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This study develops quantifiable metrics to describe the resilience of Water Resource Recovery Facilities

(WRRFs) under extreme stress events, including those posed by long-term challenges such as climate

change and population growth. Resilience is the ability of the WRRFs to withstand adverse events while

maintaining compliance or an operational level of service. Existing studies lack standardised resilience

measurement methods. In this paper, we propose a resilience metric based on signal temporal logic (STL)

to describe acceptable functionality of the WRRFs (e.g. meeting regulatory limits). By using Monte Carlo

simulations and scenario optimisation on a model of a WRRF, we determine the maximum stress the WRRF

can handle while meeting STL constraints for biochemical oxygen demand (BOD) and chemical oxygen

demand (COD) compliance limits. The results are applied to a simple digital model of a facility with 22

components. Importantly, this method can be applied to data that water companies routinely and regularly

monitor, and could be incorporated into SCADA systems. In our case studies, we determine threshold

stressor values of extreme rainfall that result in a loss of resilience. Our results offer insights into the design

of more resilient treatment processes to reduce environmental impacts.

1 Introduction

Critical infrastructures (CIs) such as power systems, water
systems, telecommunications, and transportation networks
play a vital role in sustaining modern societies and
economies by providing essential goods and services for
continuous functioning.1,2 The resilience of CIs is a
comprehensive measure of their ability to withstand, respond
to, recover from, and adapt to disasters.3 Numerous recent
studies indicate that the assessment of resilience through
indicators has become a common practice in managing CIs.
The definition and characterisation of these indicators can
bring benefits to society and industry in terms of safety,
facilitating the monitoring and the enhancement of the
capacities, and performance of CIs.4 Water Resource Recovery

Facilities (WRRFs) are an important CI where the topics of
resilience and its measurement have recently received
attention. WRRFs are exposed to stressors that put pressure
on the system, for example, anthropogenic activities that
cause environmental pollution and/or extreme weather events
including droughts or heavy rainfall.5 The number of serious
pollution incidents in England's nine water and sewerage
companies rose to 62 in 2021, the worst performance since
2013.6 Despite the serious pollution incidents reducing to 44
for 2022, the number of pollution incidents increased to 2026
in 2022 from 1883 in 2021.7 This coincided with England's
hottest and wettest decade since records began (2012–2022)
and an approximate 6% increase in UK population over the
same time period.8 Processes in WRRFs that are resilient to
these stressors provide greater reliability; enabling the
recovery of more nutrients, energy, and other resources, while
recycling water safely to the environment.

Butler et al. (2017)9 define a stressor (a.k.a. threat or
disturbance) as any event which has the potential to reduce the
degree to which a system delivers a defined level of service. In
their work, they developed four threat subcategories: external-
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The study addresses the absence of a general methodology for quantifying resilience in Water Recovery Resource Facilities (WRRFs). Signal temporal logic
is introduced as an adaptable formalism, allowing easy adjustments to compliance regulations without altering the metric in its quantitative significance.
The integration of STL specifications in real-time systems could improve WRRF monitoring, fostering resource recovery and safe water recycling.
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chronic, external-acute, internal-chronic and internal-acute.
These categories lead to two classifications of threats: chronic
stressors and acute stressors. Particularly, acute stressors are
sudden and unpredictable.

The Intergovernmental Panel on Climate Change's (IPCC)
Sixth Assessment Report (AR6) highlighted that climate
change will increase the planet's average temperature by at
least 1.5 °C within the next few decades compared to the pre-
industrial levels during 1850–1900.10 Climate change is a
critical challenge of this century and is classified as either an
external-chronic threat or an external-acute threat. Due to
climate change, WRRFs are expected to experience more
severe stressors more frequently. Climate variability is
expected to increase, causing both flooding and prolonged
periods of dry weather. These can affect sedimentation
dynamics in the sewerage systems and the occurrence of
“first flush” pollutant loads.5 Another likely stressor for
WRRFs is population growth, which is an external chronic
threat. Indeed, the population of the United Kingdom (UK) is
predicted to increase by 2.1 million by mid-2030, and is
projected to reach 69.2 million over the next decade.8

However, Office for National 63 Statistics (2024)11 forecasted
that the UK population might reach 70 million by mid-2026,
a decade earlier than previous forecasts made in 2021.
Population growth affects the resilience of water supply and
WRRF systems, due to ensuing increases in flow rate
(hydraulic overloading in the influent) and operational
constraints (under performance of the process units in the
system).12 WRRFs, whose system designs date back to the
early 20th century, show a lack of resilience13 due to ageing
infrastructure and their long design lifespans. In the case of
unforeseen events such as equipment failures or extreme
weather, these issues can be further exacerbated, causing the
WRRFs to operate less efficiently and effectively, leading to
compliance failures, and impacting the long-term reliability
and resilience of such systems. Consequently, they may
exhibit poor performance in terms of meeting compliance
regulations. This impacts the long-term reliability of the
facility, further exacerbating its lack of resilience. WRRFs
may experience performance failures when operating outside
the parameter ranges they were designed for, these include
significant changes to the assumed flows, sewage
characteristics, or climate conditions. Therefore, more
frequent heavy rain or increases in temperature could
significantly affect wastewater infrastructure. Higher rainfall
intensity would increase flows through the water collection
system, thereby conveying higher levels of pathogens to rivers
and diluting organic and nutrient loads to WRRFs, which
may compromise their biological processes. Low flows,
triggered by drought, also cause issues in WRRFs, such as
septicity in pipes and/or increased organic and nutrient
concentrations. These events can impact the reliability and
operating costs of WRRFs.14

Under future stressors, water supply and WRRF systems
may not perform sufficiently to satisfy their service
requirements. As a consequence, the environment may suffer

serious pollution incidents due to a lack of compliance with
treatment standards.5 Understanding how different WRRF
processes respond to threats will play a fundamental role in
adapting to climate change and an increasing population.15

Research rationale

It is important to develop a general approach that compares
the effects of stressors on WRRF resilience to understand
present and future vulnerabilities. A generalised methodology
to quantify and track resilience is not implemented by water
companies since performance-based resilience metrics are
either case specific or difficult to apply universally.

