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Mesoionic Imines: Strong N-Donors, Electronic Ambivalence and 
Applications in Catalysis 
Richard Rudolfa and Biprajit Sarkara,b*

Mesoionic imines (MIIs) based on a 1,2,3-triazole core have been popularized in the past ca. 5 years. In this review article 
we discuss the synthesis, coordination ability and the structural and spectroscopic properties of these fascinating class of 
electronically ambivalent  compounds. Apart from this, we also discuss the utility of MIIs and their compounds in directed 
C-H activation reactions, and in the activation and conversion of small molecules such as alkynes and CO2. Based on the 
current state of the art, we touch upon possible  future developments  of the chemistry of these classes of molecules.

Introduction
The first reports on the preparation1 and isolation of carbenes 
in the form of N-heterocyclic carbenes (NHCs)2 fundamentally 
reshaped the realm of organometallic chemistry. NHCs 
cemented themselves as powerful tools in synthetic chemistry 
but also adjacent scientific fields like material sciences. The 
history, properties and applications of NHCs were extensively 
reviewed elsewhere.3–6 Being powerful and intriguing 

compounds for various applications, finding suitable synthetic 
methods for tailoring the properties of NHCs by perturbation of 
the substitution pattern is a leading development in this field. 
Two concepts for substitution arguably stand out the most: 
Replacement of the lone-pair with an organic moiety X or 
interchange of the imidazole-frame with other heterocyclic 
cores (chart 1). 
Besides the “classical” imidazol-2-ylidene, NHCs like 
pyrrolidin-2-ylidenes7–9 (commonly referred to as “CAACs”) 

with other heterocyclic backbones garnered a lot of attention 
as they allowed the introduction of other, different 
properties.10 
A currently highly popular heterocycle in the realm of NHC-
chemistry is the 1,2,3-triazole. By the Nobel-prize winning 
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Chart 1 Overview on NHCs and derived compounds.
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concept of CuAAc (copper-catalysed azide-alkyne cycloaddition 
reaction)11–16 1,2,3-triazoles are synthetically accessible with a 
large variety of substituents. Further quaternisation of the N3-
position on 1,2,3-triazoles with electrophiles like alkyl-halides 
or bisaryliodonium salts generates the corresponding NHC after 
deprotonation. Bearing mesoionic characteristics, such 1,2,3-
triazol-5-ylidenes are often referred to as mesoionic carbenes 
(MICs).17–19 Further information can be found in excellent 
reviews by Crowley et al, 20 Sarkar et al,21, 22 Albrecht et al23–26 
and Bugarin et al27, 28. Formal replacement of the lone-pair on 
NHCs with an organic moiety X (X = NR, CR2, PR, O, Se, …) 
generates compounds with a highly polarised C-X bond. Such 
compounds can be described with a zwitterionic canonical 
structure, which reveals a large electron density at the fragment 
X. From that, it is no surprise that compounds of the form “NHC-
X” are found to be versatile ligand systems and act as potent 
organocatalysts.29–34 One prominent representative of this class 
is the N-heterocyclic imine (X = NR, referred to as “NHI”, Chart 
1). After fundamental work on NHIs by Kuhn in the 1990s,35 
NHIs found great application in the stabilisation of elusive main-
group element fragments like radicals,36–39 nitrenes40, 41 or 
heavier tetrylenes42–50 or as ligands in transition metal and 
actinide/lanthanide51 complexes. Excellent reviews on NHIs in 
this regard are available by Inoue and coworkers 52 and by 
Tamm and coworkers53. 
Introduction of an exocyclic fragment X on MICs gives therefore 
interesting new opportunities. Recent publications on N-
heterocyclic olefins of the type MIC-CR2 (MIOs)54–60 and MIC-
derived NHIs (MIC-NR)61–69 cement this statement. The 
corresponding NHIs with a MIC-core are referred to as 
mesoionic imines (or short as “MIIs”) as they also show 
mesoionic characteristics. After the first report on MIIs in 2020 
by Ooi and coworkers,69 the potential of MIIs as ligands66, 63–65 
and potent organocatalysts61, 62 was uncovered. In this regard, 
we herein wish to provide a review and outlook on the work 
done on MIIs with a 1,2,3-triazole core by us and others. 
Deprotonation of 5-amino-1,2,3-triazolium salts 1 is the general 
synthetic approach to MIIs 2 (Scheme 1), which is highly 
inspired by the parent compounds (NHCs, MICs, NHIs, …). 
Therefore, we will start with an overview on the synthetic 
procedures currently established for such 5-amino-1,2,3-
triazolium salts and then dive into the electronic structure, 
reactivity and application of MIIs as organocatalysts, 61, 62 
fluorophores70, 64, 66, 68 and as ligands66, 63–65, 70. 

