate - p decreases and ¥ increases with Z. Essentially, the
effect of the charge flux in the SDL is to transport charge into
the pore, which subsequently diffuses from the mouth to the
end of pore. On the other hand, potential is screened, ie.,
reduced, by the charge transported from the SDL. Thus, it is
lower closer to the mouth of the pore and increases with Z. At
steady state, the charge and potential distributions become
independent of Z. Using eqn (18) and (19), the distributions for
potential and charge throughout the pore at steady state are
found to be

o EEE> (28)

a) b)

%0 02 04 06 08 1 0
R

02 04 06 08 1
R R

Fig. 5 Potential and charge over the applied potential as a function of the
radial coordinate for different axial locations. (a) and (b) For t = 0.15. (c) and
(d) Fort=0.42.yp = 0.4, a,/A = 2 and Bi = 8 for all plots. The solid lines are
predictions from the perturbation expansion model and the dashed lines
are results from DNS.
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and

Ra
I =*
"\ )

— g~
w(7)
'\

dap . . . .
We note that smaller - implies higher charge density
throughout the pore. However, we reiterate that this comes at

2{%11 (%) 0

a
I (—P)D
0 2 P

4.3 Dependence of charge flux on relative pore size

p — —2¥p (29)

the cost of a higher charging timescale, since 7, =

The centerline potential gives an important physical descriptor
of the charging process in the dimensionless charge flux.
Eqn (2e), (25), and (27b) can be utilized to show that

sin 2k,

exp(—w,2T). (30)

[o°]
Jrioht = —4Bi¥ o L anoe
right D ; 2K, + sin 2k,

The charge flux comes out to be initially independent of the
relative pore size since double layers have not yet formed in the
initial state, and the SDL is subjected to the potential gradient

imposed by the applied potential; see eqn (3). The effect of % is

thus to control the charging timescale. In fact, recall that
a

0 (3)
AV
2, ()
ap \A
demonstrating that narrower pores take longer to charge. This
is illustrated in Fig. 6, which shows exponential-like behavior at

T = 7 and note that Jigne = Jighe(T), alternatively

. . a
large times, with steeper descents for larger Tp

4.4 Dependence of charge flux on the Biot number

The ratio of diffusion coefficients in the static diffusion layer

Dy
and in the pore, Fs’ may not be unity. This might be due to
p

different diffusion mechanisms in the SDL and the pore,
i.e., bulk diffusion in the former vs. Knudsen diffusion in the

50

10

- Jright

0.1

0 01 02 03 04 0.5
T

Fig. 6 Dimensionless charge flux at the mouth of the pore (Z = 0%) vs.
time with yyp = 0.4 and Bi = 8. Charge flux decreases monotonically as a
function of relative pore size, with exponential decays at late times. The
solid lines are predictions from the perturbation expansion model and the
dashed lines are results from DNS.
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Fig. 7 Influence of the Biot number on the dependence of charge flux
with time. Higher Biot implies faster diffusion in the SDL, with an enhance-
ment of the initial charge flux for short-times, but also quicker saturation
of the pore charge storage. Continuous lines represent analytical results
and the dash-dotted lines show the first mode of the Fourier series in
egn (30). Relative pore size: % =2.

latter due to its narrow size.”®> The influence of this ratio is

. . . AgDgl L .
encompassed in the Biot number, Bi = =" which in this
A, Dyl

case is a ratio of charge transport resistance in the pore vs. in
the SDL. Fig. 7 illustrates the dependence of pore charging on
the Biot number. It shows that the higher the Biot number, the
lower the resistance to charge transfer in the SDL, producing an
intuitive effect: enhancement of charge flux for short-times
(e.g., owing to higher SDL diffusivity), but also quicker satura-
tion of the pore charge storage. Thus, the order of the curves for
different Biot numbers swaps over time. We also find that the
long-time charging is given by the dominant timescale t./x,?,
where k, is the first eigenvalue satisfying the characteristic
equation k,tank, = Bi. This is illustrated by the good agree-
ment between the charge fluxes and their approximation by the
first mode in the Fourier series of eqn (30), represented by
dash-dotted lines. It should be noted that net charge storage is
not influenced by Bi, as will be shown in Section 5.2.

