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Non-destructive analytical technologies have emerged as transformative tools for advancing food safety

and quality assessment, addressing critical challenges posed by chemical contaminants, microbial

pathogens, and adulterants in global food supply chains. This review critically evaluates five advanced

technologies—hyperspectral imaging (HSI), electrochemical sensing, infrared spectroscopy, surface-

enhanced Raman scattering (SERS), and fluorescence sensing—highlighting their operational principles,

validation milestones, and applications across diverse food matrices. Despite remarkable progress,

several methodological gaps remain, including signal instability in heterogeneous samples, limited

algorithm generalizability, and the lack of standardized validation protocols. Furthermore, real-time

field deployment faces challenges such as sensor miniaturization, environmental robustness, and cost

constraints. Emerging hybrid platforms such as HSI-SERS and electrochemical-fluorescence systems

demonstrate promising synergistic advantages, offering enhanced specificity and multiplexing

capabilities. Future directions emphasize integration of AI-driven analytics, IoT-enabled portable

devices, and novel functional materials to address existing limitations. By bridging technological

innovation with regulatory needs, this review underscores the potential of non-destructive

technologies to build scalable, sustainable food safety solutions.
1 Introduction

Globalization and shiing consumption patterns have amplied
food safety risks, positioning it as a critical challenge to public
health and economic stability.1,2 Recent decades have witnessed
recurrent food safety incidents involving chemical contaminants,
unauthorized additives, pathogenic microorganisms, and pesti-
cide residues, collectively threatening consumer well-being and
eroding trust in food systems.3,4 These concerns have prompted
substantial investments by governments, industries, and research
institutions in advanced quality control frameworks spanning the
production, processing, and distribution stages.5,6

Traditional food safety evaluation predominantly relies on
destructive analytical techniques such as chromatography,
culture-based microbiological assays, and physicochemical
testing.7 While these methods provide benchmark accuracy, they
present inherent limitations: extensive sample preparation,
analysis durations ranging from several hours to days, high
operational costs, and dependence on skilled personnel.8,9

Moreover, destructive sampling precludes real-time monitoring
and introduces representativeness errors, particularly in hetero-
geneous foodmatrices.10 These constraints underscore the urgent
angsu University, Zhenjiang 212013, P. R.
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need for rapid, non-invasive analytical solutions capable of in situ
implementation without compromising analytical rigor.11

Recent advances in optical and electrochemical sensing
technologies present paradigm-shiing opportunities. Hyper-
spectral imaging (HSI) synergizes spatial and spectral data
across ultraviolet to near-infrared wavelengths (250–2500 nm),
enabling non-contact detection of surface contaminants,
compositional gradients, and structural defects in agricultural
products.12 Electrochemical biosensors achieve parts-per-
billion sensitivity for heavy metals, antibiotics, and microbial
toxins through tailored bioreceptor-functionalized electrodes,
offering portable alternatives to laboratory-based instrumenta-
tion.13 Infrared spectroscopy technology, especially near-
infrared spectroscopy (NIR) and Fourier transform trans-
mission infrared spectroscopy (FTIR), has demonstrated
signicant potential in food quality control, composition anal-
ysis, and processing monitoring.14 Surface-enhanced Raman
spectroscopy (SERS) technology provides specic chemical
ngerprint information by exciting molecular vibrational
modes, enabling precise analysis of trace components in food.
It is especially suitable for detecting organic compounds in
complex food matrices.15 Fluorescence sensing technology
utilizes the excitation and emission properties of substances for
signal output, enabling the detection of various components in
food (Table 1).16
Anal. Methods, 2025, 17, 4697–4717 | 4697
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Table 1 The principles of advanced technologies and their test objects, as well as their applications in food

Technical term Detection principle Target object Applications in food

HSI By capturing a wide spectrum of
light across different wavelengths,
enabling the identication of
chemical composition and quality
based on spectral signatures

Food freshness, moisture content,
food contaminants, soluble solids
content, volatile basic nitrogen,
pesticide residues, heavy metals,
mycotoxins

Grapes, pork, egg, citrus, lettuce
leaves, wolerry fruits, corn
leaves, cantaloupes, sorghum,
rapeseed leaves, rice, tomato
leaves, corn starch, wheat

Electrochemical
sensing

Bymeasuring the electrical signals
generated from the interaction
between food components and an
electrode, providing insights into
chemical composition or
contaminants

Mycotoxins, heavy metal ions,
pesticide residues

Milk, rice, shiitake mushrooms,
dairy products, ganoderma
lucidum, pomegranate

Infrared spectroscopy By analyzing the absorption of
infrared light at different
wavelengths, revealing
information about the molecular
structure and composition of
the food

Soluble solid content, volatile
basic nitrogen, mycotoxins, food
freshness, heavy metal, pesticide
residues

Corn, apples, eggs, watermelon
seeds, tea leaves, wheat grains and
our, corn oil, craysh,
aristichthys nobilis, pork,
peanuts, rice, strawberries,
cabbage

SERS By utilizing surface plasmon
resonance to amplify Raman
signals, allowing for highly
sensitive identication of
chemical components and
contaminants at the molecular
level

Toxins, pesticide residues Tea leaves, apples, corn oil, palm
oil, beef, rice, pears, bananas,
citrus

Fluorescence sensing By measuring the uorescence
emitted when food components
absorb specic wavelengths of
light, providing insights into their
chemical properties and detecting
contaminants

Pesticide residues, neurotoxin,
carcinogen acrylamide, heavy
metals, mycotoxins

Rice, cabbage, milk, pork,
amaranth

Scheme 1 A comprehensive summary of the principles and applications of non-destructive analytical technologies.
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This review critically examines the mechanisms, validation
benchmarks, and practical challenges of non-destructive tech-
nologies, establishing structure–property-application
4698 | Anal. Methods, 2025, 17, 4697–4717
relationships for diverse food hazards (Scheme 1). We propose
a decision-making framework for technology selection tailored
to specic safety scenarios and highlight synergistic
This journal is © The Royal Society of Chemistry 2025
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opportunities between AI-driven spectral analysis and
blockchain-enabled traceability systems. By integrating multi-
disciplinary advancements, this work aims to accelerate the
translation of analytical innovations into scalable, environ-
mentally sustainable food safety infrastructure, ensuring
compliance with global standards while minimizing economic
and ecological burdens.
2 HSI in food safety and quality
assessment
2.1 Fundamental principles of HSI

HSI is a powerful analytical technique that captures a wide
spectrum of light from an object, providing detailed spectral
information across multiple wavelengths.17 This technology is
particularly valuable in food quality assessment, as it allows for
non-destructive evaluation of various attributes, including the
freshness, contamination, and quality of food.18 HSI operates by
collecting data from numerous continuous spectral bands, typi-
cally in the visible to near-infrared range (400–1000 nm). A typical
HSI system comprises a spectrometer, a camera with lenses,
lighting devices, a motor-driven movable platform, and
a computer with image acquisition soware (Fig. 1a).19 Each pixel
in a hyperspectral image corresponds to a spectrum representing
the reected light. This spectral information reveals insights into
Fig. 1 (a) Hypersectral imaging system.19 (b) Selection of feature band im
and Genetic Algorithm (GA).23 (c) Structure of conventional CNN and du

This journal is © The Royal Society of Chemistry 2025
the chemical composition and physical properties of the
analyzed food sample.20 For example, the reectance spectrum
may be inuenced by factors such as moisture content, sugar
levels, and the presence of contaminants or defects.

The acquisition of hyperspectral data requires the use of
specialized cameras capable of capturing images across a wide
range of wavelengths.21 Once the images are acquired, various
data processing techniques are applied to extract meaningful
information. Common techniques include the use of standard
normal variate (SNV) for spectral data normalization and vari-
able selection methods, such as iteratively retained informative
variables. These preprocessing steps are crucial for improving
the accuracy and reliability of subsequent analysis. The work-
ow typically also involves various chemometric methods
(Fig. 1b), which help interpret spectral information. For
example, Support Vector Regression (SVR) has been widely used
to predict specic quality indicators, the total soluble solids
(TSS)in grapes22 and total volatile basic nitrogen (TVB-N) in
pork.23 These models use spectral data to provide a quantitative
assessment of food quality, enabling fast and effective
evaluations.

