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Lattice Boltzmann simulation of deformable
fluid-filled bodies: progress and perspectives

Danilo P. F. Silva,ab Rodrigo C. V. Coelho, *ab Ignacio Pagonabarraga, cd

Sauro Succi, ef Margarida M. Telo da Gama ab and Nuno A. M. Araújo *ab

With the rapid development of studies involving droplet microfluidics, drug delivery, cell detection, and

microparticle synthesis, among others, many scientists have invested significant efforts to model the

flow of these fluid-filled bodies. Motivated by the intricate coupling between hydrodynamics and the

interactions of fluid-filled bodies, several methods have been developed. The objective of this review is

to present a compact foundation of the methods used in the literature in the context of lattice

Boltzmann methods. For hydrodynamics, we focus on the lattice Boltzmann method due to its specific

ability to treat time- and spatial-dependent boundary conditions and to incorporate new physical

models in a computationally efficient way. We split the existing methods into two groups with regard to

the interfacial boundary: fluid–structure and fluid–fluid methods. The fluid–structure methods are char-

acterised by the coupling between fluid dynamics and mechanics of the flowing body, often used in

applications involving membranes and similar flexible solid boundaries. We further divide fluid–structure-

based methods into two subcategories, those which treat the fluid–structure boundary as a continuum

medium and those that treat it as a discrete collection of individual springs and particles. Next, we dis-

cuss the fluid–fluid methods, particularly useful for the simulations of fluid–fluid interfaces. We focus on

models for immiscible droplets and their interaction in a suspending fluid and describe benchmark tests

to validate the models for fluid-filled bodies.

I. Introduction

The many-body dynamics of deformable objects, passive and
active alike, in confined fluid flows is a central theme of modern
soft matter research, with many applications in science, engineer-
ing, and medicine. From a fundamental perspective, the main
challenge relates to the self-consistent interplay between external
degrees of freedom, positions and momenta, and the internal
ones describing the shape changes of the deformable body. Such
an interplay is expected to spawn new dynamic regimes that are
simply inaccessible to rigid particles. Likewise, such new dynamic

regimes are expected to lead to new states of soft matter, hence
potentially new materials.

In this review, we shall focus on the transport of deformable
fluid-filled bodies, an important problem with various applica-
tions, from oil to pharmaceutical and food-processing
industries.1–4 Familiar examples include paints,5–7 milk,8–10

and blood,11,12 where the internal constituents are ink droplets,
fat droplets, and cells, respectively, and all deform when
subjected to mechanical stresses, such as the ones resulting
from the flow of the surrounding fluid. An analytical approach
proves challenging due to the strong coupling between the fluid
and the deformable particles. This interaction is reciprocal, for
the fluid affects the shape of the particle due to hydrodynamic
forces and the deformation in turn changes the boundaries of
the fluid flow. While still facing numerous challenges, compu-
tational methods have become an indispensable alternative
tool to study these systems.13–16

Numerical models for the interplay between the macro-
scopic fluid properties and its internal deformable constituents
usually combine computational fluid dynamics (CFD) with
computational mechanics.17–19 This is particularly true for the
simulation of fluid-filled bodies with solid boundaries. Deform-
ability alters the flow, hence it affects the way energy is
dissipated within the flow, resulting in strong rheological and
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mechanical nonlinearities, as signalled by the crossover from
Newtonian to shear-thinning regimes, such as in most emulsions.
A fluid-filled body consists of a body, usually spherical, with a
fluid core (see Fig. 1). Common examples include droplets and
capsules. The latter is a liquid droplet enclosed by a thin
membrane. These bodies are often surrounded by a fluid environ-
ment and consequently, they exhibit fluid–fluid boundaries
(droplets) or fluid–solid boundaries (capsules).

The modelling approaches for fluid-filled bodies can be
divided into two groups, based on the boundary between the
fluid-filled body and its environment. These are fluid–structure
and fluid–fluid methods. The former consists of modelling a
fluid–solid boundary, where the fluid and a deformable solid
interact with each other. The second consists of modelling the
interactions between two fluids, usually separated by a fluid–
fluid interface. The nature of the boundaries requires computa-
tional methods to describe both the fluid inside and outside of
the particles. Furthermore, tracking the interface is often
required, which can make the overall process computationally
expensive. In this review, we focus on cases where the internal
and external fluids are both Newtonian. We point out that for
industrial applications, capsules can have solid cores (even
multiple small solid cores) enclosed by a membrane; however
this will not be addressed in this review.20

Computational methods can often illuminate regions of
parameter space not easily accessible by experiments or analy-
tical methods. Several methods can be used to model the fluid
flow. Here, we focus on the lattice Boltzmann method (LBM), as
it provides a versatile way to introduce fluid–fluid interactions
and to couple fluid–solid boundaries as well. Various methods
(continuum, discrete, mesoscopic) have been developed to
simulate droplets, cells, capsules and so on, and we refer to
existing literature on this.21,22 We restrict ourselves to those

methods that employ or pertain to LBM. Previous reviews
and books23–25 have covered some fluid–solid and fluid–fluid
methods in a different context. For instance, Karimnejad
et al.23 have reviewed fluid–structure (FS) methods for rigid
particles. Here our focus is on methods for deformable parti-
cles in fluids. We present a comprehensive review of those
methods and compare them.

