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Three-dimensional (3D) bio-derived materials are emerging as a promising approach to enhance wound
healing therapies. These innovative materials can be tailored to meet the specific needs of various
wound types and patients, facilitating the controlled release of therapeutic agents such as growth factors
and antibiotics, which promote cell growth and tissue regeneration. Despite their potential, significant
challenges remain in achieving optimal biocompatibility, ensuring structural integrity, and maintaining
precise release mechanisms. Additionally, issues such as scalability, cost-effectiveness, and regulatory
compliance pose substantial barriers to widespread use. However, recent advances in materials science
and interdisciplinary research offer new opportunities to overcome these challenges. This review
provides a comprehensive analysis of the current state of 3D bio-derived materials in biomedical

applications, highlighting the types of materials available, their advantages and limitations, and the
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Accepted 28th February 2025 progress made in their design and development. It also outlines new directions for future research aime
at bridging the gap between scientific discoveries and their practical applications in injury healing
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1. Introduction

A wound refers to damage to biological tissues such as skin,
mucous membranes, and organs, and can arise from various
injuries." However, mitigating infections and further harm
requires meticulous cleaning and dressing.” In the year 1964,
the National Academy of Sciences and the National Research
Council introduced the Surgical Wound Classification (SWC)
system to assess bacterial load in surgical fields. The Centers for
Disease Control and Prevention (CDC) later refined this system,
defining four classifications of wounds: Class 1, Class 2, Class 3,
and Class 4. Class 1 wounds, such as those resulting from
inguinal hernia repair or thyroidectomy, are considered clean
wounds. They remain uninfected, reveal no signs of infection,
and are usually closed. These wounds do not affect the respi-
ratory, gastrointestinal, reproductive, or urinary tracts, though
closed drainage may be required. Class 2 wounds are classified
as clean-contaminated and involve minimal contamination.
These wounds often involve controlled access to the respiratory,
gastrointestinal, reproductive, or urinary tracts.> Class 3
wounds, which include incisions connected to acute or non-
purulent inflammation, result from breaches in sterile proce-
dures or leaks from the gastrointestinal tract. Class 4 wounds,
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revolutionizing wound healing and advancing personalized therapeutic approaches.

which are regarded as unclean or infected, typically arise from
visible infections, severe purulence, or insufficient manage-
ment of traumatic wounds. Tissue necrosis may be present in
these wounds, frequently due to surgery or germs from organ
perforations.* Skin, being highly adaptive to environmental
threats, exhibits sophisticated reparative processes, facilitating
rapid healing." Despite its intrinsic healing abilities, compro-
mised injury responses, often associated with advanced age or
uncontrolled diabetes, can lead to chronic wounds.?

Chronic wounds require careful wound care to speed up the
healing process. These wounds are frequently linked to venous
illness, infection, diabetes, and metabolic abnormalities in the
elderly. Wounds must be kept clean, moist, and shielded from
infection and re-injury. Wounds may become chronic if the
healing process is interfered with or does not proceed through
its typical stages.®” The skin is a crucial barrier, shielding us
from the physical environment, chemicals, and bacteria. When
a wound breaches this barrier, the body initiates a complex
healing process called wound healing.®® This process involves
a coordinated effort by various cells and signaling molecules to
repair and restore damaged tissue.>*®

1.1. Bio-derived materials role in different wound healing
phases

Hemostasis, inflammation, proliferation, and remodeling are
the four overlapping phases that make up the clearly defined
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stages that make up wound healing. Tables 1-4 provides
a detailed analysis of the various biomaterial types that are
utilized to support the four different phases in wound healing.

In the initial stage of hemostasis, the primary focus is on
stopping bleeding. Platelets aggregate to form a clot, effectively
sealing the wound.® The injury triggers the leakage of blood and
lymphatic fluid, leading to the formation of the first reparative
coagulum.®® Coagulation mechanisms are activated by intrinsic
and extrinsic pathways.*” The intrinsic pathway is stimulated by
platelets, while the extrinsic pathway is initiated by damaged
tissue.’ Platelets adhere to injured endothelial cells and release
platelet adenosine (ADP), which promotes further platelet
aggregation and helps close the wound. Shortly after vasocon-
striction, the blood vessels dilate, allowing more platelets and
other blood cells to enter the wound site.*®

Inflammation, the second stage of wound healing, starts
when damaged blood vessels leak fluid, which is a combination
of protein, salt, and water. This results in localized swelling.
Both the immune system and hemorrhage control are
strengthened by inflammation. The fluid buildup at the wound
site draws cells capable of repair and healing, which go to the
location to start the healing process.”® In the inflammatory
phase, the wound site is cleared of bacteria, pathogens, and
damaged cells.”® Because of the action of white blood cells,
growth hormones, nutrients, and enzymes, this phase is
marked by swelling, heat, discomfort, and redness.* Prolonged
or severe inflammation can be damaging, even though it is
a natural and vital element of the healing process.®

The proliferative phase of wound healing involves the
reconstruction of the wound with new tissue based on collagen
and extracellular matrix.** During this phase, the wound
contracts, and new tissue is formed.® A new network of blood
vessels develops to ensure that the granulation tissue remains
healthy and receives adequate oxygen and nutrients. Myofi-
broblasts help close the wound by holding the wound edges and
exerting tension, similar to the contraction in smooth muscle
cells.®* Granulation tissue, which is pink or red with an irregular
texture in the early stages, should not bleed easily if healthy.
Dark granulation tissue could indicate inadequate perfusion,
ischemia, or damage. At the end of the proliferative phase,
epithelial cells reappear in the wound.®* Epithelialization occurs
most rapidly when wounds remain moist and hydrated.®® When
occlusive or semi-occlusive dressings are applied within 48
hours following an injury, tissue hydration is maintained and
epithelialization is encouraged.**

During the maturation phase, also known as remodeling, the
wound healing process reaches its final stage. This phase is
characterized by converting type III to type I collagen, which is
critical for restoring tissue integrity and strength.®® Apoptosis,
or programmed cell death, occurs to eliminate excess cells that
were necessary during the previous phases but are no longer
needed.®® Collagen deposited early in the proliferative phase,
which is often disorganized and thick, undergoes significant
restructuring and reorganization to improve tissue function
and elasticity.*” Collagen fibers seem closer together and form
a cross-link when they align along stress lines and reabsorb

water.”® This cross-linking fortifies the skin surrounding the
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Fig. 1 Different phases in wound healing — [a] bleeding and hemo-
stasis, [b] inflammation, [c] proliferation, and [d] remodeling. Created in
BioRender. Dhilip Kumar S. (2025) https://BioRender.com/q39h755.

wound and lessens the thickness of the scar.*® Different Phases
of Wound Healing treated using 3D bio-derived materials are
illustrated in Fig. 1.

2. Core principles of 3D bio-derived
materials: design, properties, and
applications

Biomaterials are essential to wound healing because they offer
state-of-the-art methods for enhancing tissue regeneration,
repair, and complete wound closure. Biomaterials function as
scaffolding or matrices that resemble extracellular matrix
(ECM) and offer essential guidance and support for cell
migration, proliferation, and differentiation. Through
increased endogenous cell recruitment, promotion of angio-
genesis, collagen deposition, and epithelialization, they provide
an environment conducive to tissue regeneration.®

Biomaterials can control the inflammatory response, pH,
oxygen tension, and moisture content to affect the wound
microenvironment. They can regulate the release of bioactive
molecules (such as growth factors and cytokines) to promote
healing and lower oxidative stress, inflammation, and infection.
Therapeutics like growth factors, antibiotics, analgesics, and
stem cells can be delivered locally and continuously with the
help of biomaterials. Biomaterial carriers facilitate targeted
administration, enhanced efficacy, less systemic side effects,
and delayed release kinetics, hence improving treatment
outcomes by encasing and safeguarding Dbioactive
compounds.”™

The vascularization of the wound bed—which is necessary
for the delivery of nutrients, oxygenation, elimination of waste,
and cell survival—is greatly aided by biomaterials. To promote

© 2025 The Author(s). Published by the Royal Society of Chemistry
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angiogenesis and vasculogenesis and hasten wound healing
and tissue regeneration, they can either replicate the nature of
the extracellular matrix (ECM) or contain pro-angiogenic
substances.”

