Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Hydroxypyridinium and hydroxyquinolinium compounds containing acidic O–H groups attached to a cationic aromatic scaffold were synthesized, i.e. N-methyl-3-hydroxypyridinium (1+) and N-methyl-8-hydroxyquinolinium (2+). These very simple compounds are capable of binding to chloride very strongly in CD3CN and with moderate strength in 9 : 1 CD3CN : D2O. Comparison with known association constants reveals that 1+ and 2+ bind chloride in CD3CN or CD3CN : D2O with comparable affinities to receptors containing significantly more hydrogen bond donors and/or higher positive charges. Crystal structures of both compounds with coordinating anions were obtained, and feature short O–H⋯anion hydrogen bonds. A receptor containing two hydroxyquinolinium groups was also prepared. While the low solubility of this compound caused difficulties, we were able to demonstrate chloride binding in a competitive 1 : 1 CD3CN : CD3OD solvent mixture. Addition of sulfate to this compound results in the formation of a crystallographically-characterised solid state anion coordination polymer.

Graphical abstract: Simple acyclic molecules containing a single charge-assisted O–H group can recognize anions in acetonitrile : water mixtures

Page: ^ Top