Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

The synthesis and characterization of four ethylene-bridged bisisoindigo (NCCN and NNNN)-based conjugated polymers are reported. In these polymers, 2,2′-bithiophene or (E)-1,2-di(thiophen-2-yl)ethene (DTE) is used as the electron donor. Compared to NCCN, NNNN has two additional sp2-nitrogen atoms adjacent to its vinyl group. The sp2-nitrogen atoms endow the two NNNN-based polymers PNNNN-BT and PNNNN-DTE with not only improved backbone planarity due to the formation of intramolecular five-ring intramolecular CHN hydrogen bonds, but also slightly lowered frontier orbital energy levels. Combined with the more rigid backbone of DTE, PNNNN-DTE showed the highest electron mobility (μe) of 1.64 cm2 V−1 s−1 in 1,2-dichlorobenzene (DCB)-processed ambipolar field-effect transistors and even a slightly increased μe in its DCB/1-chloronaphthalene (with v/v of 99.2/0.8) bi-component solvent-processed ones. Microstructural analyses indicated that the PNNNN-DTE thin films have more ordered and denser molecular packing, which is well in accordance with the change tendency of the electron mobility of these bisisoindigo-based conjugated polymers.

Graphical abstract: Ethylene-bridged bisisoindigo-based conjugated polymers: influence of intramolecular CH⋯N hydrogen bonds

Page: ^ Top