Biomaterials can be used to treat a variety of wound kinds,
sizes, and complexity because of their versatility in composition
and design. Specific wound characteristics, such as chronicity,
infection, exudate levels, and tissue loss, can be addressed to
tailor treatment and enhance patient outcomes.*”

Biomaterials can be utilized in performance with other ther-
apeutic modalities like phototherapy, growth factor therapy, cell
therapy, and physical stimuli like ultrasound and electrical
stimulation to improve treatment outcomes more successfully.
Combination techniques work better than monotherapies
because they combine the several modalities' complementary
mechanisms of action.”” Biomaterials show a considerable
improvement in wound healing and tissue regeneration because
they mimic the natural properties and composition of tissues to
promote cell growth and proliferation.”” Among other things, they
act as a scaffold to assist the growth of new tissue and guide cells
to the injured area. These biocompatible materials, which offer
transient structural support during tissue development, reduce
the risk of rejection or inflammation in the body. Furthermore,
biomaterials can be tailored to address specific wound conditions
and individual patient needs.”

Overall, biomaterials have a variety of roles in wound heal-
ing, including as promoting vascularization, promoting tissue
regeneration, modifying the wound microenvironment, deliv-
ering therapy specifically to target wounds, adapting to different
types of wounds, and integrating with other therapeutic
modalities. They are essential instruments in creating cutting-
edge wound care treatments that enhance patient outcomes
due to their adaptability and therapeutic potential.

2.1. Three-dimensional (3D) scaffold requirements

Numerous articles on scaffolds with different macro- and
microstructures and biomaterial compositions have been pub-
lished in the literature. In addition to sterility and economic
feasibility, scaffold design considers mechanical factors (stiff-
ness, elastic modulus, etc.), physicochemical factors (surface
chemistry, porosity, biodegradability, etc.), and biological
factors (cell adhesion, vascularization, biocompatibility, etc.).
This review discusses the types, therapeutic uses, mechanisms
of action, safety, and biocompatibility of 3D biomaterials for
wound healing and skin tissue regeneration. The analysis
highlights the emerging role of scaffolds in wound healing,
tissue engineering, and regenerative medicine. It also high-
lights how the bioactivity and function of scaffolds can be
manipulated by adjusting factors such as shape, size, strength,
porosity, and degradation rate. The scaffold design has been
developed to mimic the anatomical structure and biomechanics
of the target tissue, allowing it to withstand external loads while
maintaining the mechanical properties of the skin in the
surrounding tissue. Tissue-specific mechanical properties,
particularly stiffness, have been shown to influence mesen-
chymal stem cell differentiation.”

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Scaffold designs sponges, meshes, and foams are essential
for managing biodegradation, which is a critical aspect of tissue
engineering. Degradation of biomaterials can happen across
the material or just on the surface. In contrast to bulk deterio-
ration, which destroys the interior structure, surface degrada-
tion maintains the bulk structure. The rate of deterioration
needs to be adjusted to match the growth of the tissue. This can
be done through physical, chemical, biological, or a combina-
tion of processes, all impacting the 3D scaffold's biocompati-
bility. For instance, the implant material is biologically altered
by enzymatic digestion and cell-mediated breakdown, whereas
incorporating numerous biodegradable components results in
hydrolysis. Permanent (non-degradable) or semi-permanent
scaffolds can be utilized in situations when total degradation
is not required, such as articular cartilage restoration. When
biocompatible scaffolds are inserted into the body, they
shouldn't trigger any immunological, poisonous, or foreign
body reactions. In addition, the scaffold’s surface characteris-
tics ought to be engineered to promote cell attachment,
uniform dispersion, growth, and intercellular communication.
Sustaining a porous or fibrous structure guarantees a high
surface-to-volume ratio, hence fostering tissue growth and cell
adhesion. When compared to smooth materials,
structured surfaces have a high surface energy, which enhances
hydrophilicity and, consequently, protein and cell adhesion.
The smaller grain size in metal and ceramic scaffolds enhances
both mechanical strength and bone cell adhesion and
proliferation.”®

Consequently, a major factor in regulating cell behavior is
the scaffold’s topography and mechanical characteristics. Cells
must be coaxed into taking on a certain in vivo morphology
before they can be sown on 3D scaffolds. The creation of
interconnected neurovascular networks between the mature
tissue and its surroundings is also necessary for the regenera-
tion process. While guaranteeing that nutrients, oxygen, and
other soluble components are adequately given to the embed-
ding cells and metabolic wastes are efficiently eliminated, the
scaffold design must, on the one hand, promote the remodeling
of blood vessels as the tissue matures. Conversely, to maintain
homeostasis, nerve fibers—which are spatially intimately asso-
ciated with cells that produce neuropeptide receptors—must
develop in tandem with the new tissue. Generally speaking, the
peripheral nerves are densely distributed across various
tissues.” Microsurgical integration of endogenous neuro-
vascular bundles after scaffold implantation improves scaffold
performance, considering the continued problem of regulating
the development of different tissue types.”

The endogenous healing process can be aided and acceler-
ated by many treatments, including stem cells, either alone or
with natural or artificial scaffolds, especially in cases of signif-
icant or irreversible damage. Stem cells are widely used in
therapy because they can differentiate when triggered in
response to an illness and naturally maintain tissue homeo-
stasis in healthy situations. These stem cells may originate from
the lung, the umbilical cord, bone marrow, adipose tissue,
muscular tissue, etc. harm. The tissue from which stem cells
originated can be restored by tissue-specific stem cells. After an
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injury, several biological processes take place to heal the injured
tissue, including the migration of stem cells and the production
of chemicals and growth hormones. Several bioactive
substances, including growth factors, peptides, genes, aptamers
(single-chain oligonucleotides), antibodies, medications, and
extracellular matrix (ECM) components, can mimic, improve,
and regulate these activities. Biomaterials are bonded to the
framework chemically or physically by hydrophobic interac-
tions, hydrogen bonding, and electrostatic forces. The finely
crafted scaffolds imitate natural signals and repair processes in
this way, establishing an environment that is favorable to stem
cell adhesion, proliferation, and differentiation and promoting
tissue regeneration.”

3. Types of 3D bio-derived materials

Currently under investigation for use in wound healing appli-
cations are a variety of 3D biomaterials with special properties
that are critical to the healing process. Variety is essential in
satisfying the different needs of wounds, as seen by the variety
of 3D biomaterials available for wound healing. Generally
speaking, these biomaterials fall into two groups: synthetic and
natural. Fig. 2 illustrates the overall biofabrication pathways for
3D tissue models, utilizing different cell sources to target organ-
specific disease modeling and drug screening.

3.1. Natural biomaterials

In the realm of biomedical sciences, natural biomaterials are
categorized based on their source and can be further divided
into three groups: polysaccharides (cellulose, chitin/chitosan,
alginate, agarose), proteins (collagen, gelatin, silk, fibrin, etc.),
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right 2024, Elsevier.
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Fig. 3 Preparation of multifunctional nanocomposite for wound
healing applications. [A] Cur@ZHMCe-based nanomaterial, and [B]
chitosan and fucoidan-based biomaterial. Reprinted from ref. 81 and
82 copyright 2024, Elsevier.

and glycosaminoglycans (hyaluronic acid, chondroitin sulfate,
dermatan sulfate, heparan sulfate, keratan sulfate, etc.).
Complex biomaterials derived from organs or cells have recently
come into public view. Despite their varied origins, these
biomaterials share the qualities of biocompatibility, biode-
gradability, and reconstructibility, which has piqued the curi-
osity of the scientific community. Applications for these
biomaterials exist in tissue engineering and medicine. Conse-
quently, we summarize and discuss the applications of the most
widely used natural biomaterials in this section.*® Preparation
of multifunctional nanocomposite hydrogel for wound healing
applications are shown in Fig. 3.