Recent advancements in deep learning have further
enhanced the capabilities of HSI. For example, a dual-branch
convolutional neural network (CNN) has been proposed to
quantify pork freshness, achieving a high prediction accuracy
ages from hypercube via synergy interval partial least squares (Si-PLS)
al-branch CNN.24

Anal. Methods, 2025, 17, 4697–4717 | 4699
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with R2 = 0.9579 (Fig. 1c).24 This approach demonstrates how
machine learning techniques can be integrated with hyper-
spectral data to produce better results in food quality
assessment.

In conclusion, HSI represents a signicant advancement in
non-destructive food quality assessment. It captures detailed
spectral information and, combined with sophisticated data
analysis techniques, provides a powerful framework for evalu-
ating various quality attributes in food. Ongoing research in this
eld continues to expand its applications, paving the way for
more precise, efficient, and scalable food safety and quality
control strategies.
2.2 Applications in food quality monitoring

2.2.1 Real-time freshness and spoilage evaluation. HSI has
become a powerful tool for assessing the freshness and quality of
various foods. In the prediction of egg freshness, Yao et al.
demonstrated the effectiveness of HSI in detecting egg freshness,
scattered yolks, and eggshell cracks. By utilizing a quantitative
model based on Extreme Gradient Boosting (XGBoost), they
achieved a coefficient of determination (R2) of 0.91 in predicting
egg freshness, indicating high accuracy in non-destructive
assessment.25 A study employed HSI combined with chemo-
metric methods to achieve nondestructive and rapid classica-
tion of egg freshness. By applying preprocessing, characteristic
wavelength selection, and a support vectormachine (SVM)model
optimized using a GA, the IRIV-GA-SVM model achieved classi-
cation accuracies of 99.29% and 97.87% for the training and
testing sets, respectively.26 Yao et al. utilized HSI combined with
outlier elimination methods based on leverage and Cook's
distance to achieve nondestructive detection of the Haugh unit of
eggs. Characteristic wavelengths within the range of 530–800 nm
were selected using the Successive Projections Algorithm (SPA)
and Bootstrapping So Shrinkage (BOSS) algorithm, and aHarris
Hawks Optimization-Support Vector Regression (HHO-SVR)
model was developed. The results showed that the HHO-SVR
model yielded the highest prediction accuracy (Rp

2= 0.9523,
RMSEP = 3.0423). Furthermore, validation with brown-shelled
eggs conrmed the model's generalizability, highlighting the
potential of hyperspectral imaging technology in egg freshness
assessment.27

In the prediction of pork freshness, Sun et al. proposed
a novel approach that integrates a CNN with two-dimensional
correlation spectroscopy (2D-COS). By enhancing the model's
predictive capability for pork TVB-N content through synchro-
nous–asynchronous feature interaction, the method achieved
high-precision detection (Rp = 0.9579, RMSEP = 0.8093mg/
100 g).24 A supplementary study by Li et al. highlighted the
importance of combining HSI with colorimetric sensors to
measure TVB-N content in pork. Their novel back propagation
adaptive boosting (BP-AdaBoost) algorithm achieved a predic-
tion ratio of 2.885 and a calibration coefficient of 0.932, con-
rming the advantages of combining multiple sensing
technologies.23 Tang et al. integrated hyperspectral information
with image texture information to analyze the quality charac-
teristics of a large number of pork samples. Aer adding texture
4700 | Anal. Methods, 2025, 17, 4697–4717
information, the prediction accuracy for all attributes of the
pork samples improved by varying degrees, increasing from the
original 1.5% to 16.4%.28 Cheng et al. utilized visible near-
infrared hyperspectral imaging (vis-NIR HSI) and uorescence
hyperspectral imaging (F-HSI) technologies combined with
a Gaussian process regression (GPR) model to achieve non-
destructive detection of lipid oxidation in frozen pork. The F-
HSI model demonstrated slightly superior predictive accuracy
(Rp

2= 0.9726, RMSEP= 0.0182mg kg−1). By generating pseudo-
color distribution maps of TBARS values utilizing the F-HSI
model, the feasibility of F-HSI for quantitative monitoring and
visualization of lipid oxidation in pork was validated (Fig. 2a).29

These studies demonstrate that HSI can effectively evaluate
pork freshness. In addition to freshness testing, HSI has also
been successfully used to monitor other quality attributes.

In food quality assessment, Dong et al. proposed a single-
threshold segmentation strategy based on HSI combined with
principal component analysis (PCA) of characteristic wave-
lengths and the B-spline lighting correction method, achieving
high-precision detection of thrips defects on green-peel citrus
with an accuracy of 96.5%.30 In addition, non-destructive assay
of lettuce moisture content has been explored using HSI,
demonstrating the versatility in the quality assessment of
different foods.31 Hu et al. pioneered the integration of HSI with
machine learning methods, optimizing Vis-NIR band data and
utilizing an random forest-partial least squares regression (RF-
PLSR) model to achieve rapid, non-destructive evaluation and
visualization of matcha quality (classication accuracy 98.10%,
Rp

2 > 0.95).32 Nirere et al. achieved non-destructive and rapid
detection of sulfur-adulterated wolerries using hyperspectral
imaging technology combined with competitive adaptive
reweighted sampling (CARS) feature wavelength selection and
a genetic algorithm-optimized SVM model, with both training
and test set accuracies reaching 100%.33

2.2.2. Contaminant identication in complex food
matrices. HSI plays a crucial role in detecting contaminants in
food. In terms of pesticide residues, Sun et al. adopted HSI
combined with CARS and random forest-recursive feature elimi-
nation (RF-RFE) feature wavelength selection strategies. Through
secondary optimization with SPA and least squares support vector
regression (LSSVR) modeling, they achieved non-destructive
quantitative detection of mixed pesticide residues
(fenvalerate: Rp

2 = 0.8890, RMSEP = 0.0182; dimethoate: Rp
2 =

0.9386, RMSEP = 0.0077) in lettuce leaves.34 Xiao et al. analyzed
the residue levels in six resistant and sensitive maize varieties
under two herbicide concentrations, classifying the residues into
low, medium, and high categories. They developed the HerbiR-
esNet model leveraging spectral data to predict and categorize
herbicide residues in maize leaves. The experimental results
demonstrated that the HerbiResNet model achieved a determina-
tion coefficient (R2) of 0.88 for residue prediction and an accuracy
of 0.87 for residue level classication on the test set, signicantly
outperforming traditional regression models and classical neural
networks (Fig. 2b).35 Bian et al. employed microuorescence
hyperspectral imaging (MF-HSI) technology combined with
machine learning methods. By screening characteristic wave-
lengths using CARS, GA, and SPA, and integrating key color
This journal is © The Royal Society of Chemistry 2025

https://doi.org/10.1039/d5ay00647c


Fig. 2 Schematic diagram of the applications hyperspectral imaging technology. (a) Architecture of the F-HIS and VNIR-HSI systems for pork
freshness assessment.29 (b) Deep learning-driven herbicide residue detection system and workflow for agricultural product monitoring.35
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features (G, B, V, L), they achieved high-precision identication of
three pesticide residues, including Beta-Cypermethrin, in Hami
melons. The results showed that the SPA-PLS-DA model, which
fused spectral and image features, achieved a testing set accuracy
of 93.48%, signicantly outperforming single-spectrum models.36

By combining HSI technology with stacked ensemble learning
(SEL) models, Peng et al. developed a rapid method for analyzing
pesticide residues in sorghum, with RMSEP and R2 values of
0.6940 mg kg−1 and 0.9798, respectively.37 These studies demon-
strate the assay effectiveness of HSI in pesticide residue.

In the eld of heavy metals, Cao et al. developed a method
based on visible-near infrared hyperspectral technology, utilizing
This journal is © The Royal Society of Chemistry 2025
an improved random frog algorithm (MRF) combined with
a Harris Hawks Optimizer (HHO)-optimized support vector
regression model (MRF-HHO-SVR), achieving non-destructive
and high-precision detection of Pb content in rape leaves (R2 =
0.9431, RMSEP = 0.1645 mg kg−1).38 Zhou et al. proposed a deep
learning framework based on wavelet transform (WT) and
stacked convolutional autoencoder (SCAE). Through multi-scale
decomposition and deep feature learning, they achieved high-
precision detection of compound heavy metals in lettuce leaves
(Cd: Rp

2 = 0.9319, RMSEP = 0.04988 mg kg−1; Pb: Rp
2 = 0.9418,

RMSEP= 0.04123 mg kg−1).39 Sun et al. achieved non-destructive
detection of lead pollution levels in lettuce leaves by combining
Anal. Methods, 2025, 17, 4697–4717 | 4701
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HSI with a deep belief network (DBN) model. Under four lead
stress gradients (0–200 mg L−1), the DBN model achieved 100%
accuracy on the training set and 96.67% on the test set, with the
separability of model features validated through t-SNE visuali-
zation.40 These studies indicated the effectiveness of HSI in
detecting heavy metals.