As imiazol-4-ylidenes also bear mesoionic characteristics, the 
NHI with an imiazol-4-ylidene core can also be characterised as 

an MII. Work on such NHIs is also quite recent71 and a short 
overview on them will be given in the last chapter. In order to 
avoid misunderstandings, NHIs with imidazol-4-ylidene 
backbones will be called “aNHIs” in the following, while the 
term “MII” is reserved for NHIs with a 1,2,3-triazole-5-ylidene 
scaffold.

Discussion
Synthesis of MIIs

For the construction of 5-amino-1,2,3-triazolium salts two 
general methods were employed until now (Scheme 2): A) 
Synthesis of either 5-chloro or 5H-triazolium (further 
conversion to free MIC in that case) salts followed by amine-
functionalisation of the 5-position. 61, 62, 68 B) Quaternisation of 
the N3-position of 5-amino-1,2,3-triazoles by methylation or 
coordination of monocationic metal-fragments. 66, 63–65, 70, 69 

According to the reports by Haraguchi et al, 5-chloro-triazolium 
salts can be aminated with primary or secondary amines under 
the presence of a fluoride source.61 Follow-up work highlighted 
the large scope of triazolium salts and amines, which could be 
coupled by this methods.62 Among the amines, either aromatic, 
benzylic or aliphatic amines were tolerated. Even sterically 
congested amines like tert-butylamine or pyrolidine were 
successfully employed as the coupling reagent. This method 
also tolerates quite a scope of functional groups, like alkynes, 
alkenes, amines or alcohols without the need of prior 
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Amine-functionalisation of 1,2,3-triazolium salts. B) Construction of 5-amino-1,2,3-
triazoles followed by quaternisation of N3.
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protection. Yan et al reported on a Staudinger-type reaction of 
a “free” MIC with trimethylsilyl azide followed by hydrolysis 
under methanolic conditions. This method generates MIIs with 
a proton bound to the exocyclic N-position.68 Being strong 
nucleophiles, Yan et al reported in the same work that the 
corresponding Me-substituted MII is accessible by reaction of 
the H-substituted MII with MeI. Until now, both methods have 
been reported for triply arylated triazolium salts. 
The second method revolves around the construction of 5-
amino-triazoles, which are then converted to the corresponding 
triazolium salts via quaternisation of the N3-position of the 
heterocycle. The group of Ooi generated a triazole by reaction 
of a phthalimide substituted alkyne with phenylazide under 
“classical” CuAAc-conditions.69 The free amine can then be 
liberated by deprotection of the thus formed phthalimide 
protected 1,2,3-triazole by reaction with hydrazine hydrate. 
Subsequent methylation afforded the desired 5-amino-
triazolium salt. Sarkar et al constructed several, differently 
substituted 5-amino-triazoles by a base-mediated cycloaddition 
reaction between aromatic azides and aryl-substituted 
acetonitrile derivatives.66, 63–65, 70 Subsequent methylation or 
coordination with cationic metal-fragments (such as [MCp*Cl]+ 
with M = Rh, Ir)64 yielded like in the case of Ooi et al the desired 
triazolium salts. 