3.1.1. Protein-based biomaterials

3.1.1.1. Collagen. Collagen is essential in biomaterials for
wound healing because it closely mimics the natural scaffolding
found in the body. It promotes cell adhesion, growth, and
angiogenesis, accelerating the healing. However, due care must
be taken regarding its origin (animal or human) and the
potential for immune reactions. Collagen, the primary struc-
tural protein found in most animal tissues, is essential for
preserving the extracellular matrix's (ECM) structural and bio-
logical integrity giving cells and tissues the support they need.
Fibroblasts are the main biological source of collagen, which is
released by them and regulates important processes such as cell

© 2025 The Author(s). Published by the Royal Society of Chemistry
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shape, adhesion, migration, and differentiation. Collagen is
found mostly in fibrous tissues like skin, tendons, and liga-
ments tissues that need strength and elasticity-like bone,
cartilage, blood vessels, corneas, intestines, intervertebral discs,
and dental dentin. Collagen makes up roughly 25-35% of the
total protein content in the human body.*

Collagen's potential applications are substantially expanded
by its produced forms, which include films, fibers, sponges,
beads, meshes, and interconnected steps. These forms also
showcase collagen's adaptability.*® Numerous studies have
shown the value of collagen as a scaffold for bone and
cartilage.®*® It can also be used for other applications, such as
drug delivery systems, vascular grafts, bioprosthetic heart
valves, ophthalmology, and nerve regeneration.*

Furthermore, 3D scaffolds for soft tissue engineering have
cleverly integrated collagen matrices-containing microcap-
sules.®* In the field of liver tissue bioengineering, collagen-
coated silicone scaffolds are now a crucial tool for maintain-
ing stable three-dimensional hepatocyte cultures.*® Notably,
using micro-engineered collagen scaffolds, Wang Y. et al
recently succeeded in reproducing the crypt architecture of
human intestinal epithelium. These illustrations demonstrate
collagen's enormous potential as a biomaterial.*”

3.1.1.2. Gelatin. Gelatin is a denatured form of collagen that
is hydrolyzed to create a biopolymer that is biocompatible,
biodegradable, and fully absorbable. Its unique biological
characteristics, exceptional water solubility, and affordable
price have made it a convenient biomaterial with numerous
benefits over its parent protein. Nanoparticles, microparticles,
3D scaffolds, electrospun nanofibers, and in situ gels are the
formulations most frequently utilized in biological applica-
tions. The tissues of pigs, fish, and cows are used in these
preparations.®®

Because of its versatility as a biomaterial, gelatin has been
widely explored for biomedical applications. In stem cell
research, it has been demonstrated that changes to the gelatin
formulation can regulate the fate of stem cells, particularly in
injectable cell-based treatments. Furthermore, gelatin-based
delivery strategies have proven effective in delivering genes
and siRNA by inducing gene silencing or promoting the
expression of therapeutic proteins, respectively. With signifi-
cant advancements made thus far and further discoveries
anticipated, the likelihood of the rapid development and clin-
ical application of products based on gelatin is increasing.®

3.1.1.3. Silk. A class of fibrous proteins known as silks,
primarily composed of fibroin and sericin, are synthesized by
the glandular epithelium of several insects, including silk-
worms, scorpions, spiders, mites, and other insects. Silk fibers
have been used as sutures for decades, but they have now
opened up new research avenues with promising results when it
comes to experimenting with other formulations including gels,
sponges, and films.*®

Silk has tremendous potential as a biomaterial, as evidenced
by several studies conducted in the domains of orthopedics and
cartilage tissue engineering. Despite their many applications—
particularly in cartilage engineering silk fibers have attracted
a lot of attention.”

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Silk sericin, a glycoprotein derived from the silkworm
Bombyx mori of the Bombycidae family,”* has garnered signifi-
cant attention in recent years as a versatile biopolymer. Its
intrinsic biological properties, including antimicrobial, antiox-
idant, antitumor, anti-aging, and moisture-retention capabil-
ities, make it highly valuable across diverse industries such as
food, cosmetics, textiles, and medicine. Beyond these attri-
butes, sericin exhibits exceptional biocompatibility and biode-
gradability, promotes cell adhesion and proliferation, inhibits
tyrosinase activity, and possesses anti-inflammatory properties,
making it a promising candidate for wound healing and tissue
regeneration.*

The three-dimensional (3D) biomaterial applications of
sericin have further expanded its potential in regenerative
medicine. When incorporated into 3D biomaterial systems such
as scaffolds, hydrogels, and nanofiber matrices sericin
enhances cellular interactions by providing a biomimetic
microenvironment conducive to tissue repair. The nanoscale
modification of sericin, achieved through nano structuring
techniques, significantly increases its surface-area-to-volume
ratio, thereby improving bioavailability, cellular adhesion, and
polymer penetration. This nanosizing strategy, coupled with 3D
biomaterial design, facilitates enhanced interaction with bio-
logical targets and enables a controlled, sustained release of
bioactive compounds, which can be tailored to align with the
dynamic phases of wound healing. By integrating nanotech-
nology with 3D biomaterial systems, sericin-based biomaterials
offer a multifunctional platform for advanced wound healing
applications, supporting accelerated tissue regeneration while
ensuring optimal therapeutic efficacy.*

3.1.1.4. Fibrin. Fibrin, a non-globular protein important for
blood clotting, is created when thrombin breaks down fibrin-
ogen. Extensive research has taken advantage of fibrin's ability
to repair wounds and act as a hemostatic plug, suggesting that
fibrin may have uses in tissue engineering and medicine.**

Three-dimensional fibrin gels have been used as a scaffold to
facilitate cell migration and proliferation, among other uses. Ye
Q. et al. have demonstrated the effectiveness of fibrin gels as
a scaffold for cardiac tissue engineering, with well-regulated
breakdown, good creation of tissue, and excellent cell seeding
effects.”

Moreover, a unique biomaterial called as fibrin glue or fibrin
sealant has been created by combining extremely high quanti-
ties of fibrinogen, thrombin, calcium, and Factor XIII. These
days, this material is used to help with hemostasis in patients
undergoing various surgeries. More specifically, autologous
fibrin glue is a promising scaffold in regenerative maxillofacial
surgery, according to Azizollah Khodakaram-Tafti et al.*

3.1.2. Polysaccharides-based biomaterials

3.1.2.1. Cellulose. The cell walls of certain algae and green
plants contain cellulose, the most prevalent naturally occurring
polymer on Earth, which is created by bacteria.”* The physio-
logical and pharmacological uses of cellulose are restricted by
its challenging refining process, which makes it a less appealing
substitute for natural biomaterials even though cellulose is
abundant and renewable natural resources are readily avail-
able.”” Current research efforts are concentrated on optimizing

RSC Adv, 2025, 15, 9375-9397 | 9383


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ra07531e

Open Access Article. Published on 28 2025. Downloaded on 06.02.26 11:23:11.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

the typically time-consuming procedures of depolymerizing
cellulose and synthesizing its derivatives to fulfil the potential
of cellulose as a biomaterial. The discovery of significant
cellulose derivatives, such as carboxymethyl cellulose, cellulose
nitrate, cellulose acetate, and cellulose xanthate, has been
facilitated by developments in tissue engineering and medi-
cine.”* For instance, several kinds of cellulose have been
employed in cartilage®® and cellulose tissue engineering.
Cardiac scaffolds have been made using cellulose acetate and
regenerated cellulose based biomaterials.”®*® An intriguing and
new use is the use of scaffolds composed of heparinized
bacterial cellulose to encourage angiogenesis in tissue
regeneration.*

3.1.2.2. Chitin/chitosan. Chitin is predominantly found in
the exoskeletons of numerous insects and arthropods, and it is
the second most prevalent natural polysaccharide after cellu-
lose. Some chitin derivatives in food, medicinal, and environ-
mental applications, include -chitosan, glycol-chitin, and
carboxymethyl chitin.*®

The science of tissue engineering has focused on chitosan
(CS)-based polymers and their uses in recent years. Chitosan's
intrinsic antibacterial qualities, porosity, and adaptability to
different geometries that promote cell development and osteo-
conduction are the reasons for this interest.’* Moreover, chi-
tosan has been shown to promote angiogenesis and accelerate
wound-healing reactions by promoting the migration of
inflammatory cells to the wound site and increasing collagen
matrix deposition in open-skin wounds."*>*%*