4.5 Validity for higher potentials

For higher applied potentials, the full PNP equations assuming
radial equilibrium and relaxing the constraint of constant salt
follow from eqn (2) as

8p_82p o (oY
ooz Taz\"oz) (31)
&-&4_1 8_'{/ (32)
o o0z2 "oz\Poz)

The main simplification that comes from the linear regime ¥,

. oY
« 1 is the neglect of the term Poz whence the salt transport

equation resumes to a transient diffusion equation. Given
the initial and boundary conditions for salt, the trivial solution
S(R, Z, t) = 2 holds, i.e., we can assume salt to be constant. For
higher potentials, though, that approximation ceases to be
valid and the variation of salt density in the domain influences
the strength of electromigration of charge.

This journal is © The Royal Society of Chemistry 2022
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Fig. 8 Validity of analytical results. Comparison of the proposed model
(continuous lines) with DNS results (dashed lines) for different applied
potentials. (a) and (b) t = 0.07, (c) and (d) = = 0.15. (e) Time dependence of
the charge flux for a,/A = 2. Good agreement is obtained up to twice the
thermal potential (50 mV at room temperature). The current shows
good agreement for early times even for moderate potentials, but salt
corrections to charge electromigration must be taken into account for
long times.

In order to assess the validity of our analysis, beyond which
the neglect of higher-order corrections in ¥y, becomes unwar-
ranted, we compare our results to the DNS for different applied
potentials in Fig. 8. We obtain good agreement between poten-
tials and charge profiles until the applied potential reaches
approximately twice the thermal potential, or approximately 50
mV at room temperature. Above that threshold, a non-linear
potential response in the SDL is observed in the DNS, and thus
the first-order corrections underpredict the potential in the
pore and overpredict the charge stored. Indeed, Fig. 8e shows
that the charge flux predictions agree with DNS results for early
times (r < 0.1), even for moderately high applied voltages, with
an error of 8% for 200 mV (but of 15% for 100 mV). However,
for late times, non-linear terms become important, introducing
electromigration of salt which can affect the transport of
charge.

5 Analysis of capacitance

Several studies on electrode charging invoke transmission
line representations, theoretically developed for thin double

This journal is © The Royal Society of Chemistry 2022

View Article Online

Soft Matter
layers,””>° to address electric potential and capacitance in
these systems.””>® In this section, we demonstrate that a
similar transmission line model can be constructed for arbi-
trary pore sizes. However, a time-dependent transition-region
resistor makes it challenging to compare it directly with experi-
ments. We also derive an effective capacitance for arbitrary pore
sizes from the steady-state charge density profiles.

5.1 Transmission line circuit

. . .. . a, .
First, we derive the value of conductivity for arbitrary 7" Briefly

restoring dimensions and utilizing eqn (2e), (18) and (19), we
find that axial charge flux J, inside the pore is given as

9
J. = ZDPech IO (7) al//m - _F al//m (33)
o kBT Io(ai>—1 0z B p@z’
;L
such that dimensional pore conductivity is given by

4p

2Dpe2c, Do (*) .

Gp = p€ € 7 /__ Note that the conductivity for s
kBT ]0 (_P) 1 )

)

is only based on electromigrative charge flux. In contrast, the
conductivity for -* < 1 is enhanced because both diffusive and
A

electromigrative fluxes contribute to current; see Fig. (3).
Next, we derive the dimensional capacitance per unit surface
area, Cp,. We note that 2na,Cp(,, — ¥p) should yield the total
charge stored per unit axial length. By utilizing eqn (19) and
integrating along the radial direction, it is straightforward to

a
4(7)
e \i)
7 .
}"[() (l) -1
)
a . ~ €
—2 > 1, we recover the usual expression that Cp, — 7 In con-
) )

a .o~ 2¢
—£ > 1, we obtain Cp——.
A ap

This result is intuitive since it demonstrates that the length
scale of capacitance in the overlapping-double-layer limit is
controlled by the pore size. Based on these expressions, we can

show that C, = In the thin-double-layer limit

trast, in the thick-double-layer limit

2/ (ap
2na,C @ (7)/ :
nayCp,y _ap \A Ly

25 P a ’
nay"ap I <—p) Dy
A

consistent with

also recover .=

eqn (27¢).