Finally, we wish to underline that the methods described in
this review straddle across the passive versus active soft matter
divide, just because, once the coupling between internal and
external degrees of freedom is accounted for, such divide
largely blurs out.26 The methods described here may be used
to investigate problems in the active matter systems such as the
emergent nematic order in epithelial cells, which share many
similarities with the emulsions of Section IV, and the shape
changes in bacteria, which become more elongated when
swarming.27,28

The review is organised as follows. The LBM is summarised
in Section II. In Section III, we review fluid–structure methods
which often use the immersed boundary method. We highlight
the differences and similarities between the continuum and the
discrete approaches. In Section IV, we review the various multi-
component methods for immiscible droplets. In Section V, we
provide benchmarks in 2D and 3D for hydrostatic and hydro-
dynamic conditions. In Section VI, we conclude by summaris-
ing our observations and make remarks on open questions and
future challenges.

II. Lattice Boltzmann method

In recent years the LBM has become a useful tool in solving the
hydrodynamics of soft matter systems.29 The fluid flow is
described by the Navier–Stokes (NS) equations,

r
@u

@t
þ ðu � rÞu

� �
¼ �rpþ mr2uþ g;

r � u ¼ 0;

(1)

where u is the fluid velocity, t is time, p is the pressure field, m is
the dynamic viscosity, r is the density and g is the body force.
LBM however does not solve the NSE directly. Instead, it is a
mesoscopic method which recovers the results of the NS
equations. As opposed to molecular dynamics, which solves
the dynamics of individual molecules/atoms, in LBM a fluid
‘‘particle’’ consists of a group of molecules and consequently is
much larger than the individual scale of molecules. Informa-
tion about the fluid is contained in the lattice nodes and can
only move in specific directions reducing the number of
degrees of freedom. Although it originates from Lattice Gas
Automata,30 it is now considered a separate method. Several
works have shown the potential of LBM to solve fluid-related
problems.13,31–35 It is an efficient algorithm particularly popular
for Stokes flow, systems with complex solid boundaries,36 multi-
phase flow,37 hydrodynamic dispersion38 and convection.39

Fig. 1 Comparison of flow around a fluid–solid (left) and a fluid–fluid
(right) interface. On the left, the red line represents a fluid–solid interface
such as a membrane on a rigid capsule. There is no internal circulation
because the velocity at the interface is zero (considering no-slip boundary
conditions). On the right, we see internal circulation due to the continuity
of the velocity across the fluid–fluid interface. Points A and B indicate
stagnation points and the colour gradient of the external fluid represents a
pressure gradient which drives the flow. Both images are in the capsule
reference frame (fluid velocity relative to the capsule/droplet). The internal
fluid in both images is blue. Black arrows represent the fluid flow.
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A. Lattice BGK model

The Boltzmann equation that contains the fluid particle
information reads

@f

@t
þ v � rf þ a � rvf ¼ Oðf Þ (2)

where f = f (x, v, t) is the distribution function for a fluid particle
in phase space, having microscopic velocity, v, at time t, at
position x, where a is the acceleration and O(f) is the collision
operator which describes the interaction between molecules.
Different LBM formulations will have different collision opera-
tors. The simplest one is the Bhatnagar–Gross–Krook (BGK)
operator given by

Oðf Þ ¼ �f ðx; v; tÞ � f eqðx; v; tÞ
t

; (3)

where t is the relaxation time which drives the relaxation to the
equilibrium distribution feq(x,v,t). The relaxation time is
directly related to the viscosity of the fluid since the fluid
kinematic viscosity n is given by

n ¼ cs
2 t� Dt

2

� �
; (4)

where cs is the speed of sound, t is the single relaxation time
and Dt is the time step. It should be stated, however, that
connecting the kinematic viscosity and the speed of sound is
shown to be valid for low Mach number (o0.3) and nearly
incompressible flow.