Sweetapple et al. (2022)16 described a general resilience
assessment methodology (GRAM) that decomposes the
general resilience of a water system through a middle-state
based approach. GRAM takes into account the impact of any
threat, whether known or unknown, on a system, provided
that all possible failure modes of the system can be
identified. For the application of this approach, it is not
necessary to have a comprehensive knowledge of the
stressors affecting the system. Our approach aligns with the
GRAM methodology; however, the currently used
performance-based levels of service advocated by Sweetapple
et al. (2022),16 are not based on regulatory water quality
standards. Furthermore, stress/failure modes are arbitrarily
quantified and are not necessarily related to the quantities
monitored by water companies (dissolved oxygen and un-
ionised ammonia concentrations). Our approach could
facilitate the quantitative comparison and analysis of
stressors to better understand how to increase the resilience
of WRRFs that contribute to increasing the resilience in a
WRRF. For instance, it allows for the identification of the
maximum threshold value of a stressor (or multiple stressors)
at which the WRRF can still comply with regulations. This
study aims to introduce a new framework and metric for
quantifying resilience as a proof of concept that could be
incorporated into GRAM and offer further insights for water
companies into managing their WRRFs.

We propose for the first time a new strategy and metric
with which to quantify resilience founded on temporal logic
reasoning that captures the compliance requirements and
incorporates a measure of how long a WRRF can recover,
adapt or fail in relation to regulatory water quality standards.

2 Resilience review
2.1 Resilience background

The concept of resilience has been applied to various fields
of study and in numerous contexts, including ecology,
economics, and psychology. In engineering is has been used
to help plan and design urban infrastructures. Scientists and
engineers define resilience with multiple subtly different
definitions but with shared similarities.17 A precise definition
and quantification are therefore challenging.

Holling (1973)18 was a pioneer of the resilience concept.
His qualitative resilience definition was based on the
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adaptive capacity of an ecological system. In his definition,
an ecological resilient system was considered to be able,
under dynamic conditions, to absorb disturbances or shocks,
and to change a previously stable state into a new stable one.
This was possible by changing a system's structure while
maintaining its functionalities. DeAngelis (1980)19 also
investigated resilience for ecosystems and he defined
resilience as “the speed with which a system returns to
equilibrium state following a perturbation”. After the work of
Holling (1973),18 successive research has focused on
developing resilience metrics for various fields.

Considering ecosystems, Holling (1973)18 explained that
the development of resilience metric(s) would require deep
and comprehensive knowledge about ecological systems,
which was often difficult to attain. Resilience in the context
of engineering systems took on a new meaning after further
developments by Holling (1996).20 The design of engineering
systems are expected to provide reliability, the capability to
swiftly cope with disturbances and to ensure rapid recovery
to normal operating conditions. However, achieving all these
aspects is not always feasible due to various factors. Older
systems may lack redundancy in their equipment, and a
shortage of funding to improve facility operations, including
investments in well-trained personnel. The inherent
complexity of modern engineering systems can also pose
challenges to implementing robust resilience measures.
Furthermore, while engineering systems endeavour to cope
with most disturbances, the severity and nature of certain
events may result in prolonged recovery times, despite best
efforts. Therefore, while the aspiration is for engineering
systems to rapidly recover from disturbances, achieving this
goal may not be universally attainable in practice. What
emerges from Holling's work is that the distinction between
engineering systems and ecological systems: engineering
systems require human intervention to return to their
original steady state after a perturbation occurs. WRRFs
employing biological processes, are therefore considered
hybrid systems as their behaviour is somewhere between
ecological and engineering systems. Various definitions of
resilience for WRRFs can be found in the literature, but there
is no universal resilience metric (qualitative and/or
quantitative) that can be applied across all scenarios.

2.2 Resilience properties of urban water systems

Resilience is a vital concept in urban water management.
Recent studies in such systems have focused on identifying
the main characteristics of a resilient system, these include;
robustness, adaptability, resourcefulness, reliability, and
speed of recovery. These properties aid urban water
management systems to resist, cope with, and adapt more
quickly to stressors. Furthermore, these properties should be
recognised as resilience indicators and must be quantified
either qualitatively or quantitatively through metrics. The
speed of recovery is an important parameter for a resilient
system. It is considered as the time that the system takes to

return to its performance levels before the stressor was
applied.

Reliability is associated to the probability of successful
operation of the system,21 or equally the probability of being
in a non-failed state.22

Niku et al. (1979)23 defined reliability as “the ability to
perform the specified requirements free from failure” or “the
probability of adequate performance for at least a specified
period of time under specified conditions”. In their paper,
the authors analysed the concentrations of BOD and the
suspended solids (SS) in 37 WRRFs to determine a
probabilistic model to predict achievable concentrations for
BOD and SS. Butler et al. (2014)22 developed the Safe and
SuRe framework for urban water management, stating that
systems in this century must be safe, synonymous with
reliable, and also resilient, with a strong link to
sustainability. They defined resilience as the “degree to which
the system minimises level of service failure magnitude and
duration over its design life when subject to exceptional
conditions”. In this definition, resilience is associated with
the performance response of a system following an
unexpected event which might lead it to fail the designed
level of service. These authors recognised the lack of a
general method, and therefore further developed and
improved this framework as a set of guidelines.9 Resilience
has been generally and simply defined as the capacity of a
system to “bounce back”.24–26

Sweetapple et al. (2019)27 analysed the link between
resilience and sustainability; where increases in resilience
may provide improvements in sustainability. Sustainability is
a normative concept, referring to physical and institutional
practices which meet the needs of the present without
compromising the ability of future generations to meet their
needs.