In the eld of mycotoxins detection, Sunli et al. achieved
non-destructive detection of the total number of mold colonies
in rice by integrating HSI with a GrayWolf Optimization (GWO)-
optimized support vector regression (GWO-SVR) model,
achieving determination coefficients of 0.9621 for the calibra-
tion set and 0.9511 for the prediction set.41 Zhang et al.
Fig. 3 Principle of electrochemical sensing technology. (a) Schematic of
sensor based on ABA/HPG/AuE for detecting acetamiprid.52 (c) Principle

4702 | Anal. Methods, 2025, 17, 4697–4717
established a recognition model for different levels of tomato
leaf blight using backpropagation neural networks (BPNN)
combined with NIR-HSI, terahertz absorbance, and power
spectra, achieving recognition rates of 95%, 96.67%, and 95%,
respectively. This highlighted the multifunctionality of HSI in
detecting various contaminants and diseases.42 Kim et al. inte-
grated visible-near-infrared (VNIR), short-wave infrared (SWIR),
and uorescence hyperspectral imaging technologies, employ-
ing SVM and partial least squares-discriminant analysis (PLS-
DA) models to achieve efficient screening of aatoxin and
fumonisin contamination, both individually and co-occurring,
in maize. Results demonstrated that the SWIR-SVM model
ECL aptamer sensor based on TDTN for detecting DON.51 (b) Aptamer
of the ECL sensor based on ssDNA/g-C3N4NS for detecting H2O2.53

This journal is © The Royal Society of Chemistry 2025
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achieved the highest classication accuracy (95.7%), signi-
cantly outperforming uorescence (89.1%) and VNIR (71.7%)
models.43 Teixido-Orries et al. applied NIR-HSI technology for
the rst time to detect T-2/HT-2 toxins in 119 naturally
contaminated oat samples. By combining PLS regression
models and classication algorithms, they found that
unground samples with SNV combined with rst-derivative
pretreatment achieved the best prediction performance (R2 =

0.64, RMSECV= 157.80 mg kg−1). The study conrmed that NIR-
HSI, combined with characteristic wavelengths (1038, 1110, and
1393 nm), enables rapid and non-destructive screening of oat
toxins, offering a feasible alternative to traditional chemical
detection methods, though further validation of the model's
generalization ability is needed.44 Wang et al. also utilized NIR-
HSI to predict DON content in wheat. These studies all
demonstrated strong prediction coefficients, proving the effec-
tiveness of HSI in the detection of mycotoxins.45
3 Electrochemical sensing for food
safety analysis
3.1 Design and fabrication of electrochemical sensors

Electrochemical sensors are widely used analytical tools in the
eld of food safety monitoring.46 Their fundamental principle is
to detect target analytes by measuring changes in electro-
chemical parameters, such as current, voltage, or conductivity.47

A typical electrochemical sensor consists of a working electrode,
a reference electrode, and an auxiliary electrode. By monitoring
the current generated during the reaction, the concentration of
the target substance can be determined.48 Additionally,
biomolecular recognition elements can be modied onto the
sensing interface for selective recognition.49 Common electro-
chemical measurements include potentiometry, cyclic voltam-
metry (CV), electrochemical impedance spectroscopy (EIS),
square wave voltammetry (SWV), and differential pulse vol-
tammetry (DPV).50

Regarding food assay, key concepts of electrochemical
technology include sensitivity, selectivity, and detection limit
(LOD). Sensitivity refers to the relationship between the
response intensity and target concentration. A highly sensitive
sensor with high sensitivity can reliably detect the target
substance at low level. For example, studies have shown that an
electrochemiluminescence (ECL) sensor based on Ti3C2 points
and Ti3C2 nanosheets can detect deoxynivalenol (DON) with
a detection range of 0.001–20 ng mL−1 and a LOD of 0.3 pg
mL−1 (Fig. 3a).51 This demonstrates the sensor's capability to
accurately identify DON even at extremely low concentrations.

Selectivity refers to the ability of a sensor to accurately
identify target substance in the presence of interfering
substances. Improving selectivity is typically achieved through
specic modifying materials or biomolecular recognition
elements. For example, electrochemical sensors using func-
tionalized gold nanoparticles and specic aptamers have shown
high selectivity and sensitivity in detecting pesticide residues in
food (Fig. 3b).52 This enables effective discrimination of the
This journal is © The Royal Society of Chemistry 2025
target analyte from background interference in complex
matrices such as fruits, vegetables, and meats.

The LOD refers to the lowest concentration at which the
sensor can reliably detect a substance. This parameter is
particularly important for food safety monitoring, as many
harmful substances are present in extremely low concentrations
in food. For example, a non-enzymatic ECL sensor based on
single-stranded DNA (ssDNA) and graphene carbon nitride
nanosheets (g-C3N4NS) hybrids has achieved a LOD as low as 33
aM, which is much lower than most of the reported methods
(Fig. 3c).53 Such a low LOD allows the sensor to achieve fast and
accurate assay in food safety monitoring.

Regarding sensor construction, several studies have exploi-
ted composite materials to enhance the performance of elec-
trochemical sensors. For example, Wang et al. utilized amino-
functionalized metal–organic frameworks (UiO-66-NH2)
combined with multi-walled carbon nanotubes (MWCNTs) to
fabricate a high-performance electrochemical sensor for lead
ion detection, demonstrating excellent sensitivity and a wide
linear range.54 Liu et al. constructed a competitive dual-mode
aptamer sensor for the detection of acetamiprid (ACE) resi-
dues in vegetables. By employing 3,5-dicarboxyphenylboronic
acid (5-bop) as the ligand, a bimetallic RuZn-based metal–
organic framework (RuZn-MOF) was synthesized through
a hydrothermal approach, which facilitated highly sensitive
dual-mode detection of ACE via ECL and electrochemical (EC)
techniques.55 Zhang et al., based on functionalized carbon
nanotubes loaded with thiosulfo-mannose dimers, designed
a competitive recognition principle to create an electrochemical
biosensor.56 Shu et al. synthesized an iron-rich FeCoNi-MOF
using a one-step hydrothermal pattern for in situ modication
of a nickel foam working electrode, enabling high-sensitivity
detection of imidacloprid (IMI).57 These studies demonstrate
that the use of composite materials consistently improved
sensor performance. Although the construction methods of the
sensors share similarities, the research results exhibit signi-
cant differences, which may stem from variations in material
selection, sensor design, and signal amplication mechanisms.
3.2 Targeted detection of food hazards

3.2.1. Detection of mycotoxins. The application of electro-
chemical sensing toward mycotoxins demonstrates their supe-
rior sensitivity and wide detection range. According to research,
Kaur et al. designed a highly selective and sensitive electro-
chemical sensor for detecting aatoxins (AFM) by modifying
a screen-printed carbon electrode with functional nano-
composites of molybdenum disulde (MoS2) quantum dots
(QDs) and zirconium-based metal–organic frameworks (MOF),
that is, UiO-66-NH2. The results showed that the calibration
curve for AFM exhibited a quantiable lower limit of 0.06 ng
mL−1 within a concentration range of 0.2–10 ng mL−1.58 Liu
et al. used high-affinity aptamers to measure mycotoxins, and
also found that aptamers with different sequences exhibited
varying sensitivities in electrochemical assays. Among them, the
A22 aptamer showed a good linear range and LOD in the
analysis of apple products (such as juice and puree), further
Anal. Methods, 2025, 17, 4697–4717 | 4703
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validating the broad application of electrochemical sensors in
food safety detection.59 In addition, Jiang et al. used a dual-
signal strategy with Co-MOF and toluidine blue tags to detect
ochratoxin A (OTA). The results showed that the LOD was as low
as 0.31 fg mL−1 within a linear range of 1–50 ng mL−1.60 These
studies indicate that electrochemical sensors are effective and
widely applicable in the detection of mycotoxins.

