Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Tumor hypoxia is believed to be a major bottleneck in the clinical transformation of photodynamic therapy (PDT). Here, a half-sandwich iridium(III) complex [(η5-Cpxbiph)Ir(N^N-NDI)Cl]PF6 (Ir-NDI, Cpxbiph = tetramethyl(biphenyl)-cyclopentadienyl) bearing a naphthalene diimide (NDI) modified N^N-chelating ligand was designed to treat hypoxic tumors via synergetic chemo- and phototherapy. In vitro tests showed that Ir-NDI exhibited moderate dark cytotoxicity and potent photo-cytotoxicity against 4T1 murine breast cancer cells under both normoxic and hypoxic conditions. Mechanism studies indicated that Ir-NDI could induce the degradation of endogenous nicotinamide adenine dinucleotide (NADH) and glutathione (GSH) in 4T1 living cells and trigger cellular apoptosis and ferroptosis. In vivo studies demonstrated that Ir-NDI plus laser irradiation achieved significant tumor ablation, with a tumor-growth-inhibition (TGI) rate of up to 89%. Our research here presents a feasible approach for the treatment of hypoxic tumors via chem- and phototherapy of iridium(III) complexes.

Graphical abstract: An electron-accepting half-sandwich iridium(iii) complex for the treatment of hypoxic tumors via synergetic chemo- and phototherapy

Page: ^ Top