2.3 Resilience metrics in urban water systems

In CI, resilience also has further wider meaning and
implications in relation to vulnerability to disasters and the
interdependence of systems. This is out of scope of the current
study, but resilience metrics for such scenarios have been a
developed a good example of which is given by Jia et al.
(2023).28 The authors developed a new two-stage stochastic
optimisation model to determine both the locations for
building restoration team stations before disasters and their
routing for conducting restoration tasks after disasters
simultaneously. Implementing pre-disaster planning and post-
disaster scheduling are typical strategies aimed at enhancing
the resilience of CI. In the literature pre-disaster measures
include selecting resilient facility locations, building relief
centres, and protecting critical components. Post-disaster efforts
involve restoring services, comparing recovery strategies, and
optimising restoration processes. Some studies consider both
pre- and post-disaster optimisation, while others explore
protecting critical components before disaster strikes. Hosseini
et al. (2016)24 argued that a resilience metric without an
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accompanying framework is limited, as it lacks the necessary
guidance for practical implementation. In the context of urban
water systems, resilience metrics are typically developed
following a risk assessment of a specific case study, examining
particular scenarios and stressors. Risk analysis complements
resilience efforts, even though it may not encompass unknown
threats.9 It is crucial to distinguish between methods aimed at
mitigating risk and those focused on enhancing resilience.
While risk-oriented approaches assist in preparing for events
with familiar patterns, resilience-oriented approaches are aimed
towards empowering systems to effectively respond to any
eventuality, including unforeseen and unprecedented
circumstances.29 Indeed, risk assessments are necessary to
forecast undesired unexpected events and aim to mitigate
negative effects on a system. Resilience is associated with
intrinsic characteristics of a system that make it able to cope
with undesired events. Resilience is a key parameter when the
risk of unwanted events happening cannot be computed.30,31

The work by Francis and Bekera (2014)32 provides a
resilience assessment framework, which was the first to
include the engagement of the stakeholders and a metric for
evaluating resilience under deep uncertainty. The resilience
metrics are performance based and take into account the
speed of recovery after a performance loss. Another approach
for quantitative metrics is to consider the performance of the
wastewater system under multiple threats. Example resilience
metrics include: the efficiency of removal of pollutant
concentrations in final effluent, the speed of recovery of the
system after a disruption, or the reliability of the system.

Weirich et al. (2015)33 used a general linear model for post
hoc statistical analysis of performance, resilience, and
stability of secondary WRRFs over 41 months. They
demonstrated that WRRFs which failed in the past had a
statistically increased likelihood of failing again. In the
literature, resilience metrics are associated to a risk analysis
for a specific scenario30 and often on specific unit processes
within a system. By considering a system, all possible
stressors, and their probability of occurrence, the resilience
metric will contain all the parameters that play a role in
affecting resilience. In literature, resilience has been
described through the change in performance or function
over time. Cuppens et al. (2012)34 addressed resilience as a
performance indicator for a system under disturbance. The
authors highlighted the importance of simulating a dynamic
disturbance for better analysis. Similarly, Mugume et al.
(2014)35 focused on quantifying resilience for urban drainage
systems for flooding. In particular, their resilience metric
assesses the remaining functionality of the system at
different levels of link failure by combining both the failure's
scale and duration into a single measurement. Following
their previous study, Mugume et al. (2015)36 applied and
extended the global resilience analysis (GRA) methodology to
a urban drainage system measuring a new resilience index
combining the failure magnitude and the duration. GRA
considers the system performance when it is under various
stressors. Using a case study, they developed a metric to

quantify the system residual functionality under various
failure scenarios. The resilience index connects the resulting
loss of functionality to the system's remaining functionality,
which indicates the level of resilience at various levels of link
failure. The authors define the severity as the reduction in
system functionality. Severity is characterised by the highest
degree of failure magnitude (peak severity) and the duration
of the failure.

Holloway et al. (2021)13 defined “dynamic resilience” of
the biological components in a WRRF. They decoupled
stressor events (cause) from process stress (effect) to track
the system deviation from normal conditions. The authors
used Monte Carlo simulations to compute the probability of
failure and then scaled the outputs to show, using a traffic
light system, where the biological system stands under
certain conditions of stress. This approach shows potential,
but success for implementation on other WRRFs requires a
large number of samples and data.

One method for broadly evaluating resilience in water
systems is failure modes and effects analysis (FMEA). This is
a proactive method to identify potential failure modes in a
system, and it can help discriminate between them, ranking
the severity of each failure, or help discriminate the
probability of the occurrence of these various failures. Similar
to the FMEA approach,37 GRAM is beneficial in identifying
system failure modes, and to plan interventions to make the
system more resilient to unforeseen threats in a quantifiable
way. For the application of this approach, it is not necessary
to have a comprehensive knowledge of the stressors affecting
the system.

Xue et al. (2015)38 posed resilience as the core evaluation
of a sustainable system and highlighted non-standardisation
of resilience assessments/metrics. The resilience assessment
highlighted the importance of focusing on the future changes
and challenges that can affect the correct operation of the
WRRFs. Similarly, Schoen et al. (2015)39 defined resilience as
the “ability to prepare for and adapt to changing conditions
and withstand and recover rapidly from disruption”.
Furthermore, Cuppens et al. (2012)34 defined robustness as
the ability of a WRRF to withstand a disturbance without
decreasing the performance.

In this paper, we consider the notion of robustness as
how close the system is to compliance failure under normal
operations. Robustness is commonly mistaken for resilience,
and is a measure of the strength of a system. Whereas,
resilience is a measure of the flexibility, adaptability, and
agility of a system to withstand a stressor without failing the
compliance limits, or to recover quickly after a compliance
failure. Additionally, resilience is enclosed in the system's
operation through controls, while robustness is a property
which is embedded in the system's design.31

3 Methodological approach

In this paper, we introduce a logical framework (cf. Fig. 1)
and a case study implementing the framework using data
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and simulations of a WRRF in Scotland under the
management of Scottish Water. Our methodology consists of
two main parts. The first part defines an STL specification

for robustness that considers compliance. This is a widely
applicable approach and can be used as a screening tool to
determine the robustness of WRRFs. The second part

Fig. 1 The logic diagram for the compliance regulations on WRRFs.
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involves a detailed analysis of resilience using the software
tool GPS-X Hatch40 simulator to test the particular stress
scenario of a rainstorm. The use of GPS-X aids in measuring
the intrinsic robustness of the facility, the methodology can
be build upon scenario testing to understand the factors that
affect resilience. The aim of measuring robustness is to
understand system operations under normal operation
conditions. We want to see how much we can push the
system to observe compliance failures. In addition,
robustness and resilience metrics together can be used to
determine stressor threshold limits, beyond which a given
WRRF is likely to become non-resilient.