The linear relation between average diffusive and electro-
migrative axial fluxes allowed us to determine expressions
for pore capacitance and resistance that satisfy Ohm’s law
and the definition of a capacitive element. However, the key
distinguishing feature from the classical thin double layer
analysis®”*® is the inclusion of potential change across the
transition region as derived in eqn (25), which comes from the
charge flux matching. In order to account for this change in
potential, we add a resistor representing the interface, as shown
in Fig. 9a. Its dimensional resistance is determined from
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Fig. 9 (a) Top panel: Transmission line circuit schematic for arbitrary pore size. (I) SDL, (ll) transition region, (lll) pore. SDL and transition resistances given

by eqn (A2) and (A5). Bottom panel: Equivalent representation of the charge balances in an infinitesimal volume in a pore. (b) dimensionless pore

. . = A ) ) L D, .. - ) . .
capacitance per unit surface area, C, = Cp; (c) dimensionless charging time, 7, = rce—g. With the presence of a transition-region resistor, the transmission
P

line model becomes more intricate and loses some applicability.

Ohm’s law,

R _ 2/Atzép lIlleft - qlright
t = .
eDp A,

Jright (34)
We derive an expression for dimensionless transition-region
resistance Ry(t) in Appendix A along with the traditional expres-
sion for SDL resistance, since their final expressions are not
utilized for further analysis.

Fig. 9b and c show the pore capacitance and charging time
as per the transmission line model. The sharp increase in pore

. . a
capacitance per unit surface area for smaller -2 may suggest a
A

blowup of charge flux for overlapping double layers, which is
not observed in Fig. 6. In fact, though pore capacitance
increases, pore resistance decreases commensurately, in a

way that yields 7. ~ 1 for overlapping double layers. Even more
4p

importantly, pore capacitance of arbitrary — reported in our

A
manuscript is useful for the transmission circuit analysis that
predicts centerline potential, but since it’'s based on the
potential difference ¥,, — ¥p, it is not representative of
experimental measures of capacitance, which are based on
¥,.2*3 This is the motivation for the definition of an effective

capacitance that we develop in the next section.

5.2 Macroscopic perspective

Despite the possibility of representing pore charging by the
transmission line circuit described in Section 5.1, its time-
dependent transition-region resistor enters as an additional
factor influencing the pore charging performance. In addition,
the definition of pore capacitance based on the potential

208 | Soft Matter, 2022, 18, 198-213

difference ¥,, — ¥p makes it incompatible with experimental
measures. Therefore, in the interest of facilitating the analysis
of pore-size effects on charging performance, our focus lies on a
direct comparison via a macroscopic perspective, ie., from
characterizing the total charge stored by the pore at steady
state. We employ the definition of effective volumetric capaci-
tance C.g as the ratio of total charge stored per applied voltage
and unit volume. Going back to dimensionless variables and
performing a radial integration of the steady-state charge
density profile of eqn (29), it is straightforward to obtain

a(3)
n(7)

. . &
where capacitance is scaled by pex Eqn (35) shows that Ceg = 7,

Cett = (35)

i.e., dimensionless volumetric capacitance is equal to dimen-
sionless charging time; see Fig. 9c and 10. The latter shows that
the volumetric capacitance decreases with an increase in rela-
tive pore size, that is, overlapping double layers present optimal
energy storage. A similar behavior of energy density increase
with width reduction due to a decrease of the electroneutral
region has been reported in ref. 53 for nanopores, and ref. 33
for pores ranging from 0.5 to 10 nm. However, in our model,
this comes at a cost of a corresponding increase in the charging
time 7.. From an engineering perspective, this prediction
means that an increase in the energy density, E = Cg'¥'p>, with
a change in relative pore size is unaccompanied by changes in
power density, P = E/t.; see the inset in Fig. 10. In fact, this
relationship between energy and power density is consistent

This journal is © The Royal Society of Chemistry 2022
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Fig. 10 Dimensionless effective volumetric pore capacitance versus
relative pore size. Narrower pores account for higher volumetric capaci-
tances. The inset shows power density versus effective volumetric pore
capacitance. Gains in capacitance for a change in pore size occur at
constant power density.

with experiments; see Fig. 1 of ref. 6. To the best of our
knowledge, this interplay between energy and power density
and its dependence on pore sizes hasn’t been derived
previously.