3.2.2. Detection of heavy metal ions. Research on the
detection of heavy metal ions in food based on electrochemical
sensing technology has been increasingly growing. For example,
Hormozi Jangi et al. developed a highly sensitive and selective
strategy for the detection of Cd2+. The study rst synthesized
sodium aluminate nanostructures via a sol–gel method
combined with a green synthesis route. These nanostructures
were then utilized to fabricate a modied nanostructured
sensor. The performance of the sensor was evaluated using
DPV, achieving a remarkable LOD of 1.10 nM for Cd2+.61 Zhang
et al. developed a light-addressable potentiometric sensor
(LAPS) to detect Cd2+ in rice.62 Xu et al. designed a polymer-dot
(Pdots)-based aggregation-induced ECL sensing toward Cd2+.
This sensor demonstrated excellent capabilities for Cd2+ in
ganoderma lucidum, with a LOD as low as 0.006 ppb.63 In
addition, Zhang et al. developed a reagent-free, one-step elec-
trochemical aptamer sensor for detecting Hg2+ in dairy prod-
ucts.64 Huang et al. utilized the mimic catalytic activity of
porphyrin-encapsulated MOF (PorMOF) as a signal probe to
prepare an electrochemical aptamer sensor, successfully
detecting Ag+ in shiitake mushrooms.65 Lu et al. designed an
electrochemical sensor for detecting Pb2+ in pomegranate based
on a DNAzyme receptor and Fenton-like MOF.66 These studies
demonstrate high selectivity and good assay performance,
further emphasizing the importance of electrochemical sensing
toward heavy metal ions.

3.2.3. Detection of pesticide residues. Electrochemical
sensors show broad application potential in detecting pesticide
residues. For example, a non-precious metal-based photo-
electrochemical (PEC) sensor has been developed for analyzing
chlorpyrifos, exhibiting ultra-high sensitivity and selectivity in
fruits and vegetables. The detection range is from 1 × 10−3 to
1 ng L−1, with a LOD of 0.33 pg L−1, showing excellent repeat-
ability and stability.67 Notably, Zhao et al. have shown that
graphene nanoribbons (DGNR), as a novel electrode material,
also exhibit excellent performance in detecting methyl para-
thion (MP), with a LOD of 4.3 nM and a linear range of 0.01 to
25.0 mM, further expanding the application potential of elec-
trochemical sensors in pesticide residue detection.68 Devi et al.
designed an electrochemical sensor for detecting malathion
using a novel B-CuO/g-C3N4 ternary nanocomposite, with a LOD
as low as 1.2 pg mL−1.69 Rashed et al. used silver nanoparticles
(AgNPs) onto mesoporous carbon and naturally extracted
hematite (Ag@Meso-C/Hematite Ore) to sensitively and selec-
tively measure imidacloprid (IMC), with a LOD of 0.257 mM.70

These studies demonstrate that electrochemical sensors
possess high specicity and good capability in the detection of
pesticide residues.
4704 | Anal. Methods, 2025, 17, 4697–4717
4 Infrared spectroscopy in food
safety and quality assessment
4.1 Theoretical basis and spectral data modeling

Infrared spectroscopy is an analytical method based on the
principle of interaction between substances and infrared radi-
ation.71 It provides information about molecular structure and
chemical composition by measuring the infrared spectrum
absorbed by a sample.72 Commonly used infrared spectroscopy
techniques include FTIR and NIR.

NIR spectroscopy detects overtone and combination bands
of molecular vibrations in the wavelength range of 800–
2500 nm, particularly those associated with C–H, N–H, and O–H
bonds.73 Owing to its rapid analysis and minimal sample
preparation requirements, NIR is widely adopted for real-time
food composition analysis and quality control. In contrast,
FTIR primarily operates in the mid-infrared region (2.5–25 mm,
4000–400 cm−1), where fundamental molecular vibrations
occur, enabling detailed characterization of chemical structures
and environmental interactions.

As for infrared spectroscopy data analysis, the application of
chemometric patterns has gradually gained attention, espe-
cially in the construction and optimization of quantitative
models.74 Partial Least Squares Regression (PLS) is one of the
most commonly used chemometric methods. It enhances the
predictive ability of the model by extracting the correlation
between the independent and dependent variables into latent
components.75 In a study, researchers used a portable near-
infrared spectrometer SVM to construct quantitative models
for fumonisin B1 and B2 in corn samples.76

Feature variable selection is a key step in improving the
predictive accuracy of infrared spectroscopy models. By
reducing irrelevant or redundant variables, the performance
and interpretability of the model can be enhanced.77 For
example, CARS is an effective feature selection that chooses the
optimal variables through weighted sampling and adaptive
resampling. Studies have shown that when CARS is combined
with PLS, it can signicantly improve the predictive ability of
the model. Specically, the CARS-PLS model performed excel-
lently in detecting the water core density and soluble solid
content in apples, with Rp values and RMSEP values signi-
cantly lower than those of other models (Fig. 4a).78 At the same
time, Yao et al. pointed out that using a low-cost portable NIR
spectrometer to detect the S-ovalbumin content in eggs, the
model population analysis based on the Competitive Adaptive
Reweighted Sampling (MPA-CARS) algorithm showed that its
feature extraction performance was superior to that of CARS.
The nal simplied XGBoost model based on MPA-CARS
feature wavelengths performed the best, with an R2 of 0.906
and an RMSEP of 7.799%.79 This indicated the effectiveness and
applicability of patterns like CARS and PLS in infrared spec-
troscopy data analysis.

Meanwhile, the improved algorithms based on feature
selection, such as the combination of Collaborative Interval PLS
(Si-PLS) with CARS, have also been widely studied. When
detecting myoglobin content in frozen pork, the Si-CARS-PLS
This journal is © The Royal Society of Chemistry 2025
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Fig. 4 (a) Flow chart of the experimental procedure to detect apple SSC and watercore degree by NIR system and using SI, GA, CARS, and SPA
variable selection for building PLS models.78 (b) Schematic illustration of detection of myoglobin content in pork meat during frozen storage
using Vis-NIR spectroscopy.80
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model showed Rp values above 0.8578, demonstrating its
effectiveness and reliability in selecting important feature
variables (Fig. 4b).80 In addition, another study by Sun et al. used
NIR-HSI to assess the viability of watermelon seeds. The SVM
model achieved a 100% prediction accuracy, indicating that the
HSI technology combined with the PCA-ABC-SVM model has
practical application value in agricultural seed detection.81

Therefore, feature variable selection not only improves the
predictive accuracy but also effectively reduces the complexity of
data processing, promoting the application of infrared spec-
troscopy in food safety testing.
This journal is © The Royal Society of Chemistry 2025
4.2 Application of infrared spectroscopy technology in food
safety and quality assessment

4.2.1. Agricultural product quality monitoring. Infrared
spectroscopy technology has gained widespread attention in
agricultural product quality monitoring, particularly in the
detection of diseases and contaminants in major crops such as
tea, corn, and wheat. Research has shown that infrared ther-
mography technology can be effectively employed for detecting
tea leaf diseases. Specically, Yang et al. developed a fast
method for detecting diseased areas in tea leaves using
computer vision algorithms and infrared thermographic image
Anal. Methods, 2025, 17, 4697–4717 | 4705
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Fig. 5 Schematic diagram of infrared spectroscopy in different applications. (a) Detection of volatile organic compounds in adulterated tea using
FTIR and PTR-MS.83 (b) Non-destructive and in situ detection of shrimp freshness using mid-infrared fiber-optic evanescent wave spectros-
copy.90 (c) Detection of chlorpyrifos and carbendazim residues in the cabbage using Vis/NIR combined with chemometrics.100
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processing techniques. The study found that the grayscale
distribution of infrared images of tea leaf diseases has a certain
regularity with the disease area. By extracting two feature
parameters and applying them to a classier, the assay accuracy
was improved, with a correlation coefficient reaching 0.97,
which is a 2% improvement over traditional algorithms.82 In
addition, Yang et al. utilized proton–transfer reaction mass
spectrometry (PTR-MS) and FTIR to rapidly identify tea-
adulterated liquid essences by detecting volatile organic
compounds (VOCs). Results demonstrated prediction accura-
cies exceeding 0.941 for PTR-MS and 0.957 for FTIR, with LODs
below practical application thresholds (Fig. 5a).83