3.1.2.3. Alginate. Brown seaweed, the source of alginate,
produces hydrogels that resemble natural wound fluids and
provide a moist environment that encourages cell migration. Its
functional qualities are enhanced by its easy accessibility and
biocompatibility, which facilitate its seamless integration with
other materials. Alginate is a naturally occurring anionic poly-
mer with remarkable biological merits, such as low toxicity,
biocompatibility, and affordability. Its adaptability also extends
to the creation of three-dimensional scaffolding materials,
including hydrogels, foams, fibers, sponges, microspheres, and
microcapsules.'® Because of its unique physicochemical char-
acteristics, alginate is ideal for a variety of applications, espe-
cially in drug and cell delivery systems. Anionic alginates
interact with multivalent inorganic cations through ionotropic
gelation to form a hydrogel with hydrophilic polymer networks
and three-dimensional cross-linked structures that may absorb
huge volumes of water or biological fluids. Alginate is therefore
one of the most important biomaterials in the production of
hydrogels. Alginate hydrogels and the extracellular matrix
(ECM) of biological tissues share structural similarities, which
makes them highly advantageous for use in enhanced drug
delivery systems and wound healing.**

3.1.2.4. Agarose. Agarose, the primary component of agar, is
a naturally occurring polymer that is obtained from seaweed
and red algae. It also has many of the positive attributes of
alginate, including as biocompatibility and ease of
manufacturing. Agarose and alginate were among the first
materials to be utilized as hydrogels for cartilage tissue
creation.'””
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Biodegradability, biocompatibility, support for functional
tissue growth, and adequate biomechanical properties to
maximize tissue regeneration are some of the important
requirements that biomaterials intended for tissue repair must
meet.'*®'* These materials are often used as hydrogels or
porous scaffolds in cartilage tissue engineering. Although algae-
derived agarose lacks the natural linkers that would allow it to
interact directly with mammalian cells, making it somewhat
inert, it nevertheless has several advantages.'” Agarose hydro-
gels provide a favorable environment for minimally invasive
delivery, with the potential to form an injectable hydrogel/cell
matrix, which is useful for applications involving tissue
engineering.'*’

Agarose hydrogels have been thoroughly studied for their
potential as scaffolds to facilitate cartilage regeneration and
encourage chondrocyte growth.'*''® Numerous studies have
demonstrated the superiority of agarose as an in vitro chon-
drocyte phenotypic maintainer, indicating its potential as
a cartilage tissue engineering material. Despite these advan-
tages, agarose hydrogels have disadvantages like weak biome-
chanical properties and challenging handling that have
prevented widespread deployment. Furthermore, regenerative
medicine is still very interested in the possibility of using
agarose to promote the chondrogenic differentiation of adult
stem cells, although this possibility has not yet been thoroughly
investigated.'*'**

3.1.3. Glycosaminoglycans. Hyaluronic acid (HA), chon-
droitin sulfate (CS), dermatan sulfate, heparan sulfate, and
keratan sulfate are among the materials that comprise the
glycosaminoglycans (GAGs) class of linear, unbranched poly-
saccharides. Repetitive disaccharide units set GAGs apart.
Because of their crucial roles in the construction of the extra-
cellular matrix (ECM) and cellular processes, HA and CS have
emerged as the GAGs that are the subject of the most investi-
gation in the fields of tissue engineering and regenerative
medicine.”*

Proteins (such as collagen, gelatin, silk, and fibrin), poly-
saccharides (such as cellulose, chitin/chitosan, alginate, and
agarose), or oligosaccharides (such as hyaluronic acid, chon-
droitin sulfate, dermatan sulfate, heparan sulfate, and keratan
sulfate) are examples of natural biomaterials used in biomed-
ical applications. More complex biomaterials have lately been
developed, including matrices made from cells or organs that
closely mimic the extracellular matrix seen in nature. Although
these biomaterials vary widely, they share fundamental char-
acteristics, like tissue remodeling support, biocompatibility,
and biodegradability. These properties have spurred growing
scientific interest in using these materials to further medical
and tissue engineering technology."*

3.1.3.1. Hyaluronic acid (HA). Hyaluronic acid is special
because of its ability to attract and retain moisture, which
produces the perfect environment for cell growth. It also
contains anti-inflammatory properties and is essential for tissue
regeneration. This complex, which is extensively present in
many connective tissues and body fluids, including synovial
fluid and the vitreous humor of the eye, is composed of
repeating disaccharide units of p-glucuronic acid and N-acetyl-
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p-glucosamine. Due to its exceptional biocompatibility and
inherent chemical properties, including its solubility and
reactive functional groups, it is an ideal material for tissue
regeneration and medicine.”

Biodegradable cartilage scaffolds using HA in tissue engi-
neering, and HA-collagen hybrid scaffolds provide incredibly
robust and freely permeable 3-D matrices that promote the
formation of mammary stromal tissue in vitro.****** A hydrogel
was found to have a neuroprotective effect on rats' spinal cords
after they had a lacerating lesion to the spinal cord in another
study by Kushchayev S. V. et al. (2016).*¢

3.1.3.2. Chondroitin sulfate. Chondroitin sulfate (CS) is the
second most often utilized glycosaminoglycan in biomaterial
applications. It is derived from repeating disaccharide units of
p-glucuronic acid and N-acetyl galactosamine.'’” A variety of
extraction and purification methods can be used to get CS from
cartilage sources such as shark, chicken, pig, cow, and skate. In
biological contexts, CS plays a critical role in bone and cartilage
metabolism and regulation. Moreover, it exhibits anti-
inflammatory properties and facilitates accelerated bone
mineralization."**

3.2. Extracellular matrix-derived biomaterials

3.2.1. Cell-derived matrices - decellularized extracellular
matrix (dECM). The cells in these innovative materials were
isolated from genuine tissues. It preserves essential compo-
nents like as growth factors and adhesion molecules, which are
essential for guiding the healing process and encouraging
a speedier closure and better tissue quality. Recent develop-
ments in cell biology, regenerative medicine, and tissue engi-
neering have been fueled by the development of decellularized
extracellular matrix (dECM), which overcomes the limitations of
traditional naturally obtained biomaterials. A cell-derived
matrix (CDM) is an acellular complex comprising several
fibrillar proteins that exist naturally, matrix macromolecules,
and associated growth factors. Often, these matrices only offer
a partial recapitulation of the composition and organization of
natural ECM microenvironments. As ECM-derived materials,
CDMs provide biological and mechanical support, promoting
the synthesis of paracrine factors and tissue-specific differen-
tiation in addition to cellular attachment, migration, and
proliferation.*®

3.3. Synthetic biomaterials

Polyesters’ intrinsic biocompatibility and biodegradability
make them a flexible class of polymers widely used in regen-
erative medicine applications. The reason for their biodegrad-
ability is that ester bonds can hydrolyze in aqueous solutions.
Out of all the polyesters that are accessible, poly(lactic acid),
poly(glycolic acid), and polycaprolactone (PCL) have become the
most used types.

3.3.1. Poly(lactic acid) (PLA). The intrinsic chirality of its
attached methyl groups, PLA displays a variety of isoforms. In
regenerative medicine (RM) applications, the racemic pr-iso-
form (PDLLA) and the r-isoform (PLLA) are frequently used. PLA
has a high strength (about 50-70 MPa) and tensile modulus (~3
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GPa), which makes it a popular fixative for bone implants.'*®
The molecular weight of PLA affects how quickly it degrades;
polymers with a lower molecular weight degrade more quickly.
Ester bond hydrolysis is the main mechanism of degradation,
which results in a gradual reduction of molecular weight.
However, in RM applications, the acidic breakdown products
produced during degradation can present problems and even
cause tissue damage. Furthermore, seeded cells in conventional
tissue engineering applications using PLA scaffolds may be
adversely affected by acidic by-products.®®

3.3.2. Poly(glycolic) acid (PGA). Another polyester that has
been extensively utilized for numerous RM applications is PGA.
PGA is more hydrophilic than PLA, which makes it more prone
to deterioration under watery conditions. Despite this, PGA has
a tensile modulus that is roughly 7 GPa higher than PLA's.
However, bulk deterioration could cause its mechanical char-
acteristics to deteriorate with time.**

3.3.3. PCL (polycaprolactone). A semi-crystalline polyester
that is widely used in various regenerative medicine (RM)
applications is PCL. Due to its adaptability, copolymers with
tunable properties can be easily copolymerized with a wide
range of different polymers. Copolymer blends are particularly
useful in drug delivery applications where control of the
dissolution and subsequent release of the drug is important.
Additionally, PCL and polyethylene oxide (PEO) have been
copolymerized to create polymers with hydrophobic and
hydrophilic microdomains.**

3.3.4. Polyurethanes. Synthetic polymers are incredibly
versatile; they can be made to display characteristics like
strength, flexibility, and controlled medication release, making
them appropriate for a wide range of biomaterials. Additionally,
by using nonaromatic di-isocyanates, toxicity issues related to
the breakdown of aromatic diisocyanate-based polyurethanes
are mitigated. PUs is employed in a variety of medical contexts,
such as blood arteries (vascular grafts), breast implants, wound
healing materials, and face reconstruction, because of their
elastomeric nature and compatibility with blood.*** Fig. 4 shows
the in vitro and in vivo biocompatibility of 3D biomaterials.