The prior construction of 5-amino-triazoles gave some peculiar 
advantages compared to the methods reported by Haraguchi et 
al and Yan et al. Quite a variety of arylated substituents were 
employed as the R1- or R2-residues by Sarkar et al. Until now, 
quaternisation of the N3-position of 5-amino-triazoles by a 
substituent R3 was only reported with methylating agents or by 
coordination of a monocationic metal-fragment to the N-N 

chelating pocket provided by the pyridyl-substituted 5-amino-
triazole (R2 = Pyridyl).64 In a work of Sarkar and co-workers, 
methods of Rexo-substitution were further investigated (Scheme 
3).70 By Buchwald-Hartwig amination of 5-amino-triazoles72 a 
phenyl-substituent could be introduced as Rexo (Scheme 3 A)). 
The free Nexo-H MIIs were also found to be quite active reagents 
for C-F activation of electron-poor fluoro-arenes, which yielded 
the corresponding Rexo-substituted congeners as isolable 
compounds (Scheme 3 A)). 70 

Spectroscopic and Structural Analysis of MIIs

The C1-N4 bond length can be probed to analyse the bonding 
situation in MIIs. With a mean bond distance of around 1.30 Å, 
the C1-N4 bond in “primary” MIIs with a proton bound to the 
exocyclic N-atom are best characterised with significant double 
bond character thus justifying naming them “imines”(Scheme 1, 
description of 2 as imine).66, 63–65, 68 This is also reflected in the 
corresponding C1-N4 stretching frequency obtained by IR-
spectroscopy. With a frequency > 1700 cm-1 such compounds 
are in the range of reported, “classical” imines. Electron-
withdrawing moieties like fluorinated arenes70 or benzoyl-
substituents69 bound to the exocyclic N-atom elongate the C1-
N4 bond to up to 1.35 Å (Figure 1). This can be rationalised by 
delocalisation of electron-density from the triazole-cycle onto 
the fluorinated substituent. A p-quinone type resonance 
delivers therefore a significant contribution to the structure. 
Thus, in such cases the C1-N4 bond is best characterised as a 
highly polarised single bond (Scheme 1, description of 2 as 
amide).70, 69

In the bis-phenyl substituted derivative 2a we observed 
intramolecular H-bonding interactions between ortho-protons 
of the Ph-substituents and the exocyclic nitrogen-atom N4 in 
solid state by XRD structural analysis on single-crystals 
(Figure 1). 63 More precise bonding analysis showed that the 
strength of these contacts differ tremendously: The much 
shorter contact formed by the o-protons of the N1-substituted 
Ph-moiety (2.31(2) Å) suggest a stronger H-bond compared to 
the respective contact of the o-proton of the Ph-substituent on 
C2 (2.91(1) Å). NMR-spectroscopy (1H) confirmed that such 
interactions are also present in solution as the resonance of the 
involved protons is significantly down-field shifted.63, 66, 65 
QTAIM-analysis also suggests a critical bonding point between 
the aforementioned protons and N4 although it’s supposedly 
relatively weak.65 The corresponding C-H bond is therefore 
quite activated and can be reacted with appropriate substrates. 
Such a reactivity is discussed in a later chapter.
In most cases, free MIIs show intense yellow to red colour as 
solids and in solution (Figure 1). According to (TD-)DFT 
calculations (Figure 1), the intense colours of the compound is 
the result of HOMO→LUMO transitions in the visible region of 
the electromagnetic spectrum.65, 70 The HOMO is predominantly 
localised on the Nexo-atom (non-bonding n(Nexo)-orbital) 
while the LUMO consists of an anti-bonding π*-orbital on the 
triazole-backbone. After excitation of this main HOMO→LUMO 
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transition, MIIs with Rexo = H were shown to emit yellow to 
green light with a quantum yield up to 50%.68 The authors of 
this work state, that this property is highly dependent on the 
degree of conjugation present in the system. As the work of MIIs 
is still in its infancy, possible photophysical application of MIIs 
represent therefore an interesting opportunity.  
The HOMO/LUMO-energy levels are heavily dependent on the 
substituent bound to the exocyclic N-atom70 and on the flanking 
substituent on the triazole-frame65, 64. Electron-withdrawing N-
exo-substituents like fluorinated arenes stabilise the HOMO-
energy level by partial delocalisation of the HOMO onto the exo-
substituent. Likewise, the LUMO-energy is lowered by this 
effect. This is especially apparent in the MII with the π-acidic 
(ortho-nitro)phenyl-substituent.70 In this case, the LUMO is 
mostly localised on the aryl-substituent, which results in a 
considerably smaller HOMO-LUMO energy-gap. The 
corresponding MII therefore has an intense red colour.70