In the case of corn, Wang et al. designed a NIR spectral
acquisition device to assess protein content and insect infes-
tation in maize seeds. In this study, SVM, logistic regression
(LR), and partial least squares discriminant analysis (PLS-DA)
were employed for the classication of insect-infested seeds,
while PLS and least squares support vector machine (LS-SVM)
were utilized for protein content detection. To reduce data
redundancy and extract critical information, CARS and SPA
were applied for feature wavelength selection. For the classi-
cation of insect-infested seeds, the CARS-SPA-LR model ach-
ieved an accuracy of 0.83 using only 7 feature wavelengths.84 A
study by Jiang et al. explored the combination of NIR and nano-
modied colorimetric sensors for monitoring heavy metals
(such as lead and mercury) in corn oil samples. The study
showed that the developed sensor exhibited good accuracy in
detecting heavy metals at low concentrations (10–100 ppb), with
correlation coefficients of 0.9793 and 0.9510 for the prediction
models, and LOD of 5 and 7 ppb, respectively.85 Zheng et al.
developed a method using NIR to detect Versicolorin A in corn.
4706 | Anal. Methods, 2025, 17, 4697–4717
This method combined XGBoost with SVM to establish both
a quantitative and a secondary classication approach. The root
mean square error (RMSE) of the quantitative model prediction
was 3.57 mg kg−1, and the accuracy of the ranking method was
90.32%.86

In the case of wheat, Lin et al. proposed a novel method
combining colorimetric sensors (CS) with VNIR to detect vola-
tile markers in wheat infected by Aspergillus avus. They
established a Collaborative Interval Partial Least Squares (Si-
PLS) model, with a correlation coefficient (Rp) of 0.9387 for
the prediction model.87 Zhao et al. combined CS with NIR to
detect zearalenone (ZEN) in wheat and established a CNN
model. The CNN model demonstrated superior predictive
performance, with a coefficient of determination (R2) of 0.91.88

Almoujahed et al. used VNIR and mid-infrared spectroscopy
(MIR) for non-destructive detection of Fusarium Head Blight
(FHB) in wheat grains and our.89 These studies not only
provide a fast and reliable method for agricultural product
quality monitoring but also offer important references for
research in related elds.

4.2.2. Food freshness evaluation. Infrared spectroscopy
technology has also shown good application prospects in food
freshness evaluation, especially in the monitoring of foods such
as seafood and meat. Taking seafood as an example, Zhou et al.
used mid-infrared ber-optic evanescent wave (FOEW) spec-
troscopy to monitor the freshness of shrimp. By assessing the
content of proteins, chitin, and calcite in the shrimp shells with
the PLS-DA model, the researchers successfully achieved rapid,
non-destructive detection of shrimp freshness. The results
demonstrated that the PLS-DA model achieved recognition
rates of 87.27% and 90.28% for the calibration and validation
This journal is © The Royal Society of Chemistry 2025
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sets, respectively (Fig. 5b).90 Han et al. developed a non-
destructive detection method for multiple freshness indicators
(whiteness W, total volatile basic nitrogen TVB-N, and total
viable count TVC) of craysh during cold storage using NIRS
integrated with deep learning. By comparing partial least
squares regression (PLSR) and 1D convolutional neural network
(1D-CNN) models, they found that the 1D-CNN model achieved
optimal performance in predicting TVB-N and TVC, with Rp

2

values of 0.9397 and 0.9318 and RPD > 2.75, respectively,
demonstrating superior accuracy in spectral analysis.91 Zhou et
al. developed a non-destructive and rapid detection method for
freshness indicators (pH, TVB-N, TBARS, and K value) in
bighead carp using NIRS combined with the CARS algorithm to
optimize PLSR models. Based on 150 samples, the CARS-PLSR
models achieved robust performance, with prediction correla-
tion coefficients of 0.945 (pH), 0.932 (TVB-N), and 0.954
(TBARS), and RMSEP values below 0.107. These results vali-
dated the feasibility of NIRS technology for rapid freshness
assessment in sh, providing a practical tool for quality moni-
toring in aquatic products.92

In the case of meat, Ouyang et al. developed a portable Vis-
NIR spectroscopy system for rapid assessment of cooking loss
rate in frozen pork, comparing the prediction performance of
spectra from frozen and thawed states. Using the CARS-PLS
model, they achieved prediction correlation coefficients of
0.8154 for frozen pork and 0.8421 for thawed pork,
Fig. 6 Schematic illustration on MCu2O@Ag NPs-based SERS sensor
multivariate calibration.104

This journal is © The Royal Society of Chemistry 2025
demonstrating comparable accuracy for both conditions.93 Leng
et al. established quantitative prediction models for TVB-N
content in beef and pork using NIRS combined with PLS and
SVR for the rst time. The results showed that the PLS model
based on raw spectra achieved optimal performance with
a correlation coefficient of 0.9366 and a RMSEP of 3.15, while no
spectral preprocessing methods improved model performance.
In contrast, the SVR model exhibited weaker performance (R =

0.8314, RMSEP = 4.61). Variable Importance in Projection (VIP)
analysis revealed that amino-containing compounds and lipids
played critical roles in TVB-N prediction, highlighting their
contribution to the PLS model's accuracy.94 These studies
demonstrate that infrared spectroscopy can effectively predict
the freshness of food.

4.2.3. Detection of harmful substances in food. Infrared
spectroscopy technology, due to its advantages of efficiency,
speed, and non-destructiveness, has become one of the
important detection methods for harmful substances in food.
In the detection of mycotoxins, Caramês et al. explored the
potential of NIR technology in detecting and classifying the
content of Enniatins (ENNs) in barley grains. The study selected
60 barley samples from three different regions of Brazil, and the
ENN content was determined using Ultra-Performance Liquid
Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS).
Multivariate analysis models were constructed based on the
NIR spectral data. The experimental results indicated a high
and its detection and cleaning procedure of pesticides coupled with

Anal. Methods, 2025, 17, 4697–4717 | 4707
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detection rate of ENNs in the barley samples (>70%). By pro-
cessing the NIR data using PLS-DA models, the results
demonstrated that the model performed well in distinguishing
between contaminated and uncontaminated samples, with
a sensitivity of 100% and a specicity of 94.2%.95 Yao et al.
developed a portable mid-infrared spectroscopy (FT-IR)-based
non-destructive and rapid detection method for screening
aatoxin contamination in peanuts. By analyzing 274 peanut
kernels inoculated with Aspergillus avus strains and inte-
grating chemometric models such as orthogonal partial least
squares discriminant analysis(OPLS-DA), So independent
modeling of class analogies (SIMCA), and PLSR, the method
achieved high sensitivity (94.7%) in detecting samples with
aatoxin levels exceeding 3 ppb and demonstrated accurate
quantication (Rpre = 0.85, RPD = 6.2).96 These studies conrm
that infrared spectroscopy technology, as a rapid and efficient
detection method, holds signicant potential for application in
monitoring mycotoxin contamination.

In addition, in the eld of heavy metal assay, Lin et al.
explored a non-destructive detection method combining NIRS
and chemoselective responsive dyes for the quantication of
heavy metals Pb and Hg in edible oils. The olfactory visualiza-
tion system was used to screen dyes, and synthesized porous
silica nanospheres (PSNs) were employed to optimize the color
sensor. The spectral data were preprocessed using SNV, and
various chemometric models were applied to construct regres-
sion models. Among these, ant colony optimization- partial
least squares (ACO-PLS) achieved optimal performance within
the linear range of 0.001–100 ppm (Rp

2 = 0.9612), with a LOD of
#1 ppb.97 Miao et al. investigated the potential of NIRS
combined with chemometric techniques for the quantitative
analysis of Cd content in rice. By scanning 825 rice samples, the
Kennard–Stone method was used to divide the samples into
calibration and validation sets, and the spectra were
Fig. 7 Schematic diagram of SERS in different applications: (a) detectio
coupled multivariate calibration;106 (b) activated carbon@silver nanopa
molecules for SERS detection116

4708 | Anal. Methods, 2025, 17, 4697–4717
preprocessed using the rst derivative to reduce baseline dri.
The study compared the performance of various chemometric
algorithms (e.g., iPLS, MWPLS, SiPLS, and biPLS) for extracting
and optimizing spectral intervals, nding that the biPLS-based
model performed the best, with a RMSEP of 0.2133, a correla-
tion coefficient (R) of 0.9020, and a root mean square error of
cross-validation (RMSECV) of 0.1756.98 These studies prove that
NIR is feasible for heavy metal detection in food.

