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A highly regioselective Ni-catalyzed electrochemical (undivided cell) reductive relay cross-coupling

between alkyl carboxylic acids and alkyl bromides has been developed. This strategy allows the direct acy-

lation of benzylic C(sp3)–H bonds in good yields from commercially available alkyl carboxylic acids, thus

providing an alternative strategy for the synthesis of dialkyl ketones. Various functional groups are toler-

ated under mild reaction conditions.

Introduction

Ketones are versatile and abundant building blocks in organic
synthesis and are prevalent in agrochemicals, natural pro-
ducts, and pharmaceuticals.1 The traditional transition metal-
catalyzed cross-coupling of organometallics with carboxylic
acids or their derivatives is one of the most useful methods for
the preparation of ketones.2 Alternatively, reductive Ni-cata-
lyzed cross-coupling between alkyl halides and carboxylic
acids or their derivatives has emerged as an appealing strategy
for constructing unsymmetrical ketones as it avoids the invol-
vement of organometallic reagents.3 For instance, in 1981
Mukaiyama and co-workers reported an elegant example of Ni-
catalyzed acylation of alkyl iodides with substituted pyridyl car-
boxylates using zinc dust as the reductant, although the
method requires extra steps for the synthesis of the substrates,
as well as an excess of alkyl iodides.3a In 2012 the groups of
Weix and Gong independently developed efficient Ni-catalyzed
reductive cross-couplings of alkyl iodides and alkyl carboxylic
acid derivatives using Mn or Zn as the reductant
(Scheme 1a).3b,c Inspired by these seminal works, numerous
Ni-catalyzed reductive cross-couplings between carboxylic acid
derivatives and various electrophiles have been developed,4

including asymmetric variants.5 Recently, Wang, Zhu and co-

workers demonstrated a Ni-catalyzed migratory reductive acyla-
tion between alkyl bromides and alkyl carboxylic acids,
although a long reaction time (24 h) was required.6 A common
limitation associated with transition metal-catalyzed reductive
cross-couplings between alkyl halides and carboxylic acids or
their derivatives is their reliance on using stoichiometric
amounts of Mn or Zn as reductants. These metals often
require surface activation7 and some sensitive functional
groups react readily with them. To circumvent such issues,
electric current could be used directly to turn over the Ni
catalyst.8,9 As early as 1989, Périchon and co-workers reported
a Ni-catalyzed electrochemical cross-coupling of alkyl acyl
chlorides and benzyl bromides, although Zn was used as a
sacrificial anode (Scheme 1b).10 However, to the best of our
knowledge, Ni-catalyzed electrochemical reductive relay cross-

Scheme 1 Reductive cross-coupling reactions.
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coupling of alkyl acids and alkyl bromides has not been
disclosed.

As part of our ongoing interest in the merger of electro-
chemistry and transition metal catalysis,11 we have recently
reported a Ni-catalyzed electrochemical relay cross-coupling
of aryl halides and alkyl bromides;12 a very similar method
was reported virtually simultaneously by Rueping and co-
workers.13 We questioned whether a reductive relay cross-coup-
ling strategy could be applied to the synthesis of ketones from
commercially available carboxylic acids and alkyl bromides
by taking advantage of “chain-walking” of an alkyl–nickel
species.14–17 Herein, we demonstrate that an electrochemical
relay cross-coupling of carboxylic acids and alkyl bromides can
be executed efficiently at room temperature, affording unsym-
metrical dialkyl ketones with good regioselectivity and yield
(Scheme 1c).

Results and discussion

Initially, we selected 3-phenylpropionic acid (1a) and (2-bro-
moethyl)benzene (2a) as reaction partners. To our delight,
upon using NiCl2·glyme as the precatalyst, 6,6′-dimethyl-2,2′-
bipyridine (ligand 1) as the ligand, MgBr2 as the electrolyte,
Boc2O as the acid activation reagent, and N,N-dimethyl-
acetamide (DMA) as the solvent in an undivided cell with iron
and Ni foam electrodes under 6 mA current for 6 hours at
room temperature, the relay cross-coupling product was
obtained in 72% isolated yield (Table 1, entry 1). Using
NiBr2·glyme or NiCl2 as the catalyst resulted in lower yields