3.1 UK compliance regulations

Interviews with process scientists working for Scottish Water
and Northumbrian Water Ltd highlighted compliance limits
as the main threshold(s) where a lack of resilience can be
detected. It is first necessary to establish, in its current
configuration and operational rule sets, the robustness of a
treatment asset, system, or process. We will develop a logical
framework, based on compliance regulations for the UK, to
provide a robustness value for any given WRRF.

Water quality monitoring in the UK has been governed by
regulatory bodies such as the Environment Agency in England,
Scottish Environment Protection Agency in Scotland, Natural
Resources Body for Wales, and the Department of Agriculture,
Environment, and Rural Affairs in Northern Ireland.

The regulations behind compliance limits are an intricate
system divided in two main parts: common regulations for
sites with a population equivalent or greater than 2000, and
site-specific regulations for a given WRRF. The WRRFs must
be compliant under Urban Waste Water Treatment (England
and Wales) Regulations 1994 (UWWTR), which implements
the European Union Urban Waste Water Treatment Directive
(91/271/EEC), and the operator self-monitoring (OSM)
environmental permits. Fig. 1 shows the compliance
regulations as a logic diagram. It shows a complete flowchart
for UWWTR which are the compliance constraints that are
not site specific but apply to all sites with a population of
2000 or greater. Furthermore, it shows the different levels of
failure for a given parameter.

3.2 Resilience logical framework using STL

STL is a specification language which can be used to express
properties of timed signals for real-time systems.41,42 The
implementation of these logical statements enable checking the
satisfaction of a property via a binary true/false representation.43

It has the advantage of admitting quantitative semantics which
we refer to as a robustness function (see Appendix B). It
provides a logic-based structure used to describe acceptable
behaviour of reactive systems. STL is particularly useful when
specifying properties of dense-time real-valued signals.44

The compliance regulations of UWWTR for a WRRF put
restrictions on BOD, COD, nitrogen (N) and phosphorus (P).
In the following we will analyse COD and BOD, while N and

P will be addressed in future work. When the WRRF is under
the influence of stressors, it is expected to return to normal
operation eventually. Normal operation is judged as
satisfaction of the compliance requirements set by the
UWWTR, see Fig. 1. In this first development of this
framework, we consider only a subset of the logic diagram
for the compliance regulations on WRRFs as presented in
Fig. 2.

Firstly, we will write the compliance constraints as logical
statements. A logical statement can be true or false. It is
constructed as a hypothesis which has a precondition
followed by a conclusion, where the conclusion is the key
part to infer if the hypothesis is true. The following logical
statements have been written using the threshold values from
the look-up table compliance limits for BOD and COD45

following the guidelines of the UWWTR. The logical
statements to check compliance against the UWWTR in
Fig. 2 over time are:

• BOD concentration under the lower tier BODLT = 25 mg
l−1 O2 or the minimum percentage of reduction BOD% must
above 70%;†

• BOD concentration always under the upper tier BODUT =
50 mg l−1 O2;

• COD concentration under the lower tier CODLT = 125
mg l−1 O2 or the minimum percentage of reduction COD%

must be above 75%;
• COD concentration always under the COD upper tier

CODUT = 250 mg l−1 O2.
We now write these logical statements as STL formulae.

The definition and syntax of STL formulae can be found in
Appendix A and Appendix B. We denote BOD influent
concentrations as x1i (t), COD influent concentrations as x2i (t),
BOD effluent concentrations as y1i (t), and COD effluent
concentrations as y2i (t). The concentrations are change over
time t, and i is the index for the concentration, which
changes in some range [0, n] where n ∈ , and  is the set of
natural numbers including zero.

Furthermore, the STL specification of the compliance
regulations for BOD and COD is denoted by ψ. The symbol
is read as “is defined to be equal to”. Subscript % denotes
the minimum percentage of reduction. The symbol □ is a
temporal operator used in STL to mean “always”. The logical
operators ∧ and mean respectively “and” and “or”, and [a,
b] is the interval of time considered for the simulation.

ψBOD = ψBOD
1 ∧ ψBOD

2 .

† For some facilities this could be up to 90%.
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and

ψCOD = ψCOD
1 ∧ ψCOD

2 .

The major advantage of the STL formalism is its adaptability.
The specifications can be easily changed if the compliance
regulations change, e.g. the thresholds for the upper or lower
tier or the percentage of reduction values, yet the metric and its
quantitative significance would remain unchanged. The
behaviour of the system can then be checked against the STL
specification to see if the system is operating as expected and
how close the system is to failure. In this study, satisfaction of
the STL specification represents the satisfaction of regulatory
requirements and other expected recovery behaviour under
stressors. The STL formula used for the specification defines
how resilient the system is, at any point in time against any
given stressor or multiple stressors. In this study, we introduce
a comprehensive framework for water companies,
encompassing various applications. This framework enhances

the resilience monitoring of WRRFs by refining compliance
assessments through routine data checks, including parameters
such as BOD and COD. Notably, our approach involves running
continuous dynamic simulations in GPS-X Hatch with a specific
time step, allowing for a comprehensive evaluation of overall
system robustness. Importantly, it is worth noting that our
framework can be applied equally to both continuous and
composite data, with the different approaches not impacting
the validity of the framework.

3.3 Model-based simulations

GPS-X Hatch is a globally available software tool for the
design and operation of WRRFs. GPS-X Hatch is a mass
balance based software tool which is used by modellers to
simulate mass and energy flows within a WRRF. It has been
used to build the model of a large WRRF in Scotland under
Scottish Water management, used as the case study. This
mechanistic model has been used for the verification of the
logical framework based on STL specifications.