3.3.5. Composites. Combining synthetic and natural
materials improves their special benefits. For example, the best
scaffold is produced when the mechanical stability of
a synthetic polymer is combined with the biological signals of
collagen. A “composite” is the macroscopic combination of two
or more materials with dissimilar compositions, morphologies,
and general physical characteristics. Composites can frequently
be precisely engineered to have characteristics that meet certain
mechanical, chemical, or physical needs. As a result,
throughout the previous forty years, composites have been used
increasingly frequently in various types of industries, including
aerospace, automotive, marine, and more. Their considerable
influence is especially evident in several medical specialties,
such as orthopedics, cranial bone repair, temporomandibular
joint prostheses, cardiology, dental, oral, and maxillofacial
surgery, and tissue engineering. Recent research and testing on
awide range of composite biomaterials for medical applications
has resulted in the commercialization of some due to their

benefits over conventional materials. Human tissues are
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intrinsically composite, consisting of constituents whose
quantity, distribution, shape, and qualities together determine
the tissue's ultimate behavior. Examples of these tissues include
bones, tendons, skin, ligaments, and teeth. These biological
tissues can be partially mimicked by man-made composites,
which match their mechanical characteristics and enable
damaged tissue to resume its mechanical activities."®

3.3.6. Thin films. Films are a specific type of bandage that
may draw fluids and debris from the wound bed and absorb
them when placed on the wound surface. Compared to other
materials, thin films provide many advantages, including easier
gas exchange, flexibility to allow injured tissue to move, and
simple wound inspection (especially with transparent films).
Moreover, films with advantageous swelling characteristics
promote cell migration by creating a moist environment at the
damage site. However, it is important to that films are more
effective on superficial wounds due to their restricted ability to
absorb large amounts of exudates.”

3.3.7. Gauze. An ideal hemostatic dressing should not
cause adverse side effects, and it should stop severe bleeding
quickly (within about 2 minutes) to avoid ischemia in large
wounds. Many hemostatic solutions, such as powders, hydro-
gels, and sealants, still suffer from drawbacks after decades of
research and development, including poor performance, short
shelf life, unfavorable side effects, high cost, difficulty in use, or
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limited availability. Although they are still used, especially in
underdeveloped countries such as India, traditional techniques
such as manual compression with cotton gauze cannot stimu-
late or induce platelet activation or clot formation. Ideally, these
gauze pads would contain an appropriate hemostatic agent to
initiate the coagulation cascade once blood is absorbed from
the wound.®*® A particular type of dressing called a film can draw
fluid and debris from the wound bed and absorb them when it
is put on the wound surface. Compared to other materials, thin
films offer a few advantages, including simple wound exami-
nation, simple gas exchange, and flexibility to allow injured
tissue to move (especially with transparent films). Additionally,
films that exhibit favorable swelling qualities encourage cell
migration by bringing moisture to the site of the damage. It is
crucial to remember that films work best on superficial wounds
because of their restricted capacity to absorb a lot of exudates.***

3.3.8. Foams. Solid porous matrices with soft silicone that
are primarily made of polyurethane.'” Patients won't experi-
ence any discomfort when using these sterile foams on
wounds.” For wound dressings, polyurethane has several
benefits, including high absorbency, air permeability, softness,
flexibility, and cost-effectiveness.”” Furthermore, the silicone
membrane helps exudate pass through to the absorbent foam,
keeps dressings in place, and shields the area from injury while
being removed.'” On the other hand, irregularities in the
thickness, density, tensile strength, and elongation of the
freeze-dried foam may cause pain and skin maceration in the
surrounding area of the incision. An additional possible draw-
back is the possibility of newly generated tissue penetrating the
dressing during the effect of infrequent alterations, which can
cause incisional damage upon dressing removal.*?”*?®

3.3.9. Sponges. Due to their flexibility, porous materials,
are known for the complex pore networks that make up their
three-dimensional structure. These essential properties, such as
porosity, increased surface area, and low density, are used to
achieve various purposes, including ion exchange, energy
storage, purification, and catalysis. They are ideal for adsorp-
tion, separation, and storage due to their ability to interact with
foreign molecules through internal and surface channels. There
has been interest in investigating the potential of three-
dimensional porous materials as host systems for biomedical
purposes.

These scaffolds act as guides to lead the formation of new
tissue and substrates that support the maintenance of special-

130

ized functions without obstructing proliferation and encourage
cell adhesion. They not only provide an environment that is
favorable to cell growth, but they also imitate the natural bio-
logical environment. Biomedical science has advanced to the
point that scaffolds are being employed as wound dressings.*

Sponge made by freeze-drying techniques has remarkable
qualities, including shape flexibility, a significant swelling
capacity, the ability to load anti-inflammatory drugs, and sus-
tained release capabilities. Moreover, these sponges promote
cell adhesion, proliferation, and extracellular matrix produc-
tion, especially in chondrocyte-like cells, highlighting their

enormous potential in biological domains.**®
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Sponge materials are essential to biomedical exploration
because of their exceptional properties, which include large
porosity, elastic deformation, capillary action, and the ability to
create a 3D reaction environment that is favorable. Because
their intricate porosity structure allows them to use their large
surface area and internal networks for effective encapsulation
and transport, they offer promising platforms for drug admin-
istration, tissue engineering, anti-infection therapies, and
wound healing. Improved preparation techniques have been
created to regulate the morphology of these sponge materials
and increase the variety of medications they may hold,
enhancing workflows and guaranteeing manufacturing
uniformity.**

3.3.10. Hydrogels. The extracellular matrix (ECM) and
hydrogels, which are networks of polymer chains swelled by
water, are similar in that they allow the incorporation of
bioactive materials such as growth factors and antimicrobial
agents and create a moist environment ideal for wound heal-
ing.”®" Hydrogels are characterized by their intricate three-
dimensional structures created by hydrophilic polymers. They
are also known for their excellent oxygen permeability and
effective absorption of wound exudate. This distinctive archi-
tecture promotes cell migration and tissue regeneration by
maintaining moisture at the wound interface and by offering
mechanical support akin to that of tissue.’® Hydrogels are
adaptable carriers for therapeutic items, including medications,
cells, and nanoparticles because they may be strategically
engineered to respond to certain stimuli, target drug delivery,
and provide intelligent monitoring."** Hydrogels that react to
stimuli function as smart materials that release active ingredi-
ents when needed. Furthermore, hydrogels' incorporation of
monitoring features enables them to continuously evaluate the
wound microenvironment, providing important data for treat-
ment planning.**

3.3.11. Electrospinning nanofibrous mats. Electrospun
nanofibrous scaffolds accurately replicate the complex archi-
tecture of the extracellular matrix (ECM), providing a large
surface area required for cell adhesion and growth. Addition-
ally, the scaffolds make it easier to incorporate bioactive
chemicals to improve wound healing. Since it requires applying
a high-voltage electric field to spin ultrafine nanofibers from
molten polymers or solutions, the word “electrospinning” refers
to this intricate process. Using a series of exact processes,
a charged droplet of liquid polymer is exposed to a high voltage
and experiences electrostatic repulsion. The droplet elongates
until it reaches a critical point known as a Taylor cone, which
causes the ejection of a liquid stream. This repulsive force
counteracts the surface tension.**