5.3 Effect of pore-size distribution
An important advantage of our analysis is that it is valid for an
. a . S .
arbitrary -2, thus it can also be conducted for distributions of
A

pore sizes to study the impact of polydispersity. Within the
limitations of our model, ie., specificity to non-interacting
pores, we propose a simplified model to examine the influence
of double-layer thickness over electrode charging. To this end,
we assume a log-normal probability distribution function
of pore sizes, in consonance with experimentally measured
pore-size distributions,”***> and perform averages of the pore
properties described in Section 5.2 over the pore-size distri-
bution; see Appendix C. In our analysis, we determine the
effects of pore-size average and polydispersity. Fig. 11 shows
that distributions with lower averages or polydispersities of
relative pore sizes present higher average capacitances (i.e., the
electrode capacitance) due to elevated volumetric capacitance

05 1 15 2
<ap/)‘> T

Fig. 11 (a) Dimensionless average electrode capacitance per unit volume

over the electrode porosity (Cefr)/¢ vs. average relative pore size <j—p> fora
log-normal size distribution. (b) dimensionless averaged electrode capa-
citance per unit volume vs. polydispersity of the pore-size distribution, T,
i.e., standard deviation of relative pore size over average relative pore size.
An increase in the polydispersity implies a higher frequency of wider pores,
which results in a decrease of the electrode capacitance.
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of pores with low relative pore size. Though this conclusion
is specific to the probability density function employed, the
principle of boosting average capacitance with regards to
double layer thickness by increasing the frequency of narrow
pores should hold in general. Optimal energy density for
monodisperse pore distributions has also been reported in
Monte Carlo simulations of nanopores™. Nevertheless, the
one caveat that also follows from our analysis is the accom-
panying increase in electrode charging time.

There is an ongoing debate about the experimentally
observed behavior of capacitance for sub-nanometer pores.
While some studies report an anomalous areal capacitance
(i.e., capacitance per unit area) increase in sub-nanometer
pores,®*®%” other works claim that it is roughly independent
of pore size in that regime,’®”° the discrepancy being attributed
to inaccuracies in BET isotherm surface area determination for
subnanometer pores. The results of our work seem to support
the latter hypothesis, showing only a mild increase of areal

. . . a .
capacitance with pore size for 7" > 2 (corresponding to a, >

0.6 nm for 1 M electrolytes at room temperature); see Appendix
B for calculations details. However, we acknowledge that our
model may fail to capture intricacies of subnanometer pores,
such as anomalous capacitance increases due to loss of solva-
tion shells.**” This is expected since the Poisson-Nernst-
Planck equations do not take into account finite ion-radius
and confinement effects,’® which will become crucial in the
subnanometer regime.

6 Conclusion

In summary, in this article:

e A regular perturbation expansion model for double layer
charging at arbitrary pore sizes is proposed. The effects of
arbitrary pore size include a charge flux matching condition
that sets the potential change at the pore-SDL transition
region;

e The proposed model predicts the potential and charge
density profiles inside a nanopore. The predicted profiles using
eqn (18), (19) and (27) show quantitative agreement with the
results from DNS even for moderate applied potentials;

e Physical insight into the mechanisms setting capacitance
and charging timescale of pores with arbitrary sizes is obtained:
the influence of electromigration and charge diffusion is
quantified;

e Electrical-double-layer charging for arbitrary pore sizes can
be represented in the form of a transmission line circuit, but
with the inclusion of a time-dependent interfacial capacitance.
To mitigate this complexity, eqn (30) should be utilized to
calculate charge flux;

e The electrode capacitance derived from an average of the
total charge stored in the pore is able to capture some effects of
pore size on pore capacitance reported in the literature.®>°