At the same time, in the eld of pesticide residue detection,
Arzu Yazici et al. developed NIR combined with PLSR for rapid,
non-destructive detection of boscalid and pyraclostrobin pesti-
cide residues in strawberries, achieving predictive RPD values of
2.28 and 2.31, respectively.99 Lu et al. used Vis/NIR combined
with chemometrics to quantitatively analyze the residues of
dichlorvos and carbendazim in cabbage. The quantitative
models were developed using PLSR and LS-SVM models, with
the LS-SVM model outperforming the PLSR model in deter-
mining pesticide residues in cabbage (Fig. 5c).100 Rodriguez-
Macadaeg et al. developed a LED-based near-infrared spec-
trometer for detecting pesticide residues of methyl parathion in
rough rice, and white rice.101 These studies indicate that
infrared spectroscopy is an excellent technique for non-
destructive detection of pesticide residues in fruits and
vegetables.
5 SERS for food safety analysis
5.1 Basic principle of SERS

SERS is a highly sensitive spectroscopic technique that signi-
cantly enhances Raman signal intensity through the surface
plasmon resonance (SPR) effect of metal nanostructures,
enabling trace-level molecular detection.102 The core principle
of this technique lies in the localized electromagnetic eld
enhancement generated on the surface of metal nanostructures
n of three main mycotoxins in rice using SERS optimized AgNPs@K30
rticles conjugates as SERS substrate for capturing malathion analyte

This journal is © The Royal Society of Chemistry 2025
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(such as gold, silver, etc.), which can amplify Raman scattering
signal intensity by 106 to 1014 times. The enhancement mech-
anisms of SERS are primarily divided into electromagnetic
enhancement and chemical enhancement, with electromag-
netic enhancement contributing approximately 104 to 1011

times, making it the dominant factor. Electromagnetic
enhancement mainly relies on the SPR effect of metal nano-
structures, while chemical enhancement involves charge
transfer processes between molecules and the substrate.103 For
example, silver-coated Cu2O mesoporous spheres (MCu2O@Ag
NPs) were used as a dual-function SERS chip, not only for the
rapid detection of pymetrozine and thiram pesticides in tea
samples but also for demonstrating photocatalytic activity in
degrading pesticides under visible light (Fig. 6).104
5.2 Targeted detection of food hazards

5.2.1. Detection of toxins. SERS technology has demon-
strated its superiority in the detection of toxins in food. For
example, Guo et al. presents a label-free and highly sensitive
detection approach for AFB1 utilizing SERS through a strategic
design of aluminum ion-induced aggregation of iodine-modied
silver nanoparticles, which generates localized electromagnetic
hotspots. The developed method achieves a LOD as low as 0.47 fg
mL−1, surpassing the sensitivity thresholds of conventional
detection techniques.105 Similarly, in the monitoring of multiple
mycotoxins, a sensor using functionalized AgNPs as SERS probes
demonstrated excellent sensitivity and accuracy, especially in
monitoring AFB1, OTA, and OTB in rice samples. The LOD were
1.145, 1.133, and 1.180 mg Kg−1, respectively, with good stability
and repeatability (Fig. 7a).106 Chen et al. used Au@SiO2 substrates
to establish a SERS-based lateral ow immunoassay for the
simultaneous detection of AFB1 and OTA. Through systematic
optimization of experimental conditions, the biosensor demon-
strated high sensitivity and reusability, with LOD of 0.24 pgmL−1

for AFB1 and 0.37 pg mL−1 for OTA, which are far below the LOD
set by the European Commission.107 Xu et al. prepared a gold–
silver bilayer@gold nanoparticle (Au–Ag Janus@Au NPs) SERS-
active substrate by regulating pH. This substrate has tunable
hollow nanostructures and enables sensitive and reliable assay of
trace amounts of staphylococcal enterotoxins in food, with a LOD
as low as 0.55 pg mL−1.108

In recent years, SERS technology for detecting ZEN have
emerged as a research hotspot, driven by their advantages in
sensitivity, rapidity, and non-destructiveness. Guo et al. developed
a SERS aptasensor by fabricating mesoporous silica-supported
gold nanocomposites (MSN-Rh6G-AuNPs) as the SERS substrate,
followed by aptamer functionalization, enabling highly sensitive
and quantitative detection of ZEN with a LOD as low as 0.0064 ng
mL−1.109 Yin et al. developed a SERS-based test strip utilizing core–
shell Au@Ag nanoparticles (Au@AgNPs) embedded with reporter
molecules (4-MBA) as SERS nanoprobes, achieving highly sensi-
tive detection of ZEN in corn with a detection range of 10–1000 mg
kg−1 and a LOD as low as 3.6 mg kg−1.110 Zhu et al. employed SERS
combined with a deep learning model to detect ZEN in corn oil,
with a LOD of 6.81 × 10−4 mg mL−1, demonstrating the potential
of SERS for application in complex matrices.111
This journal is © The Royal Society of Chemistry 2025
Additionally, Xue et al. developed a SERS aptasensor based on
a two-dimensional lm-like structure, utilizing GO@Au nano-
sheets as capture probes and core–shell Au@Ag nanoparticles as
signal probes. Through a competitive binding mechanism, the
sensor achieved highly sensitive detection of patulin (PAT) in
apples, with a detection range of 1–70 ng mL−1 and a LOD as low
as 0.46 ng mL−1.112 Guo et al. integrated SERS with the coffee-ring
effect to achieve high-throughput, label-free detection of PAT and
alternariol (AOH) in fruits and their products. By optimizing
drying temperature and droplet volume, a stable coffee-ring
structure was constructed, and synergy interval (Si) and genetic
algorithm (GA) were employed for variable selection. The method
demonstrated a LOD as low as 1 mg L−1, showcasing its potential
for rapid and sensitive mycotoxin analysis in complex food
matrices.113 Li et al. developed a exible paper-based SERS sensor
utilizing ower-like AgNPs combined with articial intelligence
tools, achieving picogram-level highly sensitive detection of
chloramphenicol (CAP) in food samples. The method demon-
strated a detection range of 102–10−5 mg mL−1 and a LOD as low
as 10−5 mg mL−1.114 Wu et al. developed a highly sensitive
competitive SERS sensor based on aptamer-modied Au@Ag
nanoparticles and gold nanostars (AuNSs) plasmonic nano-
composites, achieving rapid detection of PAT in apples and their
products with a LOD as low as 0.0281 ng mL−1.115 These studies
suggest that SERS technology shows great promise for the rapid
detection of toxins in food. It not only offers high sensitivity and
accuracy but also adapts well to complex foodmatrices, providing
strong support for food safety.

5.2.2. Detection of pesticide residues. Studies have shown
that, malathion, a commonly used organophosphate pesticide,
can cause damage to the nervous system of humans and
animals when exposed to high concentrations. Aheto et al.
developed a carbon-based colloidal surface-enhanced SERS
active substrate, demonstrating good quantitative analysis
capabilities of malathion (Fig. 7b).116 In addition, another study
used silver nanoowers as a SERS substrate to successfully
detect residues of chlorpyrifos and carbamate pesticides in rice.
The results showed a signicant linear relationship and low
LOD, indicating that this method is suitable for food safety
monitoring.117 At the same time, Ma et al. also demonstrated
a SERS immunosensor based on carbamates and thiame-
thoxam, which can achieve highly sensitive assay of pesticides
in complex environments. The LOD reached 1.22 mM and 0.076
mM, indicating the potential application of this sensor in food
safety testing.118 Bai et al. loaded AgNPs onto water-based
polyurethane (WPU) to prepare a high-viscosity WPU@AgNPs
substrate tape for detecting thiabendazole residues on the
surfaces of pears, apples, and bananas. The LOD were 1.44,
1.12, and 1.63 ng cm−2, respectively, making it a commonly
used pattern for rapid, ultra-sensitive detection of thiabenda-
zole residues in the eld.119 Pan et al. developed a SERS method
combining gold nanorods and chemometrics for the rapid
quantitative assay of thiabendazole (TBZ) in citrus, achieving an
accuracy of up to 99.17%.120