3.3.12. Bioactive glasses. Bioactive glasses (BG) have been
an integral part of bone replacement and regeneration for
decades.™ Their efficacy stems from their capacity to integrate
and develop a robust link with the bone following implantation,
instead of being covered with fibrous tissue or leaving scars."*’
Furthermore, they facilitate bone regeneration, releasing ions
that induce the regulation of specific genes and gradually
degrade, allowing the regeneration process to proceed
smoothly.”® In recent years, new BG compositions have been
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developed and used commercially, such as strontium-releasing
BG for treating osteoporosis™* and fluoride-releasing BG for
oral care. However, Bioglass 45S5 *** and BonAlive S53P4 7 are
still popular BG compositions. The constant development of
new scaffolds, composites, and BG compositions. These devel-
opments often rely on physiologically active ions to initiate
processes that can be exploited to alter gene expression or
function as direct therapeutic agents. A thorough comprehen-
sion of BG's mechanism of action is necessary for innovative
treatments based on it.**

3.3.13. 3D printed scaffolds. The utilization of three-
dimensional printing technology has shown great promise in
accurately constructing scaffolds, yielding incredibly detailed
biomimetic three-dimensional structures. The processes used
to create 3D scaffolds involve layer-by-layer construction. These
processes include stereolithography, direct 3D printing, fused
deposition modeling, and selective laser sintering. Using these
techniques, scaffolds ranging from millimeters to nanometers
have been constructed with success. Terms like solid-state
fabrication, additive manufacturing, and 3D printing have all
become interchangeable in the last ten years."*

The ability to create flexible scaffolds with intricate charac-
teristics that resemble the extracellular matrix (ECM) and
promote homogeneous cellular dispersion is only one of the
many benefits of 3D printing. The printing technology still
limits the availability of biomaterials with the necessary
stability and desired qualities for 3D printed scaffolds. Addi-
tionally, the complexity of the designs increases the amount of
time needed to construct scaffolds, particularly when manual
labor is used rather than automated processes.™**

The current limitations in tissue engineering could be
greatly reduced with the help of continued study and advance-
ments in 3D printing technology. Hybrid materials and the
combination of printing techniques make it possible to create
scaffolds that closely mimic the extracellular matrix (ECM).
Unlike conventional techniques, 3D printing offers the preci-
sion and flexibility required to produce scaffolds that faithfully
capture the intricate architecture of the ECM. Eventually, these
scaffolds enhance tissue formation and regeneration by
creating an environment that is conducive to cellular processes
such as adhesion, proliferation, spatial distribution, and
differentiation.™” Fig. 3A and B, respectively, show how to make
a multifunctional nanocomposite hydrogel and explain how it
aids in wound healing and the preparation procedure and
crosslinking mechanism of biomaterials.

3.3.14. Nanotubes and nanorods. An important advance-
ment in nanotechnology, nanotubes and nanorods are charac-
terized by their unique one-dimensional forms and possess
extraordinary mechanical, electrical, and optical properties.
Due to their enormous potential, these nanomaterials, which
vary from metal oxide nanorods to carbon-based nanotubes,
have garnered a lot of attention in a few industries, including
electronics, energy storage, drug delivery, and catalysis. They
are necessary for the development of novel nanoscale materials
and technologies due to their large surface area, exceptional
strength-to-weight ratio, and programmable characteristics."*
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The exceptional mechanical strength, low density, flexibility,
and high surface area of carbon nanotubes (CNTs) have led to
extensive research into their use as reinforcement fillers in
polymer matrices. As a result, better functional characteristics
have been achieved in nanocomposites."** Carbon nanotubes
(CNTs) have great promise for biomedical applications, partic-
ularly in orthopedics, because carbon is a basic constituent in
biomolecules and is biocompatible. Because of its capacity to
improve the adhesion and proliferation of important cell types
like myoblasts, neurons, and osteoblasts, CNT-based compos-
ites are becoming more and more popular for bone regenera-
tion. Single-walled carbon nanotubes (SWCNTs) and multi-
walled carbon nanotubes (MWCNTSs) are the two types of
carbon nanotubes (CNTs). The focus of recent research has
been on CNT/polymer composites for use in biomedicine.
MWCNTs produced by chemical vapor deposition (CVD) are
now economically feasible due to their low cost.**®

Alternatively, because of their anisotropic form, which gives
them unique plasmonic features and improved colloidal
stability, nanorods are an excellent choice for drug adminis-
tration, cancer detection and therapy, biomedical imaging, and
biosensing.'***** Gold nanorods, or AuNRs, have demonstrated
a great lot of potential. According to a study by Xiao et al.,
AuNRs combined with doxorubicin and a targeted ligand are
effective (2012),""” creating a multipurpose nanoplatform for
targeted imaging and medication delivery in cancer cells.
Because of their rod-shaped structure and targeting ligands,
which enhance cellular absorption.****°

Nanotubes and nanorods continue to exhibit great promise
in the rapidly changing field of biomedical research, especially
in tissue engineering and regenerative medicine. These nano-
structures can be made from a variety of materials, including
metals, metal oxides, polymers, and carbon-based materials
like carbon nanotubes. They typically have cylindrical or rod-
like geometries with diameters between a few and many tens
of nanometers. Because so many different materials were
utilized in their development, they have a wide spectrum of
mechanical, electrical, and chemical qualities that make them
perfect for use in biomedical applications. The primary objec-
tives of biomaterials research, particularly concerning bone
implants, are to attain mechanical strength and biocompati-
bility that are sufficient to endure the stresses exerted on them
by the human body. In orthopedic applications, common
materials include metals, polymer composites, and alloys, all of
which are integral to achieving the necessary functional
outcomes in biomedical devices.**

The high aspect ratio and anisotropic structure of nanotubes
and nanorods make them naturally one-dimensional (1D)
nanomaterials. Nonetheless, their incorporation into three-
dimensional (3D) biomaterial systems, like hydrogels, scaf-
folds, or composite matrices, improves mechanical character-
istics, bioactivity, and structural integrity, which promotes
cellular adhesion, proliferation, and differentiation. For
example, it has been demonstrated that adding carbon nano-
tubes to 3D-printed scaffolds increases their mechanical
strength and facilitates bone tissue engineering applications.***
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In specific cases, self-assembled or aggregated nanotube and
nanorod networks can exhibit 3D structural characteristics,
making them functionally relevant for tissue engineering and
regenerative medicine applications. Research has demon-
strated that surface-modified carbon nanotubes can promote
osteoblast adhesion and differentiation, highlighting their
potential in bone tissue engineering."**

While they are not intrinsically 3D biomaterials, their
incorporation into macroscopic biomaterial architectures
enables them to contribute significantly to 3D biomedical
applications. Advancements in nanotechnology and fabrication
techniques have facilitated the development of complex 3D
nanostructures, such as peptide hydrogels and graphene-based
materials, which are utilized in tissue engineering, cancer
therapy, and regenerative medicine.***

4. Advancements of bio-derived
materials in wound healing

Wound healing can be greatly impacted by some variables,
including infection, malnourishment, and underlying medical
conditions.*® To address these issues, several treatment alter-
natives have been developed, including dressings,"*® debride-
ment,"” antibiotics,'*® growth factor therapy, negative pressure
wound therapy, and hyperbaric oxygen therapy.*****

Resolving wounds is still a major global health concern that
affects millions of people each year in all age groups and
demographics. These difficulties cover a broad spectrum of
wounds, both acute and chronic, such as burns, pressure
injuries, diabetic ulcers, and surgical wounds. Healthcare
systems bear a significant financial burden in managing and
caring for these wounds, which necessitate substantial
resources including medical supplies, expert care, prescription
drugs, and rehabilitation services.***

Wound healing difficulties have a significant negative
influence on patients' quality of life in addition to their finan-
cial implications. They may result in excruciating pain,
restricted movement, functional deficits, and psychological
discomfort. Long-term consequences from chronic wounds
might include disruptions to social connections and everyday
activities. In addition to making these issues worse, delayed
healing raises the possibility of consequences like infections,
tissue necrosis, osteomyelitis (bone infections), amputations,
and, in the worst situations, even death. Managing complicated
wounds presents several challenges for healthcare profes-
sionals. These consist of a wide range of patient reactions to
therapy, challenges in reaching the best possible healing
results, and a significant chance of wound recurrence. Patients’
care is made more difficult by the uneven effectiveness of
wound healing interventions, which puts them at risk for long-
term issues.”® A significant challenge in wound care is the
disparity in access to quality treatment. Receiving quality
treatment can be difficult for vulnerable groups, such as
members of racial and ethnic minorities, the elderly, low-
income people, and those who live in remote areas. These
disparities are driven by socioeconomic status, healthcare
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infrastructure, health literacy, cultural beliefs, and geographical
limitations. Advancements in wound healing strategies aim to
address these challenges through innovative approaches and
targeted interventions. This includes reducing healthcare
inequities by improving access to high-quality care, imple-
menting early intervention techniques, and developing
comprehensive management plans. Emerging technologies in
wound care, such as bioengineered materials, 3D biomaterials,
and advanced therapeutics, hold promise for optimizing heal-
ing outcomes. By integrating these advancements, we can
significantly reduce the overall socioeconomic burden of wound
care, improve patient outcomes, and enhance the efficiency of
healthcare systems.™*