The WRRF serves a population equivalent to 574 000 and
can treat a capacity of flow-to-full treatment (FFT) of 7.59 m3

s−1. It is an activated sludge plant (ASP) and discharges final
effluent to an estuary. Scottish Water provided the data used
to calibrate and validate the model following the IWA good
modelling practice (GMP) protocol.46 The calibration of the

Fig. 2 Subset of the logic diagram for the compliance regulations on WRRFs.
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mechanistic model was carried out over the period November
and December 2021 (60 days of dynamic simulation). We
identified a period where the WRRF was working under
stable conditions. A parameter that we used to determine
stable operation over the year was the MLSS (mixed liquor
suspended solids).

Firstly, we performed a steady state calibration followed
by a dynamic simulation to verify the fit with real data.
Although the calibration of a real plant is important for
referencing to a real world application, the accuracy involves
many variables. Our framework maintains its conceptual
integrity regardless of the specific data it encounters. We
provide detailed information about the calibration of the
COD effluent in the Appendix C.

We used the stress–strain methodology which was
developed in solid mechanics to study the behaviour (strain)
of solid materials under a load (stress). The stressors are
applied, with varying the magnitude and the duration, to
establish a range of strain profiles.

We use GPS-X to test resilience scenarios by introducing
stressors, especially for random and unexpected events, into
the model and analysing the model strain outputs. The strain
is linked with the final effluent concentrations to verify if the
WRRF is compliant for a given scenario. Resilience is
quantified by metrics that track the baseline position of the
concentrations and report them against set targets over time.

3.4 Monte Carlo simulations

We stress the system by applying a rectangular design
storm47 from the 23rd day until the 28th day of a 60 days
simulation. A Monte Carlo simulation with 1000 sample
outputs were computed using the Python tool in GPS-X
Hatch. In computer science, Monte-Carlo algorithms are
based on randomness to compute a large number of
simulations on different scenarios. The outputs represent a
variety of scenarios with different probability of occurrence.
In our implementation of the Monte Carlo simulations, the
rainfall intensity (mm h−1) is randomly picked between 0 and
10 at each simulation on a fixed length of the duration. The
rainfall intensities are sampled from a uniform distribution
for a rectangular design storm.47 Our computations can be
extended to include random duration and random starting
times as considered in ref. 48.

Note that the Monte Carlo simulation is used to provide
an approximate solution for the optimisation in the
definition of resilience. There is no error attached to these
computations, and we only have convergence results: when
the number of simulations goes to infinity, the computed
value will converge to the optimal value. We have done 1000
simulations and performed curve fitting to get the
approximate solution for the optimisation (cf. Fig. 10).

4 Results and discussion
4.1 Model-based simulation

The model of the case study in GPS-X is showed in Fig. 3,
where the system is presented in its design configuration.
This layout has been used to compute the robustness of the
system.

After computing the robustness of the system, we applied
a stressor to test resilience and determine the maximum
magnitude at which the system returns to normal operation.

Fig. 4 shows the layout of the WRRF after applying a stressor.

4.2 Robustness

An STL formula or specification can be designed to provide a
definition of space robustness or time robustness.41 Let us
consider the effluent concentrations yi(t) where i ∈ [0, n]. The
compliance regulations are then expressed by the STL
formula ψ on these effluent concentrations.

Definition 1 (robustness). The robustness of a WRRF is
the maximum value c that can be reduced from yi(t) such that
the plant still satisfies the compliance specification ψ at all
time instances. The symbol in y ψ is read as “entails”,
and is used to show satisfaction of ψ by y. Therefore,
robustness is:

with y − c = (y0(t) − c, y1(t) − c, …, yn(t) – c).
The robustness Rob(ψ) can be computed recursively using

the structure of ψ and the definitions in Appendix B. We have
that if y ψ then Rob(ψ) ≥ 0.

Remark 1. The above definition adds c to all outputs y0(t),
y1(t), …, yn(t). It does not take into account that different
outputs may have different ranges of values. For a given
WRRF, we can normalise the outputs and map them into the

Fig. 3 Layout of the WRRF case study before applying a stressor. Fig. 4 Layout of the WRRF case study after applying a stressor.
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same range [0, 1]. Let us consider linear mappings fi:  → [0,
1] that shift and scale the outputs zi(t) = fi(yi(t)), i = 0, 1, …, n,
such that zi(t) ∈ [0, 1]. Then we modify the definition of
robustness as:

(1)

where f = [f0, f1, …, fn] and f−1 is the inverse function of f.
The robustness definition for the subset of the logic

diagram in Fig. 2 has been implemented in GPS-X using:

cBOD = min[(BODUT − y1i (t)), max[(BODLT − y1i (t)), −(BOD% × x1i (t))
+ x1i (t) − y1i (t)]]. (2)

cCOD = min[(CODUT − y2i (t)), max[(CODLT − y2i (t)), −(COD% × x2i (t))
+ x2i (t) − y2i (t)]]. (3)

By using a linear mapping on BOD and COD, we can
compare and quantify the robustness Rob(ψ) of the system

directly over the same range [0, 1]. The mapping fi takes the
following form:

zi ¼ f i yi
� � ¼ yi − ai

bi − ai

for any yi ∈ [ai, bi], e.g. for BOD ∈ [25, 50] and COD ∈ [125,

250]. Fig. 5 shows BOD and COD effluent concentrations and
the implementations of Eqn (2) and (3) after the linear
mapping is performed.

Eqn (1) can also be written as:

Rob(ψ) = Rob{cBOD ∧ cCOD} = min[cBOD(t), cCOD(t)]. (4)

which represents the robustness of the STL formula, see
Appendix B. Eqn (4) (metric) shows when the WRRF is close to
failing the compliance requirements after considering both
COD and BOD.