The flanking substituents bound to the triazole-scaffold on the 
other hand have no effect on the HOMO-energy level but 
tremendously influences the LUMO-energy level (Figure 1).64 
Substituents with a proton bound to the o-position, engage in 
intramolecular contacts between that o-proton with the 
exocyclic N-atom. This interaction was observed not only in 
solid state but also in solution. AIM-calculation gave further 
evidence for such an interaction.65 This interaction induces 
parallelisation of the said substituent with the triazole-cycle, 
which in turn increases the conjugation of the system. The 

result is a lowered LUMO-energy level. The extent of the LUMO 
stabilisation is highly dependent on the substituent in question. 
Coordination of an IrCp*Cl-fragment to the N-N chelating 
pocket of the pyridyl-amino-triazole has a tremendous effect 
compared to a phenyl-substituent as in the foremost case the 
LUMO is partially delocalised on the Ir-fragment.64 The 
corresponding metallo-MII has a highly nucleophilic site (Nexo) 
as well as a highly electrophilic site (IrCp*Cl). 
Further substitution of the IrCp*Cl with an RhCp*Cl fragment 
shows how this pronounced electrophilicity did not allow for 
isolation of the compound as such compounds presumably 
undergo intermolecular reactions owing to their highly 
ambiphilic nature.64 

Reactivity of MIIs

Reaction with “simple” Lewis-acids. Being latent amides, MIIs 
readily react with Lewis-acids LAs under the formation of the 
corresponding MII-LA adducts (2LA, Scheme 4). Besides main-
group element electrophiles like MeI,70, 68 fluoro-arenes,64, 70 
boranes63 or CO2-gas63 also “simple” transition metal fragments 
were coordinated to MIIs. Such reactions were investigated in 
detail by Sarkar and coworkers. The reaction of MIIs with either 
a Rh(CO)2Cl- or NHC*-PdBr2-fragment afforded isolable 
complexes (2Rh/2Pd), which could be characterised 
spectroscopically and structurally.66, 63, 64, 70 The resulting 
complexes served as probes for the determination of the donor-
properties by the established Tolman/Huynh-electronic 

Figure 1 Top: C1-N4 bond lengths and the colours of MIIs with different Rexo substituents. 
Middle: Intramolecular H-bonds are highlighted in solid state and in solution. Bottom: 
MO-diagram with the frontier orbitals (HOMO, LUMO and LUMO +1) and the 
corresponding energy levels for differently substituted MIIs. The localised Kohn-Sham 
orbitals are displayed only for selected compounds to remain clarity of the figure. Level-
of-theory: PBE0/def2-TZVP/SARC-ZORA-TZVP(Ir)/CPCM(CH2Cl2) 84–87.