Our methodology provides valuable insight into the effects
of electromigration and diffusion in double-layer charging for
arbitrary pore sizes. For thin double layers, electromigrative
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flux controls the charge flux and the charging timescale.
In contrast, for overlapping double layers, the diffusive and
electromigrative fluxes cooperate, enhancing the total charge
flux. Yet, this increase in flux for overlapping double layers is
less than the corresponding boost in charge density. This leads
to a longer charging timescale in narrow pores, and thus a
trade-off between charge stored and charging timescale. We
also report a simplified model example of the influence of
double layer thickness over electrode charging for non-interacting
pores via phenomenological averages under a proposed log-
normal distribution. In this case study, the same single-pore
proportional increases of capacitance and charging timescale
manifest in a distribution of isolated pores, predicting a constant
electrode power density regardless of relative pore size.

Our approach can be extended to studying hybrid super-
capacitors by adding reactions to the boundary conditions.
The perturbation expansion analysis proposed here can also
be utilized for asymmetric ionic valences'® and diffu-
sivities,*1**61:62 gcenarios which are commonly observed
in electrochemical devices. Finally, to compare directly with
cyclic voltammetry data obtained from experiments, a similar
approach can also be employed for higher and/or time-
dependent applied potentials.
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Appendix A: transmission line circuit
resistances

In order to complete the transmission line circuit description
in Fig. 9a, we derive the expressions of dimensional SDL and

transition-region resistances. We start with the SDL resistance,
which is given by Ohm’s law as

R~ o ZZp/lz q’lef‘

= _ Al
T eDyA, Jier (1)
Utilizing eqn (2€) and (9), we have
~ 452
Ry = . A2
S Dy A, (A2)

From eqn (25), the potential difference across the transition
region is given by

Yyight — ¥
Piere — Pright = %- (A3)

1() (T) - 1

A
Using eqn (27b), it can be written as

sin 2k

¥ — Piight = z - n2T .
left ght Io( > szn sk exp(—k,; T)
A

(A4)
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Fig. 12 Resistance of the transition region as a function of time for
different relative pore sizes. The resistance is larger for narrower pores
and increases in time to maintain a potential difference (see egn (25))
across the entrance region.

Therefore, the dimensional transition-region resistance follows
from eqn (30) as

e sin 2K,

-2 ——— —x2T
PR 25 sin2w, SR ) 45)
t — - .
eDp Ay . <ap> X sin 2k,
2Bily(— — —k2T
o A ,;1 2K, + sin 2k, exp(—ri*T)

12

We choose the scale for the resistances, such that their
&elpAp

dimensionless expressions read

1
R.=— A6
=5 (a6)
and
1-2 Z SN2 (k2T
1 21, + sin 2k, A

R = P\ & sin 2k ’ (47)

2Bily (-2) Y ———exp(—x,2T

Ho ( A > n;l 2k, + sin 2k, exp(—r )

Fig. (12) shows a plot of the transition resistance over time
for different relative pore sizes. As the relative pore size
decreases, the resistance imposed by the transition region to
the charge flux increases. This is due to the larger potential
differences across the transition region for lower relative pore
sizes, caused by their increased charge density.

Appendix B: areal capacitance

Most experiments report results on a per unit surface area
basis, hence we briefly present our results for areal capacitance
here in order to compare them qualitatively to experiments.
Denoting dimensionless areal capacitance by Cyyear esr and scal-

ing it by % it follows from eqn (35) that

)
o)

Carcal.cff =

We plot this result in Fig. 13.
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Fig. 13 Dimensionless effective areal capacitance versus relative pore
size. The increase in capacitance for larger pores predicted by the model
developed in the current work accurately captures the trend observed in

experiments for nanopores (Section Il of Fig. 4 of ref. 6) and qualitatively
agrees with the results of Fig. 1 of ref. 59.