In addition, researchers have also explored the application
of other SERS substrates. For example, Sun et al. developed
a composite substrate modied with three-dimensional gold
Anal. Methods, 2025, 17, 4697–4717 | 4709
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Fig. 8 Principle and construction of fluorescent sensors: (a) principle diagram for TET detection based on MoS2 QDs and CdTe QDs;125 (b) the
QDs labeled antimorphine antibodies (QDs labeled Abs) fluorescence immunoassays;126 (c) illustration of the determination process of the PCN-
224 biosensor for rapid and sensitive detection of acrylamide.133
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nanodendrites (AuNDs) and AgNPs, which can sensitively
detect melamine and thiamethoxam in food samples, with
LOD of 7.38 mg L−1 and 86.1 mg L−1, respectively.121 In a study
4710 | Anal. Methods, 2025, 17, 4697–4717
by Wei et al., a method combining a polymer substrate with
gold–silver nanocomposites was successfully used for the
non-destructive assay of carbendazim on apple skins,
This journal is © The Royal Society of Chemistry 2025
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verifying excellent sensitivity and selectivity.122 Huang et al.
used a three-dimensional SERS substrate composed of AgNPs,
and polyacrylonitrile successfully detected carbendazim resi-
dues in apple samples, showing good recovery and relative
Fig. 9 Schematic diagram of fluorescence sensing technology in differe
tionalized red-emitting gold nanoclusters for monitoring the contaminat
based on carbon quantum dots with spectral selectivity for sensitive dete
based on Ce4+ oxidized o-phthalylenediamine and polyvinylpyrrolidone

This journal is © The Royal Society of Chemistry 2025
standard deviation.123 These studies indicate that SERS tech-
nology has broad application prospects in pesticide residue
detection, providing a rapid and sensitive means of ensuring
food safety.
nt applications. (a) pH and redox dual-response disulfide bond-func-
ion of organophosphorus pesticides in foods.135 (b) A fluorescent probe
ction of Cr(VI) and Hg(II).141 (c) A ratiometric fluorescence immunoassay
protected copper nanoclusters for the detection of aflatoxin B1.145
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6 Fluorescence sensing for food
safety analysis
6.1 Principle and construction of uorescence sensors

Fluorescence sensing technology utilizes the specic binding
between receptors and target analytes, leading to changes in
uorescence signals such as enhanced or quenched uorescence
intensity, blue shi or red shi of wavelength, etc., to achieve
detection of the target substance.124 There are variousmethods for
constructing uorescence sensors, which primarily depend on the
selection of uorescent materials and the design of the sensing
mechanism. In recent years, QDs have become popular materials
in uorescence sensor research. For example, Liang et al. devel-
oped a dual-signal uorescent sensor based on molybdenum
disulde quantum dots (MoS2 QDs, blue emission at 433 nm) and
cadmium telluride quantum dots (CdTe QDs, yellow emission at
573 nm) for highly sensitive detection of tetracycline (TET) inmilk
samples (Fig. 8a).125 Zhang et al. developed a uorescence
immunoassay (FLISA) based on quantum dot (CdSe/ZnS)-labeled
antibodies for highly sensitive detection of morphine (Fig. 8b).126

Fluorescent signal modulation mechanisms primarily
include “turn-on,” “turn-off,” and ratiometric sensing. The
“turn-on” mechanism refers to the enhancement of uores-
cence intensity upon the specic binding of the sensor to the
target analyte.127 This mechanism typically relies on the
suppression of static or dynamic quenching effects, such as
uorescence resonance energy transfer (FRET), inner lter
effect (IFE), or photoinduced electron transfer (PET). A partic-
ularly promising subclass of “turn-on” sensing is based on the
aggregation-induced emission (AIE) phenomenon, wherein
uorophores exhibit weak or no emission in the molecularly
dispersed state but emit strongly upon aggregation. AIE-based
sensors overcome the limitations of traditional uorophores
affected by aggregation-caused quenching (ACQ), offering
enhanced photostability, strong signal intensity in aqueous or
complex food matrices, and low background interference. Its
advantage lies in the amplied signal, which effectively mini-
mizes background interference and improves detection sensi-
tivity. However, the presence of other uorescent substances in
the environment may also cause non-specic enhancement,
potentially compromising specicity and reliability.128

In contrast, the “turn-off” mechanism is based on uores-
cence quenching, where the uorescence signal signicantly
decreases upon target recognition.129 This mechanism oen
utilizes static or dynamic quenching principles, such as p–p

interactions between quenchers and uorophores or energy
absorption by heavy metal ions. Its strength lies in its applica-
bility in high-background uorescence environments and, in
some cases, its broad linear detection range. However, the
decrease in uorescence intensity may be inuenced by envi-
ronmental factors, such as photobleaching or background
uorescence uctuations, leading to potential misinterpreta-
tion or reduced sensitivity.130

To address the limitations of single-signal uorescence
modes, ratiometric sensing has gained signicant attention.
Ratiometric sensing typically relies on the relative intensity
4712 | Anal. Methods, 2025, 17, 4697–4717
changes of two uorescence channels, where the presence of
the target analyte induces a quantiable ratio change rather
than mere enhancement or attenuation of a single channel.131

Common ratiometric designs include FRET-based probes, dual-
emission uorophore-labeled probes, and environmentally
responsive uorescent nanomaterials. Its advantages include
effective reduction of background uorescence interference,
improved accuracy and reproducibility, and a broader dynamic
detection range.132 For example, Gan et al. developed a ratio
uorescence biosensor based on 6-carboxyuorescein-labeled
aptamers (FAM-ssDNA) and the metal–organic framework
(PCN-224), which can detect the neurotoxin and carcinogen
acrylamide formed in food. The detection range is from 10 nM
to 0.5 mM, with a LOD of 1.9 nM, demonstrating its potential
application in thermally processed foods (Fig. 8c).133
6.2 Targeted detection of food hazards

6.2.1. Detection of pesticide residues. In recent years, the
application of uorescence sensors in the eld of food safety
has received widespread attention, especially with signicant
progress in the detection of pesticide residues. Research has
shown that uorescence-based sensors can achieve high
sensitivity and selectivity for detecting various pesticides. For
example, Qiu et al. developed a uorescence sensor based on
MIPs for detecting residues of the pesticide bifenthrin (BC). The
sensor uses SiO2 as a carrier and synthesizes FMIPs through
precipitation polymerization, showing a good linear relation-
ship within the concentration range of 10.11–80 nM, with
a correlation coefficient of 0.9919 and a LOD of 10.11 nM. This
research demonstrates the promising potential of FMIPs in the
detection of agricultural products.134 Li et al. developed a high-
performance uorescence sensor for detecting organophos-
phorus pesticides (OPs) based on hydrolysis-responsive disul-
de bond-functionalized gold nanoclusters (S–S–AuNCs)
(Fig. 9a).135 Zhang et al. focused on the development of a uo-
rescence sensor for carbaryl. The researchers used a combina-
tion of QDs and MIPs, modifying the surface of QDs through
electrostatic interactions to construct a QDs@MIP sensor.
During detection, the sensor exhibited selective recognition of
carbaryl and showed good correlation with the results of high-
performance liquid chromatography (HPLC) and enzyme-
linked immunosorbent assay (ELISA) methods (R2 = 0.98),
demonstrating its potential application in food safety detec-
tion.136 Ouyang et al. developed a highly sensitive biosensor for
carbendazim (CBZ) detection based on luminescent resonance
energy transfer (LRET) between upconversion nanoparticles
(UCNPs, donor) and manganese dioxide (MnO2, acceptor)
nanosheets. In the presence of CBZ, its specic binding to the
aptamer triggered the detachment of UCNPs-aptamer from
MnO2 nanosheets, resulting in uorescence recovery. The
sensor exhibited a linear response over the range of 0.1–5000 ng
mL−1, with a LOD as low as 0.05 ng mL−1.137

In addition,Wang et al. developed amultiplex biosensor based
on FRET that can simultaneously and selectively detect multiple
pesticides in food, such as paraquat and carbendazim. The sensor
exhibited good linear correlation and low LOD of 0.18 ng mL−1
This journal is © The Royal Society of Chemistry 2025

https://doi.org/10.1039/d5ay00647c


Critical Review Analytical Methods

Pu
bl

is
he

d 
on

 2
1 

 2
02

5.
 D

ow
nl

oa
de

d 
on

 1
4.

02
.2

6 
22

:3
7:

18
. 

View Article Online
and 0.45 ng mL−1, respectively.138 These research ndings indi-
cate that uorescence sensors offer high sensitivity, strong
selectivity, and ease of operation in pesticide residue detection,
providing effective technical support for food safety monitoring.
While uorescence-based sensors have demonstrated high
sensitivity for detecting trace levels of pesticide residues, their
real-world applicability still faces limitations. Fluorescence
quenching caused by pigments, polyphenols, or other matrix
constituents in fruits and vegetables can severely affect signal
stability. Moreover, most current systems rely on ideal lab
conditions, and their performance may vary signicantly under
eld conditions due to uctuations in temperature, humidity, and
light. Additionally, non-specic binding in antibody- or aptamer-
based sensors may lead to cross-reactivity with structurally similar
compounds, increasing the risk of false positives. To ensure
reliable detection, further improvements in selectivity, robust-
ness, and miniaturization are necessary for effective on-site
pesticide screening.