Scheme 4 Reactivity of MIIs towards “simple” main-group and transition metal based 
Lewis-acids. For the Rh/Pd-complexes the ranges of the respective TEPs/HEPs are given.  
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parameter (TEP73/HEP74–76).77 In conjugation with theoretically 
calculated methyl-cation-affinities (MCAs) the data published 
by Sarkar and co-workers70 not only represents the first 
thorough study on the donor-properties of NHIs, it also provides 
more insight into the high-electron donating nature of MIIs. The 
TEP of MIIs are in the range of other latent amides like 

pyridylidene-amides78–81 and cyclopropenyl-carbeneimines82. 
As discussed in the previous chapter, electron-withdrawing 
substituents will increase the TEP value as the donating ability 
is likewise decreased while the HEP value decreases 
accordingly. The calculated MCAs also reflect this trend.    
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Scheme 5 Synthesis of cyclometalated complexes 3 with MII-ligands as C-N chelates starting from the corresponding triazolium salts 1.

C-H activation reactions with Ir-precursors and correlations 
between crystallographic and NMR data. The intramolecular H-
contacts as discussed in more detail in an earlier chapter were 
also found to have strong implication for the reactivity of MIIs 
towards substrates, which are active in C-H activation reactions. 
Reaction of any MII bearing a C-H acidic flanking substituent 
with either [Ir(COD)Cl]2 or [IrCp*Cl2]2 resulted in the immediate 
C-H activation and cyclometalation of the MII-ligand with the 
corresponding Ir-containing substrate.65 According to thorough 
spectroscopic and structural investigation, the MII acts as a C-N 
chelating ligand under the formal depletion of one equivalent 
of HCl. As MIIs are strong bases, residual MII is protonated by 
the formed HCl in solution which results in a 1:1-mixture of 
cyclometalated complex 3 and triazolium chloride salt 2. This 
direct metalation method did not allow for isolation of the 
complexes as the Ir-complexes were not separable from the 
triazolium salt. Sarkar and co-worker therefore reacted the 
triazolium salt as a pro-ligand under basic conditions with 
[IrCp*Cl2]2 (Scheme 5). These conditions not only resulted in full 
conversion of the MII-proligand to the desired complexes, the 
Ir-complexes could also be isolated in good to very good yields 
from the reaction mixtures.66, 63–65 It stands out, that depending 
on the substitution pattern the C-H activation follows a 
profound regio- and chemoselectivity: substituents on the N1-
atom undergo the C-H activation far more preferentially than 

the respective site substituted to the C2-atom of the triazole-
frame. This behaviour becomes especially obvious with the Fc-
substituted derivative or the pyridinium-substituted congener. 
In both cases, the respective C-H bond on the C2-substituent 
(Fc-H vs. Ph-H or Ph-H vs. [Py-H]+)23, 83–87 should be far more 
acidic but still the C-H activation occurs preferably on the N1-
substituent. 
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Such profound electronic differences by either C- or N-
substitution on MIC-ligands were previously investigated88–90 
and derived from these insights the observed regio- and 
chemoselectivity is connected to higher C-H acidity induced by 
the N-substitution and to the preferential stronger H-bonding 
interaction between the imine-N and the C-H bond of the N1-
substituent. The cyclometalated iridium-complexes 3 obtained 
via this route usually contain the Ir-centre coordinated in a 
three-legged piano-stool geometry. Exceptions to that are the 
ferrocenyl-substituted derivatives 66 [3e]I and [3f]I and the 
Rh/Ir-based metallo-MIIs 64 [3i]BF4 and [3j]BF4, in which the Ir-
centre in question is obtained as a two-legged piano-stool 
complex after work-up. Even the presence of potentially 
coordinating solvent (MeCN) or coordinating counter-anions (I- 
in the case of [3e]I and [3f]I, Scheme 6) did not result in the 
occupation of the free coordination site. Only stronger donors, 
such as Ph3P, occupied this free coordination site, although in 
the case of the ferrocenyl-substituted derivatives [3e]I and [3f]I, 
oxidative dissociation of the phosphine-ligand was observed 
over time (Scheme 6).66 

