Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Preventing bacterial infection by using anti-adhesive compounds is one alternative to antibiotic treatment. Trehalose based polymers can serve as an anti-adhesive agent that are selective to bacteria as trehalose is widely used by bacteria, but there is no mechanism in mammals that processed this disaccharide. To generate an efficient trehalose-based anti-adhesive, we modified TEMPO-oxidized cellulose nanofibers (CNFs) using aldehyde-terminated trehalose polymer poly(6-O-acryloyl-trehalose) (PTre), which were prepared by RAFT polymerization, via Passerini reactions. The grafting efficiency was found to be around 35% w/w resulting in CNF-PTre with good dispersibility in water. Moreover, a control based on poly(2-hydroxy ethyl) acrylate PHEA was prepared. Both functional CNFs were non-toxic against to RAW 264.7 at concentration up to 500 μg mL−1. The anti-adhesion effects of both functional CNFs were evaluated at concertation of 100 and 200 μg mL−1, using the S. aureus-HUVECs infection system. The treatments of CNF-PTre at 200 μg mL−1 led to a significant infection reduction of 80% while CNF-PHEA at 200 μg mL−1 decreased infections by 54% suggesting the CNF can act as anti-adhesive agent by simple steric stabilization. To generate a nanoparticle that is capable of inhibiting adhesion while as reducing bacteria growth, ciprofloxacin was loaded onto CNF-PTre by ionic interaction. The resulting CNF-PTre-Cip showed an antibacterial activity against S. aureus and P. aeruginosa at a same level of free ciprofloxacin, indicating the successful release of loaded ciprofloxacin. Analysis of the rate of release at pH 7.4 and pH 5.5 showed a faster release at pH 7.4 and the drug was released in a burst-like fashion in only a few hours.

Graphical abstract: Trehalose coated nanocellulose to inhibit the infections by S. aureus

Page: ^ Top