4.1. Importance of effective wound healing

Healing from wounds is important for everyone, but it's critical
for the elderly and individuals with long-term conditions like
diabetes and peripheral vascular disease. These individuals are
more likely to get wounds, and they frequently have difficulties
getting them healed.” The wound needs to be kept clean,
covered, and moist to encourage healing and avoid infection for
healing to proceed successfully.**> Maintaining sufficient blood
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flow and minimizing pressure on the incision aid in the
prevention of additional tissue damage.*** Swelling, inflamma-
tion, and slowed recovery are all possible outcomes of infec-
tions. In more serious situations, infections can travel to the
bloodstream and result in potentially fatal sepsis.'** Restoring
functions to the injured area depends on effective wound
healing. For example, proper healing will support the muscle's
recovery if a wound injures a muscle.** The study performed
using bio-derived materials for in vitro and in vivo wound
healing applications are shown in Fig. 4 and 5, respectively.

5. Three-dimensional bio-derived
materials wound healing advantages,
disadvantages and challenges

In many biological applications, three-dimensional (3D)
biomaterials have unique advantages, disadvantages, and
challenges. Understanding both the benefits and drawbacks of
these technologies is essential to maximizing their usage in
tissue engineering, regenerative medicine, and other medical
fields.

5.1. Advantages of 3D bio-derived materials

Cells can adhere, multiply, and regenerate tissue because 3D
biomaterials provide an extracellular matrix (ECM)-like struc-
ture. These materials allow for more specialized therapy and
better results because they may be tailored to each patient's
specific demands.”” Certain 3D biomaterials can precisely
control the flow of drugs, growth hormones, or other bioactive
compounds to speed up the healing process.'®* The adoption of
biodegradable 3D biomaterials reduces patient discomfort and
risk of complications by eliminating the need for surgery. Bio-
printing and 3D printing enable more precise construction of
intricate structures.'*®

5.2. Disadvantages of 3D bio-derived materials

Three-dimensional (3D) biomaterials have great potential for
wound healing, but some drawbacks may reduce their efficacy.
These materials can be difficult to obtain due to the expensive
and technically demanding sophisticated manufacturing
processes that go into their creation. Biocompatibility problems
can also cause negative reactions or inflammation, and mis-
matched degradation rates can provide insufficient support and
create scar tissue. Certain biomaterials do not have enough
mechanical strength, and their intricate structures may make it
challenging for cells to transport nutrients and oxygen, both of
which are necessary for survival. Furthermore, if improperly
maintained, the porous structure of 3D biomaterials raises the
risk of infection. Regulatory obstacles, patient variability, and
the high expense of new production techniques further impede
their therapeutic utilization. The goal of achieving optimal
integration with host tissues remains a significant challenge
that will influence the overall efficacy of these novel materials in
promoting healing.'®'*
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5.3. Challenges of 3D bio-derived materials

The predominance of problems with inflammatory reactions,
infection management, safety and regulatory concerns, clinical
translation, trauma, and pathophysiological sequelae has made
skin wounds a major challenge in modern medicine.** Hemo-
stasis, inflammation, proliferation, and extracellular matrix
remodeling are all highly controlled molecular mechanisms
during normal wound healing.'”® Three-dimensional (3D)
biomaterials provide very effective and customized therapies.'”*
However, before widespread clinical acceptance is accom-
plished, a few challenges need to be resolved. To overcome
these obstacles, scientists and medical professionals are
putting a lot of effort into developing breakthroughs in mate-
rials science, bioengineering, and medical technology. These
challenges should become easier to overcome as our knowledge
of 3D biomaterials and their uses expands, bringing us one step
closer to realizing the potential of these materials for tissue
regeneration and wound healing.

One of the hardest problems is developing biomaterials that
are both biocompatible and biodegradable. Ensuring biode-
gradability to avoid the necessity for surgical removal once the
wound has completely healed and biocompatibility to avoid
negative reactions in the body."”> The achievement of exact 3D
printing of biomaterials, which necessitates a high degree of
accuracy and precision, is another barrier. To maximize the
therapeutic impact of the biomaterial, it must be precisely
tailored to meet the unique wound requirements of each
patient. To guarantee that these materials are available to
patients and healthcare professionals, as well as to encourage
wider usage and benefits throughout the healthcare spectrum,
it is imperative to design biomaterials that are both affordable
and easily producible.*”

Ensuring 3D biomaterials are completely biocompatible and
do not trigger unfavorable immune reactions is a big task. It can
be difficult to achieve mechanical properties that closely
resemble those of the target tissue. It is still difficult to promote
blood vessel growth in 3D biomaterials to guarantee adequate
nutrient and oxygen delivery. Retaining structural integrity over
time is important, particularly in load-bearing applications.*”*
Some 3D biomaterial fabrication methods are costly, and
increasing production volume might be difficult. It can take
a lot of effort and money to make sure that 3D biomaterials are
thoroughly studied for safety and efficacy and that they adhere
to legal requirements. It might be challenging to integrate
seamlessly into host tissues since immunological responses
and tissue rejection can happen. The design and creation of 3D
biomaterials with the appropriate structures and properties can
be challenging and time-consuming. The pace of biodegrada-
tion and tissue regrowth can be difficult to balance since
biomaterials might degrade too quickly or too slowly. The use of
human cells and tissues in bioprinting and tissue engineering
may raise ethical and legal concerns.'”

For effective clinical and commercial applications, the
fabrication of 3D biomaterials poses several complex obsta-
cles. Since material behavior and process variability can affect
the product, achieving high precision and reproducibility is
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one of the manufacturing problems. Furthermore, the limits of
existing technology make it challenging to fabricate intricate
designs that replicate real tissues. Additionally, many bioma-
terials need post-processing procedures like surface changes
or crosslinking, which raise production costs and
complexity.'”

Since the procurement of biomaterials frequently depends
on non-renewable or animal-derived sources, which raises
ethical and environmental concerns, sustainability is another
crucial issue. Effective management of industrial waste is also
necessary to reduce environmental impact, and energy-
intensive manufacturing techniques like 3D printing provide
more sustainability issues.'”’

Additional challenges arise when production is scaled up
from laboratory research to industrial manufacturing. Due to
equipment, raw material needs, and stringent quality control
procedures, large-scale production is frequently costly. For
medical applications, batch-to-batch consistency is essential,
yet it is still a major challenge. Additionally, because many of
the fabrication procedures used today are sluggish and ineffi-
cient, manufacturing speed needs to be increased to meet
commercial demands.'”®

Lastly, two major issues in the creation of 3D biomaterials
are still biocompatibility and regulatory barriers. For biomate-
rials to be successful in medical applications, they must not
cause immunological rejection or unfavorable biological reac-
tions. Another difficulty is long-term stability, since the mate-
rials need to retain their biological and mechanical
characteristics for prolonged periods of time inside the body.
Additionally, the lengthy and extremely strict regulatory
approval process for medical biomaterials delays commerciali-
zation and raises expenses. Multidisciplinary cooperation,
developments in material science, and enhancements in
manufacturing technology are necessary to meet these
problems.*”

Despite these challenges, many of them are being
addressed by continuing research and developments in
materials science and biomedical engineering, increasing the
usefulness of 3D biomaterials in the medical industry. It is
anticipated that 3D biomaterials will help tissue repair and
regeneration increasingly more effectively and versatilely as
knowledge and technology grow.'® Advanced techniques
including 3D printing, electrospinning, and bioprinting are
needed to develop 3D biomaterials with complex architectures
and qualities that match genuine tissues and organs while
maintaining scalability and repeatability.’®* It is imperative to
guarantee the compatibility of 3D biomaterials with host
tissues, taking into account the non-toxic components and
additives utilized during their manufacturing.*®* The challenge
is to stabilize 3D biomaterials while promoting tissue regen-
eration by carefully releasing bioactive molecules (such cyto-
kines, growth factors, or other bioactive agents). It can be
challenging to discover mechanical qualities in biomaterials
that are compatible with the characteristics of the target tissue
across a range of tissue types and wound locations, such as
those resulting from balancing strength and flexibility. The
process of forming functional blood vessels inside the tissue,
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which is required to give oxygen and nutrients to tissues that
are renovated, is challenging to do in three-dimensional
biomaterials that promote angiogenesis. Promoting tissue
regeneration while reducing the immune responses and
inflammation caused by 3D biomaterials is crucial. Controlled
degradation rates that align with the tissue's healing schedule
are critical for 3D biomaterials to maintain stability over time,
particularly in the case of long-term implants or chronic
wound healing. It can be difficult and expensive to tailor 3D
biomaterials to each patient's specific demands, especially
when it comes to tailored treatment.