(entries 2 and 3). The efficiency of the reaction decreased pre-
cipitously when magnesium, aluminum, or reticulated vitreous
carbon (RVC) was chosen as the anode (entries 4–6). It is
worth noting that Mg2+ is crucial for the reaction (entries 7
and 8). We reasoned that the magnesium salt contributes to
the oxidative addition of low-valent nickel species to the
in situ-generated anhydride.3c,4e Varying (higher and lower) the
amount of Boc2O did not improve the efficiency (entries 9 and
10). The replacement of L1 with L2 also diminished the yield
(entry 11). In addition, the C6-alkyl substituents in the ligand
backbone are crucial for the relay reaction (see Table S1 in the
ESI† for details). Finally, a control experiment revealed that no
coupling product was produced in the absence of the catalyst
or ligand (entry 12).

With the optimized reaction conditions in hand, we next
investigated the generality of this electrochemical reductive
cross-coupling reaction. As shown in Table 2, the catalytic
system exhibited good functional group tolerance. The car-
boxylic acids substituted with a variety of functional groups
such as alkyl, ether, fluoro, chloro, amino, ketone, and ester
groups were well tolerated. Arenes with electron-rich or elec-
tron-poor substituents also gave satisfactory results (3a–3h, 3k,
and 3l). To our delight, heteroaromatic rings such as furan
and thiophene were also tolerated under the standard con-
ditions, affording acceptable yields (3i and 3j). Furthermore,
this protocol could also be applied to more simple alkyl acids
with moderate yields (3o–3u). It is worth noting that cyclic car-
boxylic acids with high ring strain (3v–3y) or simple six-mem-
bered rings (3z–3ac) were also well-tolerated and the relay
cross-coupling reactions proceeded smoothly with good yields.
Encouragingly, for piperidine or amylene oxide carboxylic
acids, the reaction afforded the corresponding acylation pro-
ducts in good yields (3ad–3ag). Finally, commercially available
pharmaceuticals such as chlorambucil and chrysanthemum
acid smoothly underwent electrochemical reductive coupling,
affording the indicated product in only a slightly diminished
comparative yield (3n and 3w).

Next, we examined the breadth of the competent alkyl bro-
mides. As shown in Table 3, alkyl bromides substituted with a
variety of functional groups such as ether, chloro, fluoro, tri-
fluoromethyl, trifluoromethoxy, and OTIPS groups were well
tolerated under the standard reaction conditions, affording
the relay products in good yields (4a–4i and 4k). For alkyl
bromide substrates with polysubstituted aromatic rings, the
reaction efficiency was not less-satisfying and the relay cross-
coupled products (4j and 4m) were obtained with 39% and
40% yield, respectively. To our delight, this relay process can
proceed along three carbon-long alkyl chains with only a
slightly diminished yield (4n).

To gain insight into the reaction mechanism, we conducted
a series of cyclic voltammetric analyses (Fig. 1 and 2, as well as
S2–S5 in the ESI†). Compared to the reactants, the nickel cata-
lyst is more easily reduced to a lower valency (Fig. S2†). When
the nickel catalyst and ligand were added in an equal amount,
the resulting complex exhibits two quasi-reversible reductive
peaks at −1.39 V and −1.90 V versus Ag/AgNO3 in dimethyl-

Table 1 Reaction optimization with substrate 1aa

Entry
Variation from the above
conditionsa

F/
mol

Yield of 3ab

(%)

1 None 4.5 77 (72)c

2 NiBr2·glyme as the catalyst 4.5 64
3 NiCl2 as the catalyst 4.5 47
4 Mg as the anode 4.5 37
5 Al as the anode 4.5 55
6d RVC as the anode 4.5 31
7 Mgl2 in lieu of MgBr2 4.5 31
8 n-Bu4NBr in lieu of MgBr2 4.5 NP
9 (Boc)2O (1.0 equiv.) 4.5 40
10 (Boc)2O (3.0 equiv.) 4.5 40
11 Ligand 2 as the ligand 4.5 42
12 Without Ni or ligand 4.5 0

a Standard conditions: 1a (0.3 mmol), 2a (0.3 mmol), NiBr2·glyme
(10 mol%), ligand 1 (12 mol%), (Boc)2O (2.0 equiv.), MgBr2 (1.0
equiv.), and DMA (4 mL) in an undivided cell with iron (1.5 × 0.5 cm2)
and Ni foam (2.5 × 1.5 cm2) as electrodes at rt and 6.0 mA for 6 h.
b Yields were determined by 1H NMR using CH2Br2 as an internal stan-
dard. c Isolated yield of 3a. dNEt3 (1.0 equiv.) was added.
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acetamide (curve d, Fig. 1), which may be attributed to the
reduction potential of Ni(II)/Ni(I) and Ni(I)/Ni(0), respectively.
In addition, in the absence of electricity, the stoichiometric
reaction with Ni(cod)2 as the catalyst afforded the desired
product in 65% yield (Scheme 2). This result indicated that the
Ni(0) species generated at the cathode may act as the active
catalyst.