This behaviour points to the high electron-donating nature of 
MII-ligands as they provide the platform to stabilise 
coordinatively unsaturated Ir(III)-centres as the 
thermodynamically favoured species. The cyclometalated MII-
IrCp* complexes [3a]I and [3c]I with a covalently bound iodide-
counter anion can undergo halide-abstraction reaction with 
AgPF6 under the formation of two different products dependent 
on the substitution pattern on the triazole-frame (Scheme 7). 
The Ir-complexes bearing the MII-ligand with a phenyl-
substituent on the C2-atom of the triazole-frame undergoes 
halide-abstraction under the formation of a dimeric, molecular 
complex [3a]PF6, in which two MII-ligands act as µ2-ligands for 
two IrCp*-fragments. The halide-abstraction reaction of the Ir-
complexes containing the MII-ligand with the sterically more 
demanding Mes-substituent on C2 yielded the corresponding 
monomeric coordinatively unsaturated Ir-complex [3c]PF6. 

The reactivity of such coordinatively unsaturated complexes 
were investigated in greater detail on the derivative [3c]PF6 

(Scheme 8).65 In this case neutral donors such as CO-gas or Ph3P 
reacted instantaneously with the MII-IrCp* complex under 
occupation of the respective free coordination site. Reaction 
with NaN3 resulted in the formation of an azide-bound IrCp* 
complex while the reaction of [3c]PF6 with Li[HBEt3] resulted in 
the formation of an ethylide-bound as a carbanion to the Ir-
centre. Both the CO and the ethylide bound IrCp* are extremely 
rare examples of structurally characterized complexes with 
those constellations.
With the electron-poor alkyne DMAD 
(DMAD = Dimethylacetylenedicarboxylate) an unexpected 
reaction was observed: In total, three equivalents of DMAD 
were activated and added to the Ir-complex under the formal 
depletion of “HPF6”. Two of the three DMAD-molecules 
dimerised under C-C coupling. 
This fragment now bridges the Nexo-atom and the Ir-centre 
under the formation of a new six-membered iridacycle. The 
third DMAD-molecule inserted into the C-Ir bond of the Ph-
substituent, which underwent the C-H activation reaction 
previously. This way a new and rare eight-membered iridacycle 
was formed.  This unusual and unprecendented structure could 
be elucidated by sc-XRD in combination with 1H-NMR-
spectroscopy. Based on these results Sarkar and co-worker 
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Scheme 7 Chemical abstraction of the covalently bound iodide-counteranion from 
[3a]I and [3c]I with AgPF6.66
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were able to show that also other MII-IrCp*-complex undergo 
such a reaction.

[3cX]

[3c]DMAD

R R

R = -CO2Me
N
N N

N

Mes

Ir

R

R

R
R

R
R

[3c]PF6

[3cL]PF6

NH
C

Ir

PF6

L = CO, PPh3

MX = NaN3, Li[HBEt3]

NH
C

Ir

PF6

L

NH
C

Ir X

Scheme 8 Reactivity of the coordinatively unsaturated Ir-complex [3c]PF6 with neutral 
donors L, coordinating anions X and DMAD (= Dimethylacetylenedicarboxylate). 65 

As several MII-IrCp* complexes were reported with different 
MII-ligands including different coordination modes and 
coordination numbers, it is worthwhile to look deeper into 
some crystallographic and spectroscopic data of these 
complexes and find possible correlations (Table S1, Figure 2).  
Plotting the N4-Ir bond length over the C1-N4 bond length 
(Figure 2 A)) shows indeed that the structurally similar Ir-
complexes with the Ir-complex ligated by 3 ligands beside the 
Cp*-ligand have similar bond parameters. Upon dissociation of 
one of those ligands, the C1-N4 is elongated while the 
corresponding N4-Ir bond is shortened substantially. 