Rob(ψ) represents the robustness of the system considering
the analysis on both BOD and COD, see Fig. 6. Eqn (2) and (3)
within the framework's mathematical structure indicate when
the system comes close to failing the required BOD and COD
standards for the UWWTR. Rob(ψ) is therefore dimensionless. A
lower Rob(ψ) denotes that the system is close to the threshold
values of the compliance regulations. A negative value means
that the system has already passed the compliance threshold,
and consequently we can assume that the system is not working
under normal design operation.

After identifying Rob(ψ), following the structure in Appendix
B for the STL specifications, we applied an inverse
transformation to revert the changes. This will allow us to have
a quantification of the parameter c in Eqn (1), as shown in
Fig. 7. In Fig. 7 the red marker “×” indicates the day when the
lowest Rob(ψ) occurs. The magnitude showed next to the
marker “×” is meaningful value for quantifying the robustness
of the plant. It could be used by water companies to rank their

Fig. 5 In both graphs, red “×” denotes the time and the magnitude
when the systems was closest to failure. Top. Effluent concentrations
(BOD) and robustness (cBOD) after linear mapping over a 60 day time
horizon. Bottom. Effluent concentrations (COD) and robustness (cCOD)
after linear mapping over a 60 day time horizon.

Fig. 6 Robustness Rob(ψ) of the system across a finite-time horizon of
60 days, showing how close the system is to fail the compliance
requirements. The red “×” denotes the day and the Rob(ψ) value when
the system was closest to failure.
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WRRFs, including prioritising them for interventions to avoid
compliance failures.

Remark 2. The STL specifications scale well with the number
of variables considered, beyond BOD and COD in this work.
With two parameters it is easy enough to manually see how
close the system is to failure but as more variables are included
this becomes more challenging to do manually and this
robustness metric becomes more valuable for failure detection.

Remark 3. Quantifying the exact parameter that causes
failure may be more challenging for more complex problems. In
particular, when specific combinations of parameters are the
cause of failures. This robustness metric is valuable to detect
the closeness of those complex failures, but it may still be
challenging to diagnose which parameter or combination
thereof is the root cause.

4.3 Resilience

Definition 2 (resilience). Consider stressors u = [u0(t), u1(t),
…, un(t)] affecting the WRRF, ψ being the compliance
specification, and another STL specification ϕ denoting the
requirements on recovery from stressors. We define resilience
of a WRRF to be the maximum stressors u = [u0(t), u1(t), …,
un(t)] that can be applied to the WRRF while the effluent
concentrations y = [y0(t), y1(t), …, yn(t)] and the influent
concentrations x = [x0(t), x1(t), …, xn(t)] still satisfy both
specifications ψ and ϕ:

(5)

where f(x, y, u) is the function which has as variables the
influent x and effluent y concentrations and the stressor u.

Example of the specification ϕ includes the following: if
the effluent concentrations y under the stressors go above a
certain threshold yrec, then y should go below this threshold
within time interval [0, T]. This is denoted by the
specification

Another example for ϕ is the recovery requirement that the
system go back to normal operation within time interval [0,
T] once the compliance requirements have been violated

:

(6)

The STL operator ⋄[0,T] means the system will eventually
satisfy the compliance requirements within the range of time
T, see Appendix A. T could be in the order of days (e.g. during
winter due to the dilution) or the order of hours (e.g. in
summer, when the weather is warmer, the final effluent is
less diluted and has a higher concentration of pollutants).

Res(ψ, ϕ) can be used to determine the maximum threshold
stressor value that ensures the effluent concentrations still meet
the compliance and recovery requirements.

Remark 4. Our definition of resilience is not restricted to
the choice of the time horizon T or the specifications ψ and
ϕ. The provided definition can be applied to any compliance
specification ψ and any specification ϕ that expresses
recovering to a normal operation under the stressors.

Remark 5. The characteristics of our definition of
resilience are not captured in the traditional definition of
risk and safety. Safety measures try to prevent the system
from failures while our definition of resilience captures
violation of compliance requirements under stressors and
the capabilities of the system to recover from such stressors.
Our definition does not include any notion of risk of failures
but measures the magnitude of stressors that the system can
tolerate while being compliant and recover from the
stressors. Reliability engineering in a safety-I perspective
defines safety as a condition where the number of adverse
outcomes is as low as possible.49 Instead, we propose to
define “how performance go well under stressors” using
temporal logic specifications, then consider a system to be
more resilient than another if it has the same good
performance under larger stressors. This is captured in our
Definition 2 by including the expected behaviour of the
system recovering from stressors as the temporal logic
specification ϕ.

Remark 6. The function f in Eqn (5) captures the dynamics
of the system that maps the stressors and other inputs to the
outputs of the system. This will give a resilience metric
specific to each system.

Fig. 8 shows two systems under the same stressor. System
1 is resilient as it recovers from the stressor when Δt ≤ T,
while system 2 is not resilient since its output does not fall
below the threshold line yrec. Our definition changes the
perspective by specifying the set of acceptable recovery
behaviours by ϕ as e.g. in Eqn (6) and then comparing
different systems with respect to the maximum stressor they
can tolerate while showing an acceptable recovery behaviour.

Fig. 7 Robustness Rob(ψ) of the system across a finite-time horizon of
60 days after applying the inverse transformation of the linear
mapping, showing how close the system is to fail the compliance
requirements for the value of BOD. The red “×” denotes the day and
the Rob(ψ) when the system was closest to failure.
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Fig. 9 illustrates the recovery behaviours of three systems,
which are acceptable according to ϕ if the times Δt1, Δt2, Δt3
are less than the specified threshold T. System 1 (blue)
recovers within Δt1, system 2 (orange) recovers within Δt2,
and system 3 (grey) recovers within Δt3.

The optimisation in Eqn (5) for the computation of
resilience becomes a multi-objective optimisation when the
set of stressors has more than one parameter. In the next
section, we discuss how to do the computation when the set
of stressors can be characterised with only one parameter.

