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Tutorial on impedance and dielectric
spectroscopy for single-cell characterisation on
microfluidic platforms: theory, practice, and
recent advances

Fatemeh Dadkhah Tehrani, ab Michael D. O'Toole *a and David J. Collins b

Cell analysis plays an important role in disease diagnosis. However, many characterisation techniques are

labour intensive, expensive and time-consuming. Impedance and dielectric spectroscopy (IDS) offers a new

approach by using varying electrical current and electric field propagation responses to probe cell

physiology. This review aims to explore the theoretical foundations, practical applications, and

advancements in IDS for single-cell analysis, particularly when integrated with microfluidic technologies. It

highlights recent developments in electrode configurations, calibration techniques, and data analysis

methodologies, emphasising their importance in enhancing sensitivity and selectivity. The review identifies

key trends, including the shift towards high-throughput and precise single-cell analysis, and discusses the

challenges and potential solutions in this field. The implications of these findings suggest significant near-

future advances in biomedical research, diagnostics, and therapeutic monitoring. This paper serves as a

comprehensive reference for researchers in different fields to make a bridge between theoretical research

and practical implementation in single-cell analysis.

1 Introduction

Biological samples collected from patients such as tissue
biopsies, bodily fluids, and cells offer valuable insights into
various medical conditions. Different aspects of a cell, from
its membrane properties1 to its DNA sequence,2 hold
information about its structure and function. These insights
find applications in medical diagnosis, therapies, and
regenerative medicine.3 While previous research often
focused on aggregated cell populations,4 their complexity and
heterogeneity have spurred interest in high-throughput
techniques for precise single-cell analysis.

Cell analysis methods include optical, mechanical,
chemical, and electrical characterisation. Electrical methods,
especially broadband impedance and dielectric spectroscopy
(IDS), offer distinct advantages for non-invasive and real-time
cell analysis.5 There are different terminologies given for
techniques used for cell electrical characterisation, which are
summarised in Table 1. Here, we define impedance
spectroscopy as the measurement of a sample's opposition to
a varying current at different frequencies, often obtaining

bulk properties such as sample conductance and capacitance.
The term is commonly used in low-frequency measurement
(up to a few MHz) where lumped-element modelling
assumptions are valid. Dielectric spectroscopy is a form of
impedance spectroscopy where material-specific properties
are analysed, such as conductivity and permittivity. The term
is more common in studies measuring at higher frequencies
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(a few MHz to GHz) where transmission line assumptions
prevail.

In cell studies, IDS reveals electrical properties of cell
components by exposing cells to electromagnetic fields,
which induce changes based on the frequency-dependent
behavior of cell membranes, organelles, and structures. IDS
can analyse cells without modifications or labelling,12

making it suitable for high-throughput analysis and rapid
profiling of cell populations down to the single-cell level. Its
real-time monitoring capability allows dynamic observation
of cell responses to stimuli.13 IDS has been widely used in
macro-scale systems, analysing blood dielectric properties14

and tissue electrical properties to support diagnosis.15

Commercial products such as Coulter counters (Beckman
Coulter Life Sciences, USA) and impedance-based flow
cytometry (e.g., BactoBox®) are employed for cell analysis16

and enumeration,17 despite calibration challenges. The
integration of IDS with microfluidics has broadened its

applications by improving analysis precision by reducing
sample volume. Miniaturising IDS in microfluidic
environments has enabled activities ranging from precise
DNA analysis2 to advancements in tissue engineering.3 While
IDS has proven useful for single-cell analysis, its sensitivity to
minute changes in cell properties presents challenges.
Current efforts aim to enhance sensitivity, selectivity, and cell
handling by integrating IDS with sophisticated microfluidic
setups, automated systems, advanced data analysis, and
specialised electrode designs.

A number of reviews have explored the multifaceted
applications of electromagnetic waves for cell
characterisation. These reviews span theoretical
foundations,18 practical applications,19 data analysis
techniques,20 static and dynamic cell analysis,21,22 and
electrode configurations,23,24 as well as challenges in
bioimpedance devices,24 impedance and microwave sensing
methods, position-dependent signals,25 cell analysis across
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Table 1 Summary of various terms used for electrical characterisation of cells

Technique Principle Applications Advantages Limitations Ref.

Electric IDS Analysing bulk sample properties in a
stationary mode

Tissue analysis, 3D cell culture
analysis

Comprehensive
spectral information

Low throughput 6, 7

Electric flow
IDS

Single cell analysis when cells are
passing through a microfluidic
channel crossing the sensing zone

Analysis of live/dead cells,
identifying cell subpopulations,
blood analysis

High throughput and
real time

Limited to few
frequency points

7, 8

Electric cell
substrate IDS

Analysis of cells attached to the
surface of electrodes

Investigation of cell adhesion,
proliferation, and migration,
monitoring the effect of drugs

Sensitive to cell
properties, dynamic
characterisation of
cells

Limited to substrate
adherent cells,
medium throughput

9

Electrorotation Analysis of cell rotation when torque
is induced by a rotating electric field

Cell membrane and cytoplasm
characterisation, cell organelle
evaluation

Detailed analysis of
cell properties

Precise control of the
electric field, time
sensitive

10,
11
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the electromagnetic spectrum,26 and application of machine
learning in impedance data analysis.27–29 Given the recent
interest in this interdisciplinary field, and its application in
various fields of study, this review aims to examine the
theory, techniques, designs, and applications of IDS on
microfluidic systems, with a special focus on biological and
cell studies. In particular, we investigate broadband (kHz–
GHz) IDS setups and include insights into calibration
techniques, diverse sample handling strategies, and effective
data analysis methodologies. Accordingly, this work serves as
a reference across fields such as biology, biotechnology,
pharmacology and medicine as well as electrical engineering
by offering a fundamental understanding of how
electromagnetic fields can be leveraged to analyse biological
samples at the single-cell level. This accordingly facilitates
the advancement of research and practical applications in
these domains, bridging the gap between theoretical research
and practical implementation.

2 Impedance and dielectric
spectroscopy theory

Dielectric materials polarise in a frequency-dependent
process when exposed to an electric field. This results in
charge displacement, energy dissipation and formation of
responses, dictated by the material's composition and
structure. These responses, depicted in Fig. 1, include ionic
displacement (ionic polarisation), resistance to charge
movement across interfaces (interfacial or Maxwell–Wagner

polarisation), polar molecule reorientation (dipolar
polarisation), atomic stretching (atomic polarisation), and
electron displacement (electronic polarisation). This
collective frequency dependent behavior of the material
forms its dielectric dispersion.

The relaxation frequency of each of these mechanisms is
marked by a drop in the real part of permittivity (ε′) and a
peak in its imaginary part (ε″). For example, at low and
medium frequencies (LF–MF), ionic polarisation is dominant.
However, at higher frequencies the electric field rate of
change becomes faster than the process of ionic polarisation.
As a result, the contribution of this phenomenon to the
sample's permittivity diminishes and a part of the electric
energy dissipates as heat. The frequency at which this shift
happens is the relaxation frequency of the polarisation.