The equilibrium distribution function is related to the
macroscopic fluid velocity u and density r

f eqðx; jvj; tÞ ¼ r
ð2pyÞD=2 exp �

ðv� uÞ2
2y

� �
; (5)

where y is the normalised temperature which is usually
assumed to be the unity and D is the spatial dimension. Note
that r, u and y depend on time and space in general. The above
equation can be expanded using the Hermite series to the
second order as

f eqa xi; tð Þ ¼ war 1þ na � u
cs2
þ na � uð Þ2

2cs4
� u2

2cs2

 !
; (6)

where the subscript a represents the discrete lattice speed (see
Fig. 2), na is the microscopic velocity vector, wa is the weight of
the lattice and, i is the index of lattice sites. feq

a (xi, t) is the
distribution at equilibrium at position xi and time t. Both r and
u are a function of position xi and time t. The parameters na

and wa depend on the lattice chosen for the discretization. The
velocity is discretized into structured lattice velocity (1D, 2D
or 3D) vectors. For example, the D1Q3 lattice represents a one-
dimensional chain with three vectors per node. Usually, more
lattice vectors mean increased precision but also increased
computational effort. Popular lattices include the D2Q9 (see
Fig. 2) and D3Q19. Different lattices have different speeds of
sound cs and weights wa for each vector.25

The final discrete lattice Boltzmann equation (with the BGK
operator) is,

fa xi þ naDt; tþ Dtð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
streaming

¼ fa xi; tð Þ � Dt
t

fa xi; tð Þ � f eqa xi; tð Þ
� �

þFaDt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
collision

;
(7)

where Fa is the forcing term which includes both external
forces and intra/intermolecular fluid forces. There are different
force schemes in LBM used to implement these terms. Several
articles and reviews have been written about the advantages/
disadvantages of each one (see ref. 40–42). A popular one,
the Guo forcing scheme,43 is given by

FaDt ¼ 1� Dt
2t

� �
wa

na � u

cs2
þ na � uð Þna

cs4

� �
� F; (8)

where F is the force. There are two main steps in eqn (7):
collision and streaming (see Fig. 2). The information for both
steps comes from the nearest neighbours (usually within the
first belt) of the respective fluid node. This makes the method
very adaptable to parallel computing such as with graphical
processing units (GPUs), when compared to other conventional
methods.

Fig. 2 Two main steps of the LBM: (a) collision and (b) streaming using a
D2Q9 lattice. The collision is described by the distribution functions going
from one node after the streaming step propagates them to the neigh-
bouring nodes according to the direction. The arrows represent the nine
distribution functions.
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The macroscopic density and velocity are calculated through

rðx; tÞ ¼
X
a

faðx; tÞ;

ruðx; tÞ ¼
X
a

nafaðx; tÞ:
(9)

In this review, we focus on the LBM to model the hydro-
dynamics. The LBM is particularly well suited to multiphase
flow, particularly drops, bubbles, and emulsions. Some of the
commonly quoted strengths and weaknesses of the LBM
method are discussed, for example, in ref. 25 and 44. We also
focus on the single relaxation time collision operator due to its
simplicity, but we emphasise that more sophisticated ones are
used to mitigate spurious effects and may offer enhanced
stability, like the MRT collision operator45,46 and the entropic
LBM.47,48

III. Fluid–structure based methods

At the microscale, there is a plethora of particles which are
bound by membranes. Examples include living cells, artificial
capsules (e.g. polymerised membranes) and vesicles (e.g. lipid
bilayer membranes). An example of biological membrane-
bound particles is red blood cells (RBCs). We highlight that
variations of the models presented here have been used for soft
objects like microgels49 and capsules.50 While these bodies can
suffer strong deformations, for the majority of them volume is
relatively unchanged. Consequently, researchers have been
interested in the transport of soft matter and other complex
fluids flowing at low Reynolds numbers. In order to model
biological and synthetic membrane-bound particles, one
should consider the membrane elastic, bending and viscous
properties along with the inner and outer fluid viscosity.
Depending on what is being modelled a combination of the
aforementioned properties is necessary to accurately capture
the physics. Furthermore, the meshing of the membrane is

required, particularly for the methods described in this section.
In 2D, the mesh consists of line segments and 3D of surfaces. In
general, there are two ways to approach this problem. These
approaches depend on whether the boundary (in most cases a
membrane) is treated as a continuum medium or as a discrete one.
We show in Fig. 3 an illustration of the two different approaches.

The first approach is a continuum one where the membrane
is treated as a 2D continuum surface in 3D space. One simu-
lates the solid mechanics of the membrane using appropriate
constitutive laws that are descriptions of the energy–strain or
stress–strain relations of the membrane. It is then possible to
model strain-softening membranes, i.e. the membrane stress
increases slower than strain, or strain-hardening membranes,
where the membrane stress increases faster than strain.51

Although constitutive laws are rigorous physical descriptions
of the membrane, the numerical implementation is compli-
cated. In addition, due to the continuity of the membrane
properties, this approach is limited to modelling at length
scales where local differences in the membrane are
insignificant.52 Another consequence of applying a constitutive
model in the entire membrane domain is that the shape
memory might be neglected in some cases.53 This approach
is discussed in Section IIIA.

In the second approach, the membrane is treated as a
discrete network of springs and particles. This approach pro-
vides some advantages namely, its mathematical description is