It is therefore reasonable to describe the MII-ligand in 
complexes of the form A-IrCp*X (figure 2 C)) as an imine-type 
ligand (Scheme 1, description of 2 as imine) with short C1-N4 
bonds. In such a case, the corresponding N4-Ir bond is in the ball 
park of a single-bond. Upon dissociation of X, the MII-ligand will 
compensate the loss of electron-density of the Ir-atom by 
shifting more electron density onto the exocyclic N-atom (N4). 
Thus, in such a case, the MII-ligand accepts more electron 
density from the heterocycle which results in an elongated C1-

N4 bond. Such a bond now shows the characteristics of an 
amide-bond (Scheme 1, description of 2 as amide). At the same 
time, the higher electron count on N4 results in a shorter N4-Ir 
bond, which now has double-bond character. By shortening this 
bond, the loss of electron density can be compensated as the 
MII-ligand now offers more than one electron-pair for the 
coordination. This vividly shows the versatility of the MII-ligand 
as the ligands can adapt to the electronic situation of the 
bonding partner. Such a switch from imine to amide also has a 
strong effect on the resonance of the proton bound to N4 as 
derived by 1H-NMR spectroscopy (Figure 2 B)). Upon 
dissociation of X, the resonance of the said proton is 
significantly down-field shifted, as more electron-density is 
transferred away from N4. 
It stands out that [3a]PF6 and [3c]DMAD do not follow these 
trends as they do not fit the given model. In [3a]PF6 the MII-
ligand acts as a bridging ligand over the N4-atom. In such a case, 
“only one” electron pair per N4-atom can be provided per Ir-
atom. Accordingly, the N4-Ir is quite long and such a bond is 
presumably best described as a dative bond. To afford enough 
electron density to allow for the coordination of two Ir-atoms 
at the same time, the corresponding C1-N4 bond is also 
significantly elongated to provide the electron density 
necessary. Also the (Ir-N4)2-coordination motif is sterically quite 
congested, which is believed to also contribute to the long (C1-
N4/N4-Ir) bond lengths. For [3c]DMAD the structural data are 
not precise enough to further discuss the bonding situation. It 
will be interesting to see which trends might emerge once more 
such compounds of this type are reported on. 

MIIs in catalysis

The first report on MIIs already suggested their possible 
application in catalysis. Hydrogen-atom transfer (HAT) of 
heteroatom-containing substrates with organic molecules is a 
powerful tool for converting C-H bonds into precious C-C 
bonds.91, 92 Such processes can be mediated by catalysts such as 
secondary amides, as they provide a sufficiently high bond 
dissociation enthalpy (BDE). As sensitive amidyl-radicals are 
involved in these steps, a rational molecular design, which 
allows for modularity to further gauge the scope of substrates 
is notoriously difficult.93–95 Ooi and co-workers could harness in 

Figure 2: A) Graphical relation of the N4-Ir and the C1-N4 bond length in the IrCp*-complexes 3. B) Graphical relation of the resonance of the -NH in the 1H-NMR spectra 
and the C1-N4 bond length in the IrCp*-complexes 3. C) Possible coordination modes in the discuseed MII-IrCp* complexes. 
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that regard the well balanced stability of MII-based amidates 
with sufficient BDE-values (~ 100 kcal/mol) as catalysts for 
HAT.69 In these systems, the MII-scaffold provides a modular, 
synthetic platform. Additionally, the amidyl-radical can be 
generated under mild conditions (~ 1.2 V vs. SCE) and is 
efficiently stabilised by the cationic triazolium core. Together 
with IrIII-based complexes as the photoredox catalysts with a 
blue light emitting diode as the photon source, this system 
could not only couple quite a large library of alkenes to the α-
position of O- and N-containing heterocycles via HAT after 
8 hours under relatively low catalyst loadings (amidate 5 mol-% 
and Ir-complex 2 mol-%) (Scheme 9 A)). The reactions were also 
under regio- and stereoselective control dependent on the 
substitution pattern on the MII-catalyst.  The authors state in 
that regard that this conceptual approach provides a new 
rational approach for the design of HAT-catalyst systems 
especially if zwitterionic amidates based on the modular MII-
scaffold are further investigated. 
Haraguchi and co-workers studied the activity of MIIs as 
organocatalysts in the addition of various silyl-based 
nucleophiles onto aromatic aldehydes and ketones 