4.4 Monte Carlo simulations

We stressed the system by applying a rectangular design
storm from the 23rd day until the 28th day of a 60 days
simulation. A Monte Carlo simulation with 1000 sample
outputs were computed using the Python tool in GPS-X
Hatch. The python code that performed the simulations
picked the values from a uniform distribution. A subset of
the simulation outputs that show the resilience of the WRRF
case study under a stressor are presented in Fig. 10.

The rainfall intensity (mm h−1) threshold value to apply at
the inlet for having Res(ψ, ϕ) = 0 is approximately 1.86 mm
h−1. For values above this threshold, the system starts to fail
the compliance regulations. This threshold is the resilience
metric defined in Eqn (5). Given the critical failure threshold
at 1.86 mm h−1 and the testing range extending from 0 to 10
mm h−1, it appears that the system exhibits limited

resilience, particularly in light of the observed challenges at
the lower end of the spectrum.

We performed an analysis of rainfall data for the November–
December 2021 period. The data revealed notable peaks
reaching up to 25 mm d−1 with average daily rainfall during this
period being 2.19 mm d−1. Since our resilience metric is
targeting the behaviour of the system under extreme events,
multiple simulations should be obtained under different
stressors to find a suitable range for rainfall densities that make
the system violate the compliance (and potentially other
recovery) requirements. This range is not necessarily associated
with datasets that contains data points being observed under
normal circumstances, but it is associated with data points that
are rare and can be observed with very small probability (i.e.,
extreme events that has happened a few times in the life cycle
of the system50). In our model, the system exhibited signs of
violating compliance requirement beyond a threshold of 1.86
mm h−1. Given the observed limitations of the system and the
desire to understand its behaviours under more extreme
conditions, we opted to push the simulation by introducing
higher rainfall intensities. This deliberate choice aims to stress-
test the system and compute our resilience metric.

5 Conclusions

This paper demonstrated, for the first time, development of a
logical framework using STL specifications that provide the
basis of a general method allowing water companies to track
the robustness and resilience of their facilities. This
framework can also help the water companies to enact better
management of their facilities in terms of maintenance and
monitoring. In conclusion, we raise the following points:

• STL specifications can help track the behaviour over time
of WRRFs and identify via effluent concentrations if there is a
lack of resilience in the facility in order to plan interventions.
The STL specification describes the compliance requirements
using an easy to check logical syntax.

Fig. 8 Examples of responses of two systems under a stressor. System
1 (magenta) is resilient recovering within time Δt ≤ T. System 2 (blue) is
not resilient as it does not recover at any time.

Fig. 9 Recovery behaviours of three systems under stressors. Systems
exhibit acceptable recovery behaviours when the times Δt1, Δt2, Δt3 ≤ T.

Fig. 10 Robustness of the system under rainfall computed for
different rainfall intensities (mm h−1). The stressor is applied to the inlet
of the system. The resilience (red dot) is the largest rain intensity while
still having non-negative robustness. This is equal to 1.86 mm h−1.
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• Resilience is a system specific metric, so failure modes
of a wastewater facility are an intrinsic characteristic of that
system. Resilience analysis for specific threats can help
identify the resilience threshold values in order to avoid
compliance failure.

• The recovery time T after a failure is not set by the water
companies. If set, it can help the water companies better
understand the resilience of their facilities.

• This framework enables water companies to better monitor
their WRRF's resilience by improving how water companies
check compliance using the data that they routinely and
regularly collect for facilities under their management.

• Analysis of the robustness of the WRRF can help the water
companies understand how the system is operating, in terms of
meeting compliance, under normal operating conditions. Then,
a comprehensive study of stressors affecting the WRRF can help
identify potential vulnerabilities.

• A real-time controller in Supervisory Control and Data
Acquisition (SCADA) systems with implemented STL specifications
can enhance the monitoring of WRRFs leading to better resource
management. Resilient processes lead to more reliable facilities
that enable the recovery of more nutrients, energy, and other
resources, while recycling water safely to the environment.

The proposed metric provides a unified way of assessing
resilience quantitatively. It will also be possible to use the
resilience values for comparing resilience of different plants.
For instance, water companies invest more in monitoring and
maintenance of bigger WRRFs. It will allow hypothesis testing
for general resilience of bigger WRRFs compared with smaller
ones. Furthermore, their redundancies are generally higher;
having spare components to overcome failures in case of
unexpected threats. Small WRRFs are sampled less frequently
and, as a consequence, if a failure happened it is impossible to
estimate the recovery time just by looking at samples taken at
specific time point. Therefore, real-time monitoring of resilience
embedded in the SCADA system, or in a digital twin of a facility,
could help water companies visualise if the WRRF meets the
STL specification, and so prioritise interventions that enhance
the resilience of their WRFFs.

6 Future development

As future developments, we aim to implement the whole logic
framework of Fig. 1 in order to add further complexity. The
above computations can be extended to include random
duration and random starting times of the stressor as
considered in ref. 48. Also, a different design storm could be
used for the computation of the resilience of the system under
rainfall events. Probabilistic analysis can lead to a heat-map
graph considering the return period of different scenarios
linked to climate change or population growth. For water
companies, it is particularly useful to build a heat map with the
return period of different scenarios. Furthermore, future
developments aim to classify modes of failure in a WRRF. This
will help with making design decisions that avoid catastrophic
failures, while also being more tolerant to minor failures,

reducing costs. It may be possible to discriminate between
failures with the same expected damage/utility by being more
averse toward catastrophic failures (lower probability but higher
impact), and being more tolerant toward recurring interruptions
(high probability, low impact failures). The analysis of the
resilience of the system can be applied to specific days of
testing, e.g. the 52nd day, which indicated by the least
robustness in Fig. 6.

Code availability

The python codes can be found at the following link: https://
github.com/annalaino/coding-paper.git.

Data availability

The data and Python code were developed in collaboration
with industrial partners and cannot be published online due
to a non-disclosure agreement (NDA) between the authors
and the industrial partners. A simplified version of the code
may be published in the future, pending approval from the
industrial partners. If approved, a link to the code will be
included in the final version of the paper.
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Appendices
A Signal temporal logic specifications

We consider the state of a system in an infinite trajectory as ξ
= x(0)x(1)x(2)… where x(t) is the state of the system at a
specific time t ∈ : = {0, 1, 2, …}.