Next, we sought to understand which reactant the catalyst
prefers to react with. 3-Phenylpropanoic anhydride was pre-
pared according to a literature report.18 When the alkyl
bromide (2a) was added first, the catalytic current was slightly
increased whereas the catalytic current was significantly
increased upon the addition of 3-phenylpropanoic anhydride
(Fig. 2). Furthermore, when the anhydride was added first, the

catalytic current was significantly increased whereas the cata-
lytic current was almost unchanged following the subsequent
addition of alkyl bromide (2a) (Fig. S5†). Based on the above
cyclic voltammetric (CV) studies, it was found that the putative
Ni(0) complex reacts more readily with the anhydride.

Based on literature reports3c,4a,e,19 and our mechanistic
studies (see the ESI† for more details), a plausible mechanism
is presented for the Ni-catalyzed electrochemical reductive
couplings (Scheme 3). First, the Ni(II) catalyst is reduced to Ni

Table 3 Evaluation of alkyl halidesa

a Standard conditions: 1a or 1k (0.3 mmol), 2 (0.3 mmol), NiCl2·glyme
(10 mol%), ligand 1 (12 mol%), (Boc)2O (2.0 equiv.), MgBr2 (1.0
equiv.), and DMA (4 mL) in an undivided cell with iron (1.5 × 0.5 cm2)
and Ni foam (2.5 × 1.5 cm2) as electrodes, rt, 6.0 mA, 6 h. b 8.0 mA, 6 h.

Fig. 1 Cyclic voltammograms recorded on a glassy carbon electrode at
100 mV s−1: (a) blank solution, 0.1 M n-Bu4NBr in DMA; (b) solution (a)
with 7.5 mM NiCl2·glyme added; (c) solution (a) with 7.5 mM 2,9-
dimethyl-1,10-phenanthroline added; and (d) solution (a) with 7.5 mM
NiCl2·glyme and 2,9-dimethyl-1,10-phenanthroline (Ni/L = 1/1) added.

Table 2 Evaluation of scope of carboxylic acida

a Standard conditions: 1 (0.3 mmol), 2a (0.3 mmol), NiCl2·glyme
(10 mol%), ligand 1 (12 mol%), (Boc)2O (2.0 equiv.), MgBr2 (1.0
equiv.), and DMA (4 mL) in an undivided cell with iron (1.5 × 0.5 cm2)
and Ni foam (2.5 × 1.5 cm2) as electrodes, rt, 6.0 mA, 6 h. b 8.0 mA, 6 h.
c 7.0 mA, 6 h.
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(0) (A) via cathodic reduction. After the oxidative addition of
the anhydride to Ni(0), acyl Ni(II) species (B) is formed. After
the cathodic reduction of B, the resulting acyl Ni(I) species
reacted with an alkyl radical to generate the Ni(II) species (C).
The direct reductive elimination from C generated a linear by-
product, and C is also converted into species E, a more
thermodynamically stable benzylic Ni(II) intermediate, via
β-hydride elimination to D and reinsertion. Upon reductive
elimination, the desired cross-coupling product and the Ni(0)
species (A) are formed. A reacted with an alkyl bromide,
affording an alkyl radical species and the Ni(I) species (F).
Upon cathodic reduction, the active Ni(0) is then regenerated.
At this early stage, we cannot rule out other possible pathways,
such as the one wherein a Ni(I)/Ni(III) coupling is involved.

Conclusions

In summary, we have demonstrated the first example of a Ni-
catalyzed electrochemical reductive relay cross-coupling of
alkyl acids to alkyl bromides in an undivided cell, affording
1,1-dialkyl ketones in good yields and regioselectivities. The
protocol is operationally simple and robust. Further research
on exploring the mechanism and developing more transition
metal-catalyzed electrochemical reductive relay cross-couplings
is currently underway in our laboratory.
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