Dielectric polarisation begins to decay as soon as the
electric field is removed, which can be captured by the
relaxation function. The relationship between the complex
permittivity (ε*(ω)) and the relaxation function is established
using linear transfer function. For instance, the Debye
relaxation function, represented in Fig. 2A, is a specific case
of this with the assumption of a single relaxation time (non-
interacting dipoles). Addressing the limitations of the Debye
model and giving a complete description of dielectric
properties, more complex empirical relations have been
developed such as the Havriliak–Negami and general models
given in Fig. 2A, accommodating conductivity and multiple
relaxation times. The general relaxation function of complex
systems with a fractal structure with diverse dielectric

Fig. 1 Variation of dielectric ε′ and ε″ as a function of frequency and its relevance to biological phenomena in a single cell.
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behaviours can be represented by a constant phase element
(CPE).30

The dielectric dispersion of a cell over a frequency range
of Hz–GHz can be grouped into three regions: α, β, and
γ-dispersions, depicted in Fig. 1, with some references
defining another dispersion (δ) in between β and γ.18 These
dispersions provide unique insights into cell properties, as
summarised in Table 2. For example, while lower frequencies
are usually used to analyse cell size, membrane properties,
and quantify cell concentration, higher frequencies can
provide information on inner cell properties and organelles,
cytoplasm composition, and cellular pathophysiology.
Characterising cells using these dispersions necessitates
isolating the responses generated solely by the cell,
identifying each polarisation mechanism it undergoes, and
discerning the cause of impedance changes across different
cell types.30

This can be accomplished using analytical models
originally developed for capacitors with diverse dielectric

layers and have been extended to include suspended spheres
and colloidal systems, similar to cell suspensions.31 Spherical
variations of these models are summarised in Fig. 2B.30

Wagner's theory provides a model for the complex
permittivity of dilute suspensions, while the Bottcher–Polder–
Van Santen and Brummagem–Hanai models accommodate
higher particle concentrations using effective medium theory.
However, these models become complex for single practical
analysis, often requiring numerical methods for accuracy.

The shell model,30 depicted in Fig. 2C, can be used for
single particle/cell analysis. It is based on Maxwell–Wagner
theory and represents a particle surrounded by a thin,
insulating membrane. The complex permittivity of the system
is determined by the permittivity of both the shell and the
particle interior. This approach is iterative, allowing for the
development of more realistic models of cell structure by
adding multiple shells to represent various inner organelles,
each enclosed in its own resistive membrane. This theoretical
groundwork on the interaction of electromagnetic waves with

Fig. 2 A graphical representation depicting various analytical models developed for analysing A) liquids, B) particle or cell suspensions in liquids,
and C) single cells or particles in a liquid.

Table 2 Summary of biological phenomena associated with cell response to electromagnetic fields

Dispersion
Frequency
range Phenomena

Dominant
mechanism Relevance Ref.

α Hz–kHz Ionic diffusion at cell membrane,
biological processes within cells

Counterion
polarisation

Cell presence and enumeration 18,
30

β kHz–MHz Cell membrane and organelle
membrane properties

Interfacial
polarisation

Cell shape and membrane
integrity

18,
30

δ MHz–GHz Polarisation of bound water, amino acids, and
proteins

Dipolar relaxation Changes in cell nucleus 9, 18

γ >GHz Free water polarisation Atomic polarisation Cytoplasmic changes 18
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cells sets the stage for detailed exploration of these
techniques' working principles, which we examine in
subsequent discussion.

3 Applications of impedance and
dielectric spectroscopy in on-chip
cell characterisation

IDS techniques offer valuable insights into cell size and the
electrical properties of its membrane, cytoplasm, and inner
organelles. These insights provide an opportunity to assess
cell health, viability, differentiation, and behaviours. This
review examines their applications in biology and medicine,
including tasks such as cell counting, sizing, and
discrimination based on size, deformation, and intrinsic
properties, along with analysing cell responses to stimuli.

At low frequencies, IDS usually discriminates cells based
on their size. Cell size analysis is a common practice in
biological studies, though traditional methods such as
optical microscopy and imaging flow cytometry32 suffer from
sensitivity to alignment and experimental conditions.33 IDS
has been successfully used for: differentiation of live,
apoptotic, and necrotic cells,34 and circulating tumour cells
with larger size and increased membrane capacitance
compared to other blood cells;35 profiling monocyte and
leukocyte activation in type II diabetes, correlating leukocyte
size and opacity with cardiovascular risk factors;36

demonstrating neutrophil functional traps in glucose-treated
neutrophils for diabetes testing;37 distinguishing activated T-
lymphocytes;38 and analysis of the success rate of cell
sorting.39 Additionally, changes in cell size during mitosis
phases have been shown to correlate with impedance
signals.40 However, current IDS setups lack standardised
particles with controlled electrical traits, crucial for
benchmarking unknown cells using common techniques
such as flow cytometry. This is an active field of research
aimed at increasing the application of IDS in cell-based size
discrimination.41 Furthermore, IDS has recently been
employed to optimise the frequency of positive
dielectrophoresis based on the cell's biophysical
characteristics, improving sorting efficiency of circulating
cancer cells.42

Moreover, IDS can be used for cell counting as it has been
shown that changes in sensing zone capacitance directly
correlate with cell quantity.43 Recent improvements in
integrating neural networks with impedance cytometry have
enabled the capture of single-cell signals hidden in the
measured signals from cells simultaneously passing through
the sensing zone.44 This can offer cost-effective alternatives
to complex sample preparation steps used in conventional
techniques. When IDS is performed at frequencies higher
than 1 MHz, cells can be categorised based on their intrinsic
(i.e. cytoplasm) electrical properties.45 Data provided by this
analysis can be used to distinguish live and dead cells46 with
applications in food safety47 and medicine.48

Building on this, addition of a microfluidic method to
induce cell deformation can make this technique applicable
in understanding cellular states and diseases which are
reflected in their deformability. Common techniques used for
cell deformability analysis are atomic force microscopy and
micro-pipette aspiration, offering insights into cytoskeletal
structure in a low-throughput manner. IDS can provide a
high-throughput alternative with the benefit of simultaneous
mechanical and electrical analysis of cells.49 Cell deformation
is induced in these systems by constricted channels50 or
extensional flow,51 permitting contactless operation. Cell
deformation can be then translated into size-independent
parameters such as cytoplasmic viscosity, capacitance, and
membrane tension,52 which can then be used to differentiate
cell populations.53 For instance, specific membrane
capacitance and cytoplasmic conductivity can be used to
classify sub-types of tumor cells after genotypical or
phenotypical modifications.54 Information gathered on cell
deformation, diameter, and electrical properties has further
been used to distinguish leukocyte and granulocyte sub-
types.55

The application of IDS in classifying cells based on their
intrinsic electrical properties, size, shape, and deformability
has introduced a new non-invasive approach for studying
cellular responses to various stimuli, offering an alternative
to conventional methods.3 While traditional methods such as
fluorescent labelling for cell imaging, flow cytometry, and
RNA and DNA sequencing are precise, they often require
specialized techniques, compounds, and instruments for
sample preparation and analysis. Moreover, their invasive
nature renders tested samples unusable for further research.
Recently a study56 has analysed the effectiveness of
measuring electrical deformability of cell shape after
mechanically inducing shear stress by comparing the results
to optical deformability measurements using a custom made
setup, reaching a very high correlation between the two
methods.