Appendix C: electrode average
properties

We note that the methodology presented here assumes non-
interacting pores and overlooks pore-network configuration,
pore intersections, connectivity, among others. To extend
single-pore analysis for a distribution of non-interacting pores,
we first consider a continuous log-normal distribution of

pore sizes,
(n(%) -)

202 ’

ap A
L) = ex C1
P < A ) V2na2a, €

where the parameters pu and ¢ are given in terms of relative
2
. . a o
pore size average and variance by <—p> = exp (y+7) and
A

Var(%) = [exp(c?) — 1] exp(2u + o?).

Next, we formally derive the averaging procedure employed
in Fig. 11. The average volumetric capacitance is defined as the
total charge stored inside the electrode Q divided by its total
volume V and applied potential ¥p, compatible with what
experiments denote as volumetric capacitance®’

Ceff = (CZ)

YoV
Charge is the integral of the charge density over the entire
electrode volume,
Q:J pdV:J pdV+J pdV, (C3)
v Ve Jv,
where V. and V, are volumes of electrode material and pores,
respectively. Furthermore, p = 0 inside the electrode material

(an ideal conductor). Therefore, the results integral can be
written as a sum over all pores

N

N
i=1 JVp

X i=1

(C4)
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where g; is the charge of a pore with volume V}, ;, both known
from the single-pore model. N represents the total number of
pores. We insert eqn (C4) into eqn (C2) and take averages,
denoted by (), over an ensemble of sample electrode pore
configurations drawn from the same pore-size distribution.

In this way, we have
qi
i=1 N{gi)

el =gy Ty

For a non-interacting pore model, the average charge of the i-th
pore only depends on its relative pore size, i.e.,

(C5)

@) = @)= | ar(an)dlay). (co)
Substituting eqn (C6) into eqn (C5), we have
_ Ny ap(ap)dap
<Ceff> = VlII—D (07)

Next, we multiply and divide the result by the average pore
volume of the electrode

(Vp) = Eonapzﬁpp(ap)dap, (C8)

which yields

N(Vp) Jo ap(ap)day

Cer) = Jo .
\Cer) V. o[y mayop(ap)day

(C9)

Lastly, we write the charge of a pore in terms of its volumetric
effective capacitance, g = Ceg¥Wpna,’/p, change variables in
the integrals from a;, to a,// and define the electrode porosity
¢ = N(Vp)/V to get

00 dap\ (dp 2 ap
ey 5 () (F) 4(F)
b))
e GIG) 4G
Next, we propose a definition of timescale for a distribution of
pore sizes which reduces to a single-pore solution for a mono-
disperse distribution. To this end, note that eqn (20) can be

integrated over the volume of a pore to give, using eqn (2d) and
(5) for a blocking electrode, to give

dg;
d—z’l = Jright,iAm

(C10)

(C11)

where Jigne = Jz|z-0+ and the index 7 denotes the i-th pore.
Integrating over time and performing the change of variables
T = 1/t we have

T(x)
Qi(r) = TC.iApJ Jrighl,idT- (CIZ)
0
Using (C11) and (C12), we find that
Tc,i = ooJright‘i(T — 0) qi(f — OO) (013)
Jo Jrignii(T(x))dT dg;
der|,_,

Soft Matter, 2022,18,198-213 | 211


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1sm01239h

Open Access Article. Published on 06 2021. Downloaded on 04.11.25 19:45:49.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Soft Matter

Our motivation in generalizing this is to construct a measure of
the total charging time of the electrode, not of the individual
pores. Therefore, noting that neither the initial value of the
flux nor its integral on time depend on pore size - see eqn (30) -
we opt to define the electrode charging timescale as

_ Jigm(t=0) {g(r = o0))
<TC> - f(o)oJright(T(T))dT <% > ) (C14)
dt =0

averaged over the ensemble of pore configurations, which
explicitly takes the form
Jiignt(t =0) [ q(t — 00)p(ap)d(ap)

<Tc>: 3 T ’
Jo Jrign (T (1))dT J"(O)O% :Op(ap)d(ap)

(C15)

Using eqn (C11) and (C12) where 4, = ma,” and changing
variables from a;, to a,/4, we have

(%) (?sz(?f)‘
(%) (%) (%)

Through this approach we define a physically relevant average of

<Tc> (C16)

charging timescale that is consistent with the single-pore definition.
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