Definition 3 syntax. A signal temporal logic formula is
defined using the following syntax:

where T is the true predicate, F is the false predicate, and μ:
 → {T, F} is a predicate where the sign of the function of
the state determines its truth value, i.e. μ(x) = T if and only if
α(x) ≥ 0 with α: n →  considered to be an affine function
of the state and associated with μ. The operators and ∧
are respectively negation and conjunction. U[a,b] is the until
operator with a, b ∈  ≥ 0.

Semantics. Below the satisfaction of an STL formula by a
trajectory ξ is defined recursively:

Environmental Science: Water Research & TechnologyPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
 2

02
4.

 D
ow

nl
oa

de
d 

on
 3

0.
01

.2
6 

3:
59

:4
4.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

https://github.com/annalaino/coding-paper.git
https://github.com/annalaino/coding-paper.git
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ew00649f


Environ. Sci.: Water Res. Technol., 2025, 11, 377–392 | 389This journal is © The Royal Society of Chemistry 2025

such that and for

all .

A trajectory ξ satisfies a specification ψ, denoted by , if

. Moreover, other operators can be defined as follows:

• disjunction:
• eventually:

• always:
The horizon of an STL formula is defined by the len(ψ)

which the maximum threshold value of an interval, which is
also the length of the interval where the satisfaction of

is studied.

B Robustness of STL specifications

The robustness of the formula ψ is defined as a real valued
function ρψ assigned to an STL formula ψ. Note that ρψ(ξ, t)

> 0 implies that . Robustness of an STL formula is

computed recursively according to the structure of the
formula as follows:

ρT(ξ, t) = + ∞,

ρμ(ξ, t) = α(ξ(t)) where μ(ξ(t)) = T if α(ξ(t)) ≥ 0,

ρψ∧ϕ(ξ, t) = min(ρψ(ξ, t), ρϕ(ξ, t)),

ρψU a;b½ �φ ξ; tð Þ ¼ max
i∈ a;b½ �

min ρφ ξ; tþ ið Þ; min
j∈ 0;i½ �

ρψ ξ; tþ jð Þ
� �� �

:

The STL robustness and satisfaction are defined in relation
with the trajectory of the system. If the system is stochastic,
the trajectory is a stochastic process, and as a consequence
the satisfaction relation is a Bernoulli random variable and
the robustness is a real random variable.

C COD calibration in GPS-X

Fig. 11 shows the COD effluent concentration (mg l−1)
modelled in GPS-X and compared with measured data. The
continuous red line represents the COD concentrations
predicted by the model, while the red diamonds denote the
actual measured data points. This visual comparison allows
for an assessment of how well the model tracks the real-
world measurements over time.

Fig. 12 shows the COD effluent during one of the Monte
Carlo simulations under a stressor.

D Linear mapping

Eqn (1) shows the linear mapping function applied to the
Rob(ψ). We determined the upper and lower bounds by
selecting the maximum and minimum values between the

BOD influent and BOD effluent. The same methodology was
used for COD. Typically, the maximum value for both BOD
and COD corresponds to the influent, while the minimum
value corresponds to the effluent. The linear mapping
formulas are

• linBODe tð Þ ¼ BODe tð Þ −BODe minð Þ
BODi maxð Þ −BODe minð Þ

• linBODi tð Þ ¼ BODi tð Þ −BODe minð Þ
BODi maxð Þ −BODe minð Þ

• linCODe tð Þ ¼ CODe tð Þ −CODe minð Þ
CODi maxð Þ −CODe minð Þ

Fig. 11 Effluent concentrations of COD effluent concentration (mg l−1).
The continuous red line is the modelled COD effluent concentration and
the red diamonds are the measured composite data.

Fig. 12 COD effluent concentration (mg l−1) of one of the Monte
Carlo simulations in GPS-X.
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• linCODi tð Þ ¼ CODi tð Þ −CODe minð Þ
CODi maxð Þ −CODe minð Þ ;

where BODi(t) and BODe(t) respectively represent the influent

and effluent concentration of BOD5. Similarly, CODi(t) and
CODe(t) denote the influent and effluent concentration of
COD. We also applied the linear mapping for the upper and
lower tier of the compliance requirements.

• BODUT = 50, BODLT = 25;

• CODUT = 250, CODLT = 125.

Then the linear mapping is applied to upper tier and
lower tier for BOD and COD:

• UTnormBOD ¼ 50 −BODe minð Þ
BODi maxð Þ −BODe minð Þ

• LTnormBOD ¼ 25 −BODe minð Þ
BODi maxð Þ −BODe minð Þ

• % reductionBOD = 0.7

• UTnormCOD ¼ 250 −CODe minð Þ
CODi maxð Þ −CODe minð Þ

• LTnormCOD ¼ 125 −CODe minð Þ
CODi maxð Þ −CODe minð Þ

• % reductionCOD = 0.75.

The percentage of reduction for BOD and COD were already in
the expected range. Furthermore, we have for the c computation:

• UTBOD(t) = UTnormBOD − linBODe(t)

• LTBOD(t) = LTnormBOD − linBODe(t)

• BODp(t) = −(% reductionBOD × linBODi(t)) + linBODi(t)
− linBODe(t)

• max1(t) = maximum(LTBOD(t), BODp(t))

• cBOD(t) = minimum(max1(t), UTBOD(t))

• UTCOD(t) = UTnormCOD − linCODe(t)

• LTCOD(t) = LTnormCOD − linCODe(t)

• CODp(t) = −(% reductionCOD(t) × linCODi(t)) + linCODi(t)
− linCODe(t)

• max2 = maximum(LTCOD(t), CODp(t))

• cCOD(t) = minimum(max2(t), UTCOD(t))

• c(t) = minimum(cBOD(t), cCOD(t)).
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