IDS has been utilised to investigate the effect of
chemical57 and physical58 treatments on cell viability as
well as analysis of the reversible electroporation
efficiency.59 IDS has also been used in analysing the
results of antimicrobial susceptibility testing60 and analysis
of host microbiota susceptibility after antibiotic
treatments.61 Another study observed changes in RBCs
infected by P. falciparum over time,62 leveraging a multi-
shell model to note variations in membrane capacitance,
cytoplasmic conductivity, and parasite volume ratio at
different infection stages. These findings could aid in
distinguishing infected and uninfected cells, potentially
benefiting disease diagnostics. While low frequency
measurements are sufficient in most of these studies, the
cell membrane acts as a barrier, eliminating wave
propagation through cell cytoplasm. As a result, most of
these studies take into account cell size variations and
membrane properties as a feature for differentiation and
characterisation of cells.
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At higher frequencies, the capacitive barrier produced by
the cell membrane can be bypassed, providing insights into
the cell's cytoplasm and organelle properties. For instance,
analysis of the reflected and transmitted signals enables
evaluation of mitochondrial activity63 and nucleus size8 with
applications in cell differentiation based on normal, shrunk,
or enlarged nuclei detected through changes in cytoplasm
capacitance.64 While this evolving field holds promise in
understanding cell behaviour and responses to stimuli and
can pave the way for more effective diagnostics and targeted
therapies, studies in this domain remain limited. The
variations in signal amplitude and phase induced by changes
in intracellular properties, such as nucleus size, are often
subtle, requiring very sensitive setups as well as sophisticated
models to establish correlations between these variations and
biological characteristics. With the development of advanced
techniques with a higher signal-to-noise ratio (SNR) and
integration of machine learning techniques, further
advancements may be realised. These innovations could
enable a more detailed analysis of intracellular properties,
including nucleus characteristics, expanding the application
of broadband IDS in cellular diagnostics and therapeutics.

Recent advancements in neural networks and deep
learning offer a potential contribution to IDS, particularly in
rapid cell assessment and classification.65 These methods

have shown success in low frequency analysis, where
impedance data has been used to classify cells based on size-
independent electrical properties,66 mechano-electrical
properties,52 and cell deformability67 resulting in
applications such as five-part leukocyte differentiation.68

While the majority of studies integrating machine learning
techniques with single-cell IDS have focused on low
frequency studies, recent studies have explored higher
broadband frequency analysis.

In broadband studies, for example, prediction models
have been developed to differentiate the permittivity of two
species of viable and nonviable yeast cells at frequencies
most sensitive to the difference of live/dead cells.69 Moreover,
analysis of the entire spectra in the range of MHz–GHz using
machine learning algorithms has enabled the evaluation of
the chemical treatment effects on cell nucleus size,64 and to
detect various bacterial species in a high throughput setup.70

These advancements highlight the potential of the
integration of machine learning with IDS to take advantage
of the cellular information captured across a wide frequency
range.

In summary, IDS offers a promising alternative to slow,
costly, and/or low efficacy techniques that impact samples
irreversibly and require large cell quantities. Their integration
with optical methods enhances understanding of how cell

Fig. 3 Essential elements of an IDS for single-cell studies. A) A frequency domain spectrometer, which can be a lock-in amplifier or an impedance
analyser suitable for low-frequency analysis or a VNA suitable for broadband measurements. B) This instrument inputs a signal with a predefined
voltage to the sensor. C) The sensor may be designed for low-frequency analysis, where its components are modelled as lumped elements, D) or
for high and broadband frequency analysis, where the electrodes are modelled as transmission lines. E) The output signal is transmitted back to
the spectrometer, where the data is represented as either the magnitude and phase of impedance (F.i) for low frequencies, or S-parameters (F.ii)
for high frequencies.
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phenotype correlates with impedance signals.71 Some studies
propose approaches that merge cell sorting with impedance
measurement compartments, creating a sample-in-answer-
out platform for blood cell phenotyping.36,38 Exploring the
optimal frequency to distinguish between cell types is also an
intriguing avenue.72

4 Setup development
4.1 Instrumentation

The essential elements of an IDS for biological studies are
frequency domain spectrometers and sensing units which are
demonstrated in Fig. 3. The frequency spectrometer outputs
an oscillating waveform typically stepping through one
frequency at a time and compares this against one or more
response waveforms measured synchronously with the
output. The spectrometer then returns a demodulated result
at each frequency, i.e. the phase and amplitude change from
output to input or between inputs. Over a bandwidth
spanning the RF and microwave regimes, network analysers
are utilised, measuring the complex reflection (S22, S11) and
transmission (S21, S12) parameters of a material-under-test
(MUT). A scalar network analyser returns the magnitude of
these parameters, whereas a vector network analyser (VNA)
returns both the magnitude and phase. In studies involving
low frequencies (Hz–MHz), an impedance analyser or its
equivalent such as a lock-in amplifier applies a sinusoidal
potential to the electrodes, measuring the current with
respect to the applied voltage. This analysis yields the
complex impedance, derived as the ratio between the
excitation voltage and the response current. Both these
setups should apply a low power to ensure cell integrity.73

Recent work has further used on-chip waveform generators
and lock-in amplifiers to replace bulk lab instrumentation,
enabling the development of wearable and implantable
devices.74

The sensing unit commonly consists of sets of
electrodes positioned around a channel or a cavity
containing the MUT. The connection between the
frequency spectrometer and the sensing unit requires
careful consideration of transmission and parasitic effects,
necessitating precise calibration. For example, microwave
probes, though preferred for GHz measurement at the
micro-scale,75 are more prone to parasitic effects and
necessitate additional calibration.76 Sensing units can
either be developed on integrated on-chip setups77 or
printed circuit boards (PCBs) integrated with
microfluidics.78 Although cost-effective, PCB-based methods
may nevertheless suffer from reduced sensitivity,
necessitate additional steps for bio-compatibility and
efficient fluid control, and are not transparent.
Transparency enables the integration of these setups with
microscopes for live measurements.

At frequencies up to a few MHz, electrode structures
effectively operate as lumped element networks. However,
at higher frequencies where electrical lengths become

significant, they can be considered as transmission lines
(TLs). At these frequencies, sensors can be broadly
categorised into broad and narrow-band. Broadband
sensors use planar transmission lines and waveguides,
such as microstrip lines, slot lines, and coplanar
waveguides (CPW), to observe dielectric changes across a
wide range of frequencies. Narrow-band techniques
leverage these structures to form resonators to scrutinize
dielectric responses at specific frequencies with higher
precision.