6. Opportunities and innovations

Applications for three-dimensional (3D) biomaterials in wound
healing are becoming more and more common. These bioma-
terials can function as a scaffold for cell proliferation and
rebuild tissue (ECM) by emulating the natural extracellular
matrix. The creation of extremely intricate and patient-specific
biomaterials for tissue remodeling has been made possible by
developments in 3D printing and tissue engineering. Additive
manufacturing, or 3D printing, is a quickly developing tech-
nology that has the power to dramatically change the bioma-
terials sector. The development of 3D printing is intended to
displace conventional machining techniques. Layer by layer,
intricate 3D structures may be constructed with 3D printing,
precisely controlling the material's composition and cutting
down on material waste."®® Scaffolds, patient-specific implants,

View Article Online
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and more equipment for tissue engineering and regenerative
medicine might all be made using this 3D technology. Tissue
pictures from frequently used medical imaging techniques,
such as computed tomography (CT) and magnetic resonance
imaging (MRI), can be utilized to create building blocks. This
cannot be accomplished with traditional production
methods.*® Dental molds, craniofacial implants, prosthetic
parts, implants, and crowns are a few of the more modern
medical applications of 3D printing. Other applications include
organ printing, surgical models, scaffolds for tissue regenera-
tion, including skin and bone, and tissue models for drug
discovery.'®*™®” Fig. 6 illustrates the strengths and weaknesses
of various biofabrication technologies used in constructing
different types of 3D tissue models.

The state-of-the-art in regenerative medicine and healthcare
research and development is focused on customized wound
healing and combination therapies based on novel biomaterials
and technology. Customizing therapy regimens for each patient
according to their genetic profile, medical background, and
unique wound characteristics is known as personalized wound
healing. The identification of genetic markers impacting wound
healing is made possible by advancements in genetics and
bioinformatics, which empower healthcare providers to provide
individualized therapies.

Modern biomaterials now come with sophisticated smart
dressings that can track the advancement of wound healing in
real time. By integrating sensors or nanotechnology elements,
these dressings can identify signs like infection, inflammation,
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Fig. 6 Biofabrication technology's strength and weakness for building 3D tissue models. Reprinted from ref. 79, copyright 2023, Elsevier.
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or pH variations, facilitating prompt management."®® Combi-
nation treatments and multimodal strategies are becoming
more and more common for wound healing. Tissue regenera-
tion can be improved by combining growth hormones, stem
cells, or other biological agents with biomaterials. Stem cells
within a three-dimensional biomaterial scaffold, for instance,
can aid in tissue regeneration and enhance wound healing.™°

Nanotechnology plays a major role in the therapy of
personalized wounds. The direct administration of medications
or growth factors to the wound site via nanoparticles enables
targeted therapy. Through modification of biomaterials' surface
characteristics, nanoparticles can enhance their biocompati-
bility and functionality.*** Our expanding knowledge of the role
of the immune system in wound healing has made new
approaches to tailored therapy feasible. Immunotherapies and
biomaterials that modify the immune response can lessen
issues and encourage recovery. Personalized wound care makes
use of data-driven strategies. To guide medical decisions and
enhance results, forecasting analytics can be developed by
integrating patient data, electronic health records, and molec-
ular profiling."* To create viable tissues and organs for trans-
plantation or in vitro testing, advances in tissue engineering and
organoids present new possibilities for customized wound
healing. The goal of these methods is to create functional
organs and tissues for in vitro testing or transplantation.'*
Patients with a range of medical issues can receive effective and
affordable healthcare through telemedicine. Personalized
wound care can be enhanced by telemedicine and remote
monitoring technology, which give medical professionals the
ability to watch over, manage, and direct patients. Patients
living in remote areas or dealing with persistent wounds should
pay special attention to telemedicine.”* Patient education
regarding wound care and self-management is crucial for
personalized healing. Using wearable technology, interactive
tools, and mobile applications, patients can take an active role
in their recovery. Personalized wound healing and combination
therapies, which rely on novel biomaterials and technologies,
present a stimulating prospect to enhance health results and
revolutionize the regenerative medicine domain. These devel-
opments could hasten healing, lessen complications, and
enhance the standard of care for patients with various
wounds.®®

7. Conclusion and future research

Wound healing therapy has been revolutionized by 3D
biomaterials. The intricate structure and function of their
imitated natural tissues make them extremely successful in
treating burns, surgical incisions, diabetic foot ulcers, and
chronic wounds. 3D biomaterials provide a customized,
patient-specific approach that accelerates healing, lowers
complications, and improves overall care quality, as demon-
strated by case studies and applications. Using these bioma-
terials, which may be precisely shaped to meet the needs of the
wound, growth factors, antibiotics, and other therapeutic
compounds can be supplied directly to the wound site for
targeted treatment.
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3D biomaterials create an environment that is wet and
supportive of cell development and regeneration while acting
as a barrier against infection. Patient care and monitoring are
further enhanced by integrating technology like 3D printing,
smart dressings, telemedicine, and data analytics. Numerous
wounds, such as surgical wounds, burns, chronic wounds,
and diabetic foot ulcers, have been treated using them. Future
studies should concentrate on improving the customization
of 3D biomaterials to match the distinct requirements and
features of every patient, investigating the synergistic effects
of combining 3D biomaterials with other therapies like
immunomodulation, hyperbaric oxygen, or stem cells, and
creating intelligent 3D biomaterials that can actively track the
progress of wound healing and modify treatment as
necessary.

To ensure the safe and effective use of 3D biomaterials in
wound healing, standardized regulatory regulations must be
developed. Progress in research and development opens up new
opportunities for improved patient outcomes, simpler proce-
dures, and improved quality of life for people with burns,
surgical wounds, chronic wounds, and diabetic foot ulcers.
These innovative biomaterials show how science and medicine
can coexist, and they could completely transform the wound-
dressing market.

Modern wound care employs 3D biomaterials in novel ways,
such as dressings that have biological activity built in and may
be used for extended periods of time, as well as the capacity to
retain and release bioactive substances—like medications—in
a controlled and sustained manner. Advanced wound dressings
are being developed using a variety of materials, including
natural inert and bioactive polymers, hydrogels, tissue-
engineered skin substitutes, alginate dressings, and polymers
such as cellulose, gelatin, polyurethane, polyethylene oxide,
polyvinyl alcohol, hyaluronic acid, chitosan, and poly(i-lactide-
co-ge-caprolactone). Moreover, 3D-printed nanoparticles are used
to transport cellular components, anticoagulants, antimicro-
bials, and anti-inflammatory drugs.

The effectiveness of various 3D-printed nanomaterials in
promoting wound healing processes has been confirmed by
both in vitro and in vivo studies. Tissue regeneration, drug
loading and release efficiency, moisture absorption capacity,
biodegradability, resolution and viability, and synergistic anti-
infective responses are only a few factors considered in these
assessments. Integrating bioinformatics, computational
modeling, and advanced imaging techniques could optimize
bio-derived materials design for enhanced wound healing
outcomes. Future 3D biomaterial success in clinical wound
healing applications hinges on coordinated and multidisci-
plinary efforts across nanomedicine, materials science, and
related fields, with scalability, consistency, traceability, and
adherence to relevant regulatory standards.
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