(Scheme 9 B)).61, 62 The cyanosilylation of acetophenone 
displayed unprecedented high TOFs (1500 h-1) with a MII as the 
catalyst at extremely low loadings (500 ppm). Also, less 
activated nucleophiles such as (trifluoromethyl)trimethylsilane 
or allyltrimethoxysilane were successfully added to either 
acetophenone or benzaldehyde under the presence of a MII-
catalyst, although the yields were unsatisfactory. The authors 
did not elaborate further on the mechanism of the conducted 
reactions. Given the references by the authors in the primary 
sources, we speculate that the mechanism most likely involves 
a pentavalent adduct of the MII and the silane.96–99 This 
hypervalent, neutral silicate is then coordinated by the O-atom 
of the carbonyl-substrate under depletion of the nucleophile 
(CN, CF3) which attacks the C-atom of the now activated 
carbonyl-substrate. As quite Lewis-basic compounds, MIIs will 
engage readily in the nucleophilic attack onto the silyl-based 
substrate which can explain the high catalytic activity.  
These preliminary studies disclose very fascinating facettes of 
MIIs as catalysts besides their use as ligands.

Scheme 9 Application of MIIs. A) As Co-catalyst in light-driven HAT with IrIII-complexes. B) Addition of silyl-based nucleophiles on aromatic carbonyls under MII-catalysis.
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Synthesis and Applications of aNHIs

The first and hitherto only report on aNHIs was from Mandal 
and coworkers in 2022.71 Similar to the synthetic methods used 
by Yan et al, the aNHIs were generated by a Staudinger-type 
reaction of a free imidazole-5-ylidene with trimethylsilyl-azide 
followed by methanolysis (Scheme 10 A)). Like MIIs, the aNHIs 
show intense orange to red colours which is the result of 
n(Nexo)→π*(imidazole) (HOMO→LUMO) transitions. 
The strongly donating nature of the obtained aNHIs were 
established by determination of TEP and the reaction of CO2-gas 
with an aNHI under the generation of the corresponding aNHI-
CO2 adduct. The small HOMO-LUMO energy gap makes aNHIs 
very intruiging compounds in the activation of small molecules 
like CO2. This reactivity was probed in detail in the same 
publication by a plethora of coupling reactions: A large variety 
of amides and amines were coupled by deoxygenation of CO2-
gas in the presence of aNHIs as an organocatalyst (Scheme 10 
B)). Besides “simple” amides and amines, also bioactive 
molecules were active in such coupling reactions. 

Conclusions

The investigations on mesoionic compounds based on 1,2,3-
triazoles have delivered intriguing chemical and physical 
aspects, which were heavily studied during the last 10 years. 
Reports on 1,2,3-triazole based mesoionic imines during the last 
ca. five years have opened up a new sub-field within mesoionic 

compounds. The modular synthetic route which has been 
developed for MIIs make the synthesis of molecules with 
tailormade properties straightforward. MIIs and aNHIs not only 
deliver interesting photophysical properties, but they also act 
as powerful organocatalysts for the metal-free deoxygenative 
CO2-coupling or in “classical” aldol-chemistry. As ligand for 
main-group element substrate but also transition metal 
complexes, MIIs provide a platform for the stabilisation of 
elusive fragments. Prominent examples for this are the isolation 
and structural characterisation of an elusive IrIII-CO complex or 
the intriguing reactivity of IrIII-Cp* complexes towards the 
activation of alkynes. The properties of MIIs can be traced back 
to their electronic ambivalence. As has been pointed out here, 
the frontier orbitals and hence the electronic ambivalence in 
these compounds can be engineered in a targeted way by 
making use of the modular synthetic route. Thus, designing 
molecules with predictable physical and chemical properties 
should be possible. Given the recent developments in this field, 
we are confident that the potential of MIIs will unlock intriguing 
facets in organometallic chemistry, 
photochemistry/photophysics and catalysis in the coming 
years.
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