The performance of broadband platforms is limited by
noise from high-loss passive components, reduced SNR near
the water relaxation frequency, and lack of a single
calibration technique across a wide frequency range (Hz–
GHz).79 To overcome these challenges, complementary metal-
oxide semiconductor (CMOS) technology has been integrated
into these setups,80 forming interferometric systems,81

oscillator sensors,82 and micro-electrode arrays with
application in high throughput enumeration of cells with a
single cell resolution.74

By contrast, narrow-band resonators avoid these
limitations by focusing on a small number of discrete
frequencies. The MUT flowing through a microfluidic
channel atop a resonator disturbs the fringing field, altering
its capacitance, influencing resonant frequency, and quality
(Q) factor. Measuring S parameters at resonance occurs in a
shorter time compared to broad-band measurements.83

These changes, translatable through equivalent circuit
models (ECMs), reflect the sample's electrical properties
within the channel.84 For instance, it has been shown that
frequency shifts in resonance are proportional to cell volume
and inversely related to sensor volume.26 However, oscillator
stability remains challenging, demanding noise cancellation
methods for accurate measurement due to a variable and
degrading Q-factor.85

Fig. 4 Examples of different electrode configurations used in IDS cell
characterisation at low frequency (kHz–MHz) (A), broadband (kHz–
GHz) (B) and narrow-band (GHz) (C) setups. Cells can be suspended or
cultured in the sensing area, however, here they are flowing through
the channels.
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4.2 Design and fabrication

4.2.1 Electrode configurations. Sensor sensitivity and
spatial resolution are determined by the electrode
configuration. Setups for low-frequency analysis are
fundamentally different from those working in higher
frequency ranges. In what follows, the electrode
configurations most commonly used for each frequency
range are covered and summarised in Fig. 4.

Low frequency configurations. Common low-frequency
electrode designs include coplanar, parallel, liquid
electrodes, and micro-electrode array configurations, as
depicted in Fig. 4A. Coplanar designs, featuring two or more
electrodes in a single plane on one side of the channel, have
been extensively employed for cell type analysis,86 drug
exposure tests,87 and mechano-electrical cell property studies
through integration with constricted channels49 or
hydrodynamic pinching.88 Despite the ease of fabrication,
this configuration produces an inhomogeneous electric field
confounding responses with the cell's vertical position as well
as electrical properties. Moreover, meaningful data extraction
requires extensive post-processing, limiting applicability to
unlabeled cell populations.24 Increasing the number of
electrodes has been shown to enhance information
extraction, including particle velocity, electrical diameter, and
relative prominence, correlating with particle height from the
signal.89 Micro-electrode arrays, a subgroup of coplanar
electrodes, feature tens to thousands of electrodes on a single
surface, each typically analysing a single attached or trapped
cell with high precision.74

Parallel electrode configurations feature the use of
electrodes on the top and bottom of the channel. These have
been used for cell differentiation90 and tumorigenicity
assessment.12 Novel configurations have been used to
improve sensitivity, including differential measurement
setups to reduce background noise91 and resonant circuits
with series inductors to enhance response current by
reducing impedance at resonance frequency.92 Despite
challenging multi-step fabrication requiring precise
alignment, these setups generate more homogeneous electric
fields. Solid 3D electrodes, however, offer simpler fabrication,
achieved by inserting tungsten needles93 into the main
microchannel. This comes at the expense of relatively large
dimensions, which negatively impact sensitivity for single-cell
studies. Enhanced accuracy with uniform electric fields over
a small volume can be attained by reducing electrode size
with probing gates that are aligned to the flow direction, and
can be made with monocrystalline silicon and supported by
passive SU-8 pillars.94 Facilitating fabrication, heavily doped
silicon wafers integrated with readily aligned sidewall micro-
electrodes95 or silver–PDMS96 and carbon–PDMS97 setups
eliminate sacrificial layer lithography, reducing costs.
Alternatively, liquid electrodes utilise conductive liquids to
carry current generated at side chambers by coplanar
electrodes or prefabricated electrode channels filled with low-
melt-point alloys.98 This simplifies fabrication and ensures a

homogeneous electric field while nullifying the dominating
effect of electrode–electrolyte interface capacitance, making
this approach suitable for low-frequency and high-
throughput cell shape and deformation analysis.99

These electrodes are crucial components in commercial
Coulter counters, which involve two chambers connected by
an orifice and filled with conductive liquids. These systems
have been modified into high-throughput on-chip setups,100

measuring resistance changes when cells displace the liquid
passing through the orifice. However, flow instability affects
performance.24 Combining liquid electrodes with other
configurations such as coplanar101 and parallel electrodes65

can also be used to compensate for fringing effects with a
more homogeneous electric field. Integration with
dielectrophoresis (DEP) focusing further enhances signal
consistency99 and reduces signal dependency on cell
position.66 DEP focusing exploits electrokinetic phenomena,
directing polarisable particles to specific vertical positions in
an inhomogeneous electric field. Finally, applying an electric
field perpendicular to constricted channels using liquid
electrodes enables high-throughput single-cell analysis with
reduced current leakage.66

High frequency configurations. Electrode configurations for
resonators and broadband setups are depicted in
Fig. 4B and C, respectively. Resonator electrodes are
categorised into 3D and planar configurations. 3D electrodes
encompass coupled double split-ring and cylindrical
dielectric resonators,83 substrate-integrated waveguide cavity
resonators,102 and folded-waveguide cavities.103 While 3D
electrodes offer improved sensitivity, planar electrodes are
more compact, suitable for integrated platforms, and readily
compatible with lab-on-chip technologies. However, they may
exhibit reduced sensitivity due to lower-quality resonance
and smaller fringing electric fields. Efforts are underway to
overcome these limitations.84,104 Designing resonator
electrodes for cell studies with a suitable Q factor and
sensitivity requires knowledge of the specific frequencies
exciting cell properties at the scale of interest.105

Planar transmission lines, particularly the coplanar
waveguide (CPW) structure, are widely employed for
developing broadband sensors, and are effective in cell
analysis up to 40 GHz. CPWs, characterised by a central
conductor flanked by semi-infinite ground planes, enable
quasi-transverse electromagnetic mode propagation with low
dispersion. With nearly half of the electrical field
concentrated within the fluidic channel and minimal
parasitic effects due to smooth transitions between feeding
probes and electrodes, the CPW outperforms other planar
transmission lines.106 The CPW has found application in
various cell studies,107 with modifications such as capacitive
gaps for single-cell analysis.108 Moreover, CPW designs with
corrugation109 and minimized dielectric thickness110 can
enhance sensitivity. IDCs, despite being resonance structures,
can nevertheless be utilised for broadband measurements
below their resonance frequency.111 Highlighting this
flexibility, concentrating the electric field in the
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microchannel using a CPW increases sensitivity and has been
effective in liquid43 and cultured cell111 analysis from a few
kHz to GHz.