6.2.2. Detection of heavy metals. In recent years,
uorescence-based methods for detecting heavy metal ions have
garnered increasing attention, especially in the eld of food
safety monitoring. For example, a novel ratio uorescence probe
has been proposed for detecting Pb2+ in food, based on the
combination of copper nanoclusters (CuNCs) and nitrogen-
doped carbon quantum dots (CNQDs). In this probe, CuNCs
provide the response signal, with uorescence enhanced due to
the aggregation-induced emission enhancement (AIEE) effect in
the presence of Pb2+. Additionally, CNQDs offer a self-calibrating
signal, with uorescence remaining almost unchanged in the
presence of Pb2+. By monitoring the change in the uorescence
intensity ratio, sensitive detection of Pb2+ can be achieved, with
a detection range of 0.010–2.5 mg L−1 and a LOD of
0.0031 mg L−1. This study demonstrates a simple, stable, and
sensitive method for detecting Pb2+.139 Hassibian et al. developed
a sensitive uorescence aptamer sensor for detecting Pb2+ by
using hollow gold nanoparticles (HGNPs) as the nanocarrier and
rhodamine B (RDB) uorescence dye as the signaling agent.140

Fluorescent carbon QDs were synthesized using a hydrothermal
method with 3,5-dihydroxybenzoic acid and L-arginine. The
prepared uorescence sensor can detect Hg2+ in tap water and
lake water, with a LOD of 0.084 mm (Fig. 9b).141 In addition, Li
et al. designed a microuidic uorescence sensor array by
combining microuidic sensing and organic uorescence
switches, which enables real-time and synchronous visual assay
of multiple-component heavy metal ions.142

Wang et al. developed a dual-signal uorescent sensor based
on the cascade catalytic reactions of acetylcholinesterase (AChE)
and choline oxidase (ChOx) for highly sensitive detection of
OPs. This method exhibited a linear detection range of 10–2000
ng mL−1 with a detection limit as low as 2.05 ng mL−1. By
integrating smartphone-based color recognition and a WeChat
mini-program, it enabled rapid on-site analysis of OPs residues,
demonstrating signicant potential for practical applications in
food safety monitoring.143 These applications of uorescence
sensors in food safety evaluation further conrm their effec-
tiveness and potential in heavy metal monitoring. Despite the
excellent sensitivity of uorescence sensing in detecting metal
This journal is © The Royal Society of Chemistry 2025
ions like Hg2+, Pb2+, or Cd2+, selectivity remains a major chal-
lenge. Many uorescence probes suffer from interference by co-
existing metal ions with similar binding affinities, especially in
complex matrices such as tea, grains, or seafood. Furthermore,
the dependence on precise pH or ionic strength for optimal
probe performance limits the robustness of detection in vari-
able environments. Fluorescent nanomaterials, though prom-
ising, may also pose toxicity concerns if not properly
immobilized or puried, restricting their practical use in food-
contact applications. Therefore, developing highly selective,
environmentally stable, and biocompatible uorescence plat-
forms is essential for future progress.

6.2.3. Detection of mycotoxins. As secondary metabolites
of fungi, mycotoxins affect one-quarter of the world's food crops
every year, leading to food losses. Therefore, the development of
uorescence sensing technologies for detecting mycotoxins is
essential. Dou et al. developed a ratio uorescence method
based on a nanometal–organic framework aptamer sensor to
detect AFB1. The results showed high sensitivity and specicity,
with a linear range of 0–3.33 ng mL−1 and a LOD of 0.08 ng
mL−1.144 Sun et al. established a ratio uorescence method for
detecting AFB1 based on Ce4+ oxidation of o-phenylenediamine
(OPD) and polyethyleneimine-protected copper nanoclusters
(PVP-CuNC). The results showed that this method had a LOD of
26.79 pg mL−1 and a linear detection range of 50–250 pg mL−1

(Fig. 9c).145 Bi et al. developed a ratio uorescence sensor based
on nitrogen-doped graphene quantum dots (NGQDs-apt) and
silica-encapsulated cadmium telluride quantum dots (CdTe
QDs @ SiO2), which enables accurate analysis of ZEN in corn
and barley our. The sensor demonstrated excellent perfor-
mance with a LOD of 0.32 pg mL−1.146 In another study,
a capillary-based immunouorescence sensor was developed to
detect ZON, with a LOD of 0.003 ng mL−1 and a quantication
limit (LOQ) of 0.007 ng mL−1.147 These ndings demonstrate
that uorescence sensors provide effective technical support in
the detection of mycotoxins. The application of uorescence
sensors in detecting mycotoxins—such as aatoxins or ochra-
toxins—has yielded promising LODs; however, several obstacles
remain. Most notably, complex food matrices such as grains,
nuts, and fermented products oen contain natural uorescent
compounds that interfere with signal readout, complicating
quantitative analysis. Additionally, achieving multiplex detec-
tion of co-existing mycotoxins remains technically challenging
due to overlapping emission spectra. Sensor stability over time
and during storage is also a concern, especially for eld-
deployable kits. To overcome these limitations, future strategies
should focus on ratiometric detection, AIE-based materials, and
integrated microuidic uorescence systems that enhance anti-
interference capabilities and standardization.

7 Summary and outlook

Non-destructive analytical technologies have revolutionized
food safety and quality assessment, yet their distinct opera-
tional principles, performance metrics, and application scopes
necessitate a systematic comparative analysis to guide tech-
nology selection. HSI excels in spatially resolved chemical
Anal. Methods, 2025, 17, 4697–4717 | 4713
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mapping due to its unique fusion of spectral and spatial data.
However, its reliance on high-resolution cameras and spectral
preprocessing algorithms limits real-time deployment, while its
detection sensitivity is inferior to electrochemical sensing,
which achieves attomolar-level LODs through nanomaterial-
enhanced signal amplication. Electrochemical platforms,
such as Ti3C2-based sensors for DON, prioritize portability and
rapid response but struggle with multiplex detection in complex
matrices due to cross-reactive interference. In contrast, infrared
spectroscopy (NIR/FTIR) offers reagent-free, high-throughput
screening for bulk composition analysis but lacks molecular
specicity compared to SERS. SERS leverages plasmonic nano-
structures for single-molecule sensitivity and ngerprint speci-
city, yet its performance is highly substrate-dependent,
requiring meticulous optimization to mitigate food matrix
effects. Fluorescence sensing, particularly ratiometric designs,
balances sensitivity and anti-interference capability through
dual-channel signal modulation but faces challenges in pho-
tostability and eld adaptability due to ambient light
interference.

Current limitations stem from several critical gaps: (1) reli-
ance on laboratory-grade instrumentation and skilled operators
impedes real-time eld deployment; (2) signal attenuation or
misinterpretation persists in heterogeneous, high-fat, or high-
moisture matrices; (3) algorithm generalizability and cross-
platform validation frameworks are underdeveloped; (4) inte-
grated multimodal systems and data fusion strategies lack
maturity. Future efforts should prioritize: (1) miniaturized, cost-
effective devices coupled with edge computing and IoT for
decentralized monitoring; (2) AI-driven advancements to
enhance feature extraction and model adaptability across
diverse food categories (3) synergistic multimodal approaches
(e.g., HSI-SERS hybridization, electrochemical-uorescence
coupling); to overcome single-technology constraints,
augmented by blockchain-enabled traceability for supply chain
transparency; (4) innovative functional materials to improve
sensor selectivity, stability, and environmental resilience.

Looking ahead, the evolution of non-destructive technolo-
gies promises transformative impacts on food safety gover-
nance. Breakthroughs in smart algorithms, nanomaterial
engineering, and interdisciplinary integration will drive next-
generation systems toward higher precision, lower costs, and
full automation. Such advancements will not only enable early
risk and targeted interventions but also foster resource-efficient
detection paradigms, supporting the green transition and
resilience of global food systems. Through collaborative efforts
among academia, industry, and policymakers, non-destructive
technologies are poised to become cornerstones of food safety
infrastructure, safeguarding public health and advancing
sustainable development goals with robust technical assurance.
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