4.2.2 Design considerations. The search to enhance
sensitivity in measurement setups and detect subtle changes
in sample electrical properties remains a continuing area of
interest. Studies have highlighted the impact of factors such
as channel dimension, electrode configuration, and media
conductivity on measured impedance.21 A recent study used
known shell-covered particles to evaluate the effect of design
parameters such as channel height, width and the gap
between electrodes on the accuracy of single-cell models
showing that channel height has the highest influence,
followed by the gap between electrodes.112 Moreover,
matching electrode size to cell size has emerged as a strategy
to boost sensor sensitivity by minimizing the background
media's influence on signals.104 Increasing voltage can also
improve sensitivity, though poses risks such as electrode
corrosion, bubble formation, and cell damage.113 Most
studies accordingly aim for a large sensing volume within a
limited voltage range to achieve sensitive cell analysis.
Consequently, researchers have explored other methods to
address the low sensitivity and improve SNR.

Signal sensitivity is significantly affected by the
inhomogeneity of the electric field distribution in the sensing
zone, and leads to response dependence on the cell's vertical
position.114 To enhance device sensitivity, either (1) the
electric field homogeneity should be increased, (2) the cell
position should be pinpointed in the channel, or (3) the
influence of cell position on the response should be
eliminated by defining new parameters through post-
processing techniques. Modifications such as connecting a
via to microstrip stub resonators or relocating the
transmission line to the top of the microfluidic channel115

can enhance electric field distribution in the sensing zone.
Fixing cell positions in the channel can be achieved by
reducing the sensing volume, using channels or pores with
dimensions on the order of the cell diameter (at the risk of
fabrication and clogging challenges), or utilising particle
focusing techniques.

4.2.3 Fabrication methods. Reducing the size of the
sensing unit to the scale of single cells enhances
measurement sensitivity, where microfabrication techniques
are ideal for constructing electrodes at this scale. This
process involves (1) cleaning the substrate, typically
composed of low-loss materials such as quartz, (2) coating
with a photoresist layer, (3) pattern transferring via a laser-
writer or mask aligner, (4) developing the pattern by
chemically removing the exposed photoresist, (5) electrode
deposition e.g., by electron beam evaporation, and (6) a lift-
off process to remove the photoresist layer covered by metal
to obtain the final electrode pattern. The microfabrication
process has been reviewed previously.116

Materials for electrodes (e.g., gold, platinum, or carbon),
their size, and the distance between neighbouring electrodes
significantly impact sensor performance attributes such as

SNR, current density, electric field distribution, and bio-
compatibility.114 Studies have also underlined the importance
of electrode thickness in sensitivity, where increasing
electrode thickness to match cell/particle diameters (e.g., 10
μm) enhances capacitive and conductive contrast factors.117

Functionalisation or passivation techniques, such as covering
electrodes with fibronectin118 or parylene C,119 respectively,
can also be used to enhance biocompatibility.

In low-frequency cell characterisation, electrode
polarisation is a major challenge, resulting in charge
accumulation on the electrode surface and formation of a
double layer with higher capacitance and complex
permittivity than the sample.120 Methods to mitigate this
include using a low-conductivity medium, liquid electrodes,
and increasing the electrode surface area (which is inversely
related to interfacial impedance and electrolyte resistance).
Electrode dimensions have been increased using gold
nanostructures,13 or forming a porous structure by
electrodeposition of platinum black.121 However, the latter
may lead to uneven electrode polarisability.86 Another
technique is to reduce interference by shielding the
electrodes with materials such as glass covers or thin
polydimethylsiloxane (PDMS) layers.24

PDMS is often used for channel construction due to its
biocompatibility and ease of processing. However, it exhibits
high losses at microwave frequencies, though this can be
managed by controlling channel thickness.122 Replica
molding remains popular,123 however alternative methods
have emerged that mitigate the challenge of electrode
alignment, including direct lithography of the microchannel
onto electrodes5 or SU-8 film lamination124 with covers
permanently inserted or affixed using mechanical fixtures.125

Additive manufacturing could eliminate the need for mold

Fig. 5 Key sample handling techniques in cell characterisation using
IDS.
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fabrication and post-fabrication cleaning, reducing overall
costs. However, limitations in the range of printable
materials, printing resolution, and quality necessitate further
improvement. For instance, the DragonFly LDM (TM) printer
has recently addressed one of these challenges by enabling
combined printing of conductive and insulating
structures.126

4.3 Sample handling

Measurement setups can be divided into stationary and
dynamic categories based on cell movement through the
channel, as shown in Fig. 5. Static setups focus on examining
cells in a fixed state and typically fall into two groups:
trapped-cell and cell-substrate setups. Cell trapping can be
accomplished by using dielectric properties of the cells using
the DEP technique,127 physically trapping cells in micro-
structures positioned at the cross-section of the channel
width,108,115 or using side channels creating cell suction.128

Taking advantage of microfluidics, these setups have been
used for mechano-electrical characterisation of cells.

While some studies forego trapping techniques,47 signal
patterns are notably affected by cell positioning, as well as
size and intrinsic properties, necessitating reduced cell flow
rates for accurate and selective measurements. This is
specifically true for broadband measurements where most of
the setups use various trapping techniques to enhance SNR.
However, these methods are low-throughput, and specific
positioning of cells within traps can affect signals,
particularly when multiple cells are trapped.108

Cell-substrate sensors, feature surface-modified electrode
arrays positioned on the channel bottom, facilitating cell
adhesion.129 Surface modification can be achieved through
incubation of sterilised electrodes with cell culture media,130

surface activation by a protein promoting cell attachment
such as fibronectin118 and laminin,131 or electrode
passivation by adding an insulating layer to avoid
contamination and sterilisation.119 These devices enable
accurate analysis of cell behaviour changes in real-time as
cells proliferate, migrate, spread, or detach from the
electrode surface.132 In such setups, cells shield the
electrodes from certain ions in the media,5 thereby reducing
electrode polarisation. This allows for the investigation of cell
properties at low frequencies. These setups are valuable for
applications such as drug development,133 cancer
modelling,134 cell differentiation,135 2D136 and 3D cell
culture.3 However, they can be considered unsuitable for
measurements at the scale of single cells and require
additional cleaning, maintenance, and electrode surface
modifications.

In dynamic approaches, cells flow through the electric
field concentrated in the sensing zone, allowing high-
throughput analysis. Challenges include response
dependence on cell position,90 which can be mitigated by
focusing methods to centre particle stream to the most
sensitive area of the sensing zone.80 Examples of these

techniques are hydrodynamic methods namely, inertial
focusing and viscoelastic focusing,20 DEP focusing, and
constricted channels.77 Integration of these approaches for
cell focusing can be considered essential in developing
sample-in-answer-out platforms137 integrated with IDS as
demonstrated in ref. 138 where multichannel IDS is
integrated with deterministic lateral displacement separation
for separation and analysis of heterogeneous samples with
wide size distributions. Passive manipulation methods
(hydrodynamic focusing and constricted channels) are
relatively simple to integrate and have been employed by
many studies to enable high throughput IDS by performing
pre-positioning of cells relative to electrodes. These
techniques have been applied primarily in low frequency
studies where 3D hydrodynamic focusing of cells results in
increased SNR and enables accurate characterisation of
different tumour cells.139 Additionally, the addition of
constricted channels not only improves cell focusing, but also
provides an opportunity to analyse mechano-electrical
properties of the cell,140 enhancing cell classification and
improving the detection success of single-cell IDS. However,
this can result in challenges such as channel clogging,
depending on the heterogeneity of the input sample.
Alternatively, hydrodynamic pinching of cells has emerged as
a suitable solution, where the introduction of a sheath flow
can both focus cells141 and induce deformation, which can
be used in a similar manner to a constricted channel,
enabling applications such as single-cell mechanical
characterisation.88

Fluid control traditionally relies on external pressure
sources, e.g. syringe pumps, balancing controllability and
repeatability against device portability. Current explorations
aim to relocate liquid control systems onto platforms,
recently reviewed by ref. 78. Novel techniques involve particle
flow via applied static electric fields mimicking DEP particle
movement,142 eliminating the need for frequent tubing
changes, reducing contamination risks and enhancing device
portability. However, these methods demand complex
fabrication and face challenges in maintaining sample
temperature uniformity and consistent repeatability.
Moreover, maintaining sample temperature uniformity143 is
particularly challenging. Temperature variations, particularly
notable at higher frequencies where microwave energy
absorption elevates sample temperature, must also be
controlled to mitigate temperature-induced effects on
responses.107

Medium conductivity can impact sensor sensitivity,
electrode polarisation, and electrolysis. While cells are
usually suspended in conductive culture media based on a
combination of salts, less conductive liquids such as sucrose
can maintain cell viability while reducing these side effects.46

However, this can impact cell size and shape over time.144

Integration of electrodes with cell purification microfluidics,
notably spiral inertial microfluidics37 and magnetically
activated cell sorting,145 allows for the concurrent detection
and separation of particles and cells, including circulating
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tumour cells.146 Approaches aiming to induce volume
variations among different cells before detection, such as
mixing zones in hypertonic solutions, have significantly
improved device sensitivity, particularly in live/dead
assays.147

5 Measurement and data extraction
techniques

There are several necessary steps to provide data from a
sample, namely calibration, signal enhancement, and data
analysis. Calibration ensures precision and removes non-
sample influences. Signal sensitivity improvement involves
employing techniques such as resonance-based methods for
high-resolution analysis. Data analysis entails using models
such as ECMs to gain insight into cell properties. Each of
these aspects is reviewed in this section.

5.1 Calibration techniques

Calibration usually involves two steps: 1) establishing
reference planes at probe tips and 2) moving the reference
planes closer to the MUT by removing the effect of parasitics
unassociated with MUT properties, a process known as de-
embedding. The first step can be achieved by measuring
electrically well-defined standards, including loads,
transmission lines (TLs) with various lengths, and resistors.
While shorts and opens can be formed by discontinuities in
the TLs or a short TL (thru), the load can sometimes be

challenging to define. This standard made from an alloy with
predefined electrical properties is usually deposited on the
wafer, in between ground and trace electrodes. Various on-
wafer calibration setups are available, which make use of
different compositions of these standards. The choice of
method depends on the operational frequency range, with
different techniques showing varying error susceptibility.143

As shown in Fig. 6, calibration standards can be defined
on the chip and through steps of placing the probes on the
standards, measuring S parameters, and moving on to the
next standard, it's possible to calibrate the VNA to probe tips.
The short open load thru (SOLT) method requires these four
standards to accomplish calibration in the frequency range
of DC to ≈15 GHz. Defining frequency-dependent standards
can improve the accuracy of this technique at high
frequencies.148 Line reflect match (LRM) is based on three
standards: a TL as the line, either a short or an open as the
reflect, and a load. This method covers a larger frequency
range and offers a more compact setup, better suited for
automated solutions without the need for operator
interference to move the wafer multiple times.149 The thru
reflect line (TRL) method, which offers better accuracy at
higher frequencies, is based on three standards: a short TL
as the thru, a reflect (open or short), and a line longer than a
quarter wavelength (λ) at the centre frequency of
calibration.150 This method is valid for frequencies where the
line length is 20 to 160 degrees longer than the thru line,
making this method inapplicable to low frequencies. Based
on this, different line lengths should be used for accurate
calibration across various frequency ranges. Multiline-TRL
(m-TRL) has shown higher precision but requires substantial
space, and the wafer probe has to be placed on a high
number of lines, increasing the possibility of introducing
errors.151 However, while other calibration standards (e.g.,
SOLT, LRM) are commercially available on substrates other
than the MUT, TRL and m-TRL can be realized on the same
substrate, reducing the errors due to dimension differences.

An alternative technique, single connection calibration,
avoids the process of connecting and disconnecting the
probes to multiple standards by introducing variations in
impedance across the lines using multiple known samples,
yielding good agreement with conventional techniques such
as m-TRL while minimizing errors over a wide frequency
range.152 Resources such as the European Metrology
Programme for Innovation and Research (EMPIR)153 and
tools such as StatistiCAL and Matlab Toolboxes such as RF
Toolbox streamline the calibration process.154,155

5.2 Data analysis techniques

The methods utilised for interpreting data obtained from IDS
have been reviewed previously for low-frequency
measurements.20 These techniques mainly differ based on
their data analysis. Data extracted from IDS can be analysed
directly, focusing on size dependent properties of samples
without considering the influence of the measuring

Fig. 6 Overview of the calibration technique. A) Two steps of
calibration to move reference planes (shown with dashed red lines)
from VNA ports (1) to connector tips (2) followed by a de-embedding
step to move them further to the sample (3). B) Calibration standards
on-chip. Arrows represent the placement of on wafer probes.
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techniques or sample conditions. Conversely, data analysis
using models involves a de-embedding process to extract an
intrinsic and frequency dependent cell property representing
the polarisation of the cell and its components in an
electromagnetic field. This procedure diminishes non-
biological influences through numerical computations,
ECMs, finite element models (FEMs), or their combination,
albeit at the cost of increased post-processing overhead. Each
of these techniques is suited for specific applications,
explored further in subsequent sections.

5.2.1 Direct data analysis. This approach involves
analysing responses directly, without using models to derive
cell intrinsic electrical properties. Over broadband ranges
(Hz–GHz), the S-parameter magnitude and phase are
influenced by variation of the sample impedance, with
applications in analysing cell property changes due to
chemical treatments8 and cancer cell malignancy.136 In the
lower frequency range, voltage and current measurements are
used to determine complex impedance. This has shown use
in analysing live/dead cells,147 various protozoan
pathogens,156 cell counting,84 and determining osteogenic
differentiation and necrosis of cultured cells (both 2D and
3D).3 However, as this method relies on cell size, techniques
are necessary to minimise size differences within the same
cell group or enhance differences between cell groups for
better differentiation.

Comparing impedance variations introduced by different
cells may not sufficiently distinguish between them, thereby
prompting post-processing techniques to define size-
independent parameters such as opacity. Opacity, derived
from impedance ratios at high and low frequencies,157

signifies the electrical transparency of a cell. While valuable
for membrane property analysis, at low frequencies (below
the relaxation frequency of membrane polarization, about 1
MHz), it primarily reflects cell volume rather than providing
effective discrimination.127 However, at higher frequencies,
cytoplasm conductivity becomes a distinguishing factor. For
instance, the ratio of impedance at 19 MHz to 0.5 MHz was
found to correlate with acrosome integrity in a fertility
study.158 Additionally, in GHz measurements, opacity was
shown to aid in differentiating cells with similar phenotypes
with remarkable sensitivity.79

Another metric, phase contrast (ϕZ), derived from the
variation of impedance phase at high and low frequencies,
has shown to be reflective of differences in cell interior
conductivity and permittivity. This parameter has shown
promise in describing cell electrophysiology and correlating
with cell tumorigenicity in certain cancer types.12 Moreover, a
new metric, the ‘tilt-index’, has been used to extract the exact
relaxation frequency of cell membranes from measurements
at single or multiple low frequencies. This index quantifies
the tilt level of the impedance pulse when a micro-object
passes through the electric field.33 It has been demonstrated
that the tilt level of the impedance signal is affected by
intracellular distribution, and increased frequency can
elevate the distribution of tilt levels, highlighting the

frequency at which the cell membrane becomes conductive.1

This index can shift the analysis focus from outer cell
properties, such as cell size and membrane electrical
properties, to inner characteristics, such as cytoplasm
conductivity and organelle properties,46 without the need for
broadband frequency analysis.

5.2.2 Data analysis using models. The exploration of cell
electrical traits involves studying absolute electrical
properties such as permittivity and conductivity. These
properties cannot be measured directly as they are affected
by other electrical elements (e.g. media, channel walls,
electrode polarisation). Accordingly, modelling techniques
such as developing ECM, FEM, or analytical models or using
reference materials, can help de-embed these elements from
the measurements. Different frequency structures (microwave
versus lower frequencies) require distinct ECMs (TLs versus
lumped network elements). At lower frequencies, simpler
models involving a resistor (R), capacitor (C), inductor (L),
and conductor (G) – RLCG cell represent the sensor and
sample under examination and can be used to extract
impedance. Electrode polarisation correction in this method
can involve various approaches such as series capacitance,143

effective parallel capacitance with conductance,24 or a
CPE.5,80 Microwave frequency TLs are typically characterised
by cascades of resistance, inductance, capacitance, and
conductance per unit length (PUL). Typically, TLs pass
through multiple dielectrics to reach the sample, and
calibration lines can be used to define each section by its
propagation constant (γ) and characteristic impedance (Zc).

After establishing the sensor ECM, fluidic channel
electrical characteristics can be extracted by several
techniques. Calibration-free methods are based on the
eigenvalue technique where identical TLs with varying
lengths (line-line technique) or a single TL covered by
different samples (single-line technique) are used to
determine the unknown sample's γ.122 The general line-line
approach accommodates material and length variations,
proving more suitable for higher frequencies.159 Relative
measurements can be done using a zero-length channel
where a section of the TL is covered by a slab of PDMS
resembling microfluidic channel walls without the sample.109

Another technique is to use fitting and optimisation
methods, such as least squares125 or equivalent circuit fitting
algorithms160 to fit a model to the collected data from a TL
covered by the sample. The collected data can be converted
into RLCG by calculating γ from recorded S-parameters (after
converting them to the transmission matrix).125 The model
calculates the S parameters from an initial guess on RLCG.
This initial guess can be based on the sample's permittivity
and the RLCG of the TLs, using developed models and
calibration lines to measure the properties of the lines
covered by air or channel walls.

While these techniques are based on calculations of γ, the
reference device technique compares fluid-filled, polystyrene-
beads (control particles) suspended in the media, and empty
devices to deduce fluid properties without the intricate
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ECM.109 This method is better suited to higher frequencies
where the contrast between the S-parameters of air and fluid-
filled devices is most accurate.125 Loading the sensing zone
with known fluids is another approach,161 enabling
permittivity calculation using formulations such as the
Havriliak–Negami relaxation.162 This technique depends on
liquids with known permittivity which is influenced by
factors such as temperature. An advancement in this area is
based on measurements of reference liquids without
presumptions about their permittivities,163 yet this also relies
on relative measurements, lowering accuracy at lower
frequencies.125 Using liquids compensates for electrode
polarisation by using a reference material with similar
conductivity for parameter calculation and subsequent
subtraction from sample measurements.121

The final step in this process is to relate the measured
electrical properties to the sample permittivity. Changes in
sample permittivity can be attributed to alterations in either
1) capacitance and conductance or 2) effective permittivity
within the sensing area. Techniques such as conformal
mapping,142 FEM simulations (using software such as
Comsol, HFSS, and Q3D),164 or direct measurement methods
such as the series-resistor technique165 can establish the
relationship between changes in sample relative permittivity
and these factors. By calculating the sensing zone's γ or
impedance, the sample's permittivity can be extracted. In
resonators, this relationship influences the resonant
frequency.

To analyse the electrical properties of cells within a
sample, various modelling techniques are employed. Creating
an ECM using lumped elements is a common method,
considering components such as cell membranes, cytoplasm,

and extracellular media. These models are depicted in Fig. 7.
Models such as the Fricke–Morse circuit assess cell size and
polarization, while Cole models examine morphological
alterations in cell monolayers concerning α and β

dispersions.18 Other models include additional elements to
model the cell membrane and cytoplasm more accurately.
The fringing field or edge effect, resulting from electric field
non-uniformity in the channel, can be corrected by defining
a geometrical factor determined by Schwartz–Christoffel
mapping.166 Numerical methods summarised in Fig. 2, such
as single-shell and double-shell models, provide alternatives
for cell analysis, enabling investigation into nucleus size
effects.8

FEM simulation of the sensing zone aids in translating
membrane capacitance and cytoplasm resistance to
parameters specific to a cell type, thereby enhancing cell
differentiation accuracy,66 although it requires larger
computational resources. Comparative studies of these two
methods are available.166 For adhesive cells, a statistical
technique-based method has been proposed to account for
the biological diversity of various cells.167 Finally, neural
networks have been proposed for converting raw impedance
signals to cell properties,44 but adequate training is crucial.
Developing supervised or unsupervised learning approaches
specifically designed for cell impedance spectroscopy has
been shown to effectively detect and categorise unknown
cells.44

5.2.3 Data analysis aided by artificial intelligence. Recent
advancements of artificial intelligence (AI), particularly
machine learning and neural networks, have made it an asset
in single cell IDS, enabling precise and efficient data
analysis. As discussed in previous sections, a common
technique for analyzing IDS data requires manual data fitting
to ECMs or multi-shell models, which is time consuming and
requires specialized expertise. With the aid of AI methods,
this process can be automated to enable identification of cell
properties in real-time. Additionally, they can provide a
correlation between the collected data and biological
processes, which can provide a better understanding of cell
state, activity, and function. As the application of AI in cell
impedance spectroscopy has recently been reviewed in more
detail elsewhere,27–29 we briefly cover the methodology of
using AI for single cell IDS here.

Following data acquisition, either in the form of
impedance or dielectric properties of the sample, it is
necessary to reduce unwanted noises either using filters or by
using techniques (covered in the next section) which improve
the overall SNR. This step ensures that a clear signal is
provided for algorithm training. Consequently, signal
features such as time constants, the relationship between
amplitude and phase, opacity, tilt index, etc. can be used as
algorithm inputs. Additionally, normalization or
standardization can ensure data comparability and also
correct variations due to environmental or instrumental
factors. While this process is usually handled manually, it
has been demonstrated that the recurrent neural network

Fig. 7 ECMs employed to interpret signals into cell properties. A) Cole
model, wherein Rinf and R0 denote high and low-frequency resistance,
respectively. B) Fricke model. C) and D) are extensions of the Fricke
model integrating supplementary elements for increased precision. In
these models, while R and C signify resistance and capacitance, the M
subscript designates membrane properties, Cyt represents cytoplasm
properties, and ‘media’ denotes properties of the surrounding
medium.
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can also handle raw signal quantification65 and classifying
them based on signal metrics.168

Accordingly, models may either make use of supervised or
unsupervised learning. In supervised learning, labels such as
cell type,168 size and trajectory,65 deformability,98 state,169 or
specific physiological condition170 are available and the
extracted features can be correlated through trained models
such as decision trees,70 random forests, support vector
machines,171 or neural networks.172 To reduce the impacts of
specific conditions in the training data resulting in
overfitting the use of multiple convolutional neural
networks44 and using a parallel setup to measure the training
and target data simultaneously for data normalization170

have been examined.
On the other hand, algorithms such as k-means173 or

Gaussian mixture models174 can group cells based on the
similarities of their spectrum, without knowing the number
of subpopulations. This yields phenotypes without
predefined labels and is useful to identify cells in a
heterogenous population.28 Further, Honrado et al.169

combined this technique with supervised training, by feeding
the clustered data to a supervised learning method to
quantify each subpopulation. Finally, deep learning models,
such as convolutional neural networks (CNNs) or recurrent
neural networks (RNNs), are especially useful for handling
complex and non-linear relationships between spectral
features and biological properties. These models have been
used to trace cells at multiple channels simultaneously175

and classify coincident cells.44

5.2.4 Signal to noise ratio improvement. Small sample
volumes and potential parasitic couplings, particularly at
higher frequencies, pose challenges to achieving high
sensitivity. To enhance sensitivity, resonance-based and
interferometric techniques are deployed. The latter, known as
the differential method, combines signals from reference and
test channels. When materials in both channels match,
signals cancel destructively removing common confounds
affecting both channels (e.g. temperature). However,
dissimilar materials exhibit relative variation. This method
demands precise device symmetry, necessitating specific
adjustments such as controlling metal film thickness and
automatic channel alignment.176 Advancements in
miniaturisation allow these setups to target single-cell/
particle analysis,177 for instance, addition of an
interferometric setup has shown to improve the sensitivity of
TLs, such as parallel capacitor,178 and microstrip lines.176

While initially utilised for single frequencies, recent
adaptations enable wide bandwidth studies ranging from
kHz to GHz, broadening its application scope.178

The inhomogeneous electric field in the sensing zone in
most setups, especially those based on coplanar and parallel
electrodes, makes it necessary to account for the dependence
of the recorded signal on the cell's vertical position as a
significant source of noise. Fabrication techniques such as
particle focusing units can help by aligning the cell on the
mid-line. However, post-processing techniques can also be

used to quantify and, therefore, compensate for cell position,
mostly by assuming that the cell is a spherical particle, at the
expense of complex post-processing steps.

Defining new parameters based on signal shape has
shown to be effective in considering the effect of cell height.
Examples include (1) altering electrode geometry – e.g., star-
shaped electrodes179 or non-parallel electrodes,180,181 (2)
analysing peak-to-peak time of current signals (oblique and
transverse) and their ratio,182 (3) calculating amplitude
relative difference and relative prominence using a
combination of coplanar and liquid electrodes101 or by
increasing the number of non-signal electrodes,182 or (4)
modifying wiring configurations of parallel electrodes, such
as applying voltage to diagonally opposite electrodes to
extract cell electrical position.183 Similarly, digital filters such
as the extended Kalman filter179 have shown to correct the
signal based on particle position. Finally, the Bayesian
approach184 and neural networks44 have shown to be able to
decompose the effect of signals of multiple particles passing
through the sensing zone into individual particle effects.

6 Conclusion and future outlook

Impedance and dielectric spectroscopy shows promise for cell
identification and characterisation across fields such as
diagnosis, medicine, biotechnology, food, and liquid analysis.
This review offers a guide for implementing IDS for cell
analysis and characterisation. Key steps involve selecting
relevant frequency ranges, setting up the appropriate
measurement configuration, employing calibration, and
processing signals to extract information. This review
accordingly offers a comprehensive reference of current
technological advancements.

Despite progress, several areas require further attention.
Low-frequency analysis remains prevalent for applications
such as cytometry, membrane analysis, and cell response to
stimulation. However, electrode polarisation effects at these
frequencies present challenges for sensitive measurement.
Recent advancements using neural networks show promise
in identifying cell viability or infection status. While high
frequencies can be used to interrogate specific cell features,
GHz resonators have limited bandwidths, restricting their
ability to simultaneously detect large-scale features.
Enhancing the resonator Q factor for characterising cells in
media with similar properties is also essential. Conversely,
broadband analysis holds theoretical promise for
comprehensive insights into cell properties, but faces
challenges in sensitivity, impedance matching, and
throughput. Advancements in cell trapping and analysis
speed could alleviate these limitations.

The future of on-chip broadband IDS promises versatility
across a range of applications. Optimising electrode
configurations, cell handling techniques, and integrating
machine learning for real-time data analysis can further
improve this technique. Machine learning algorithms enable
prediction of cell condition as well as classification of cells in
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real-time. This technique enables simultaneous analysis of
various parameters such as membrane resistance, cell
electrical radius, etc., from a single dataset, accelerating
research in drug screening and diagnostics with a high
sensitivity. Exploring molecular–cellular interactions at
microwave and millimetre-wave frequencies could also offer
insights into their effects on cell behaviour.119 Further
research may focus on signal sensitivity to cell properties and
enhancing sensor sensitivity across high and low frequencies,
potentially through tailored electrode configurations.
Transition of these setups to point-of-care applications
requires miniaturized wave form generators, reducing the
need for expensive equipment and simplifying calibration
processes for non-specialists. Recent advancements in VNA-
on-chip, lock-in-amplifier-on-chip, and waveform generator-
on-chip hold promise for research translation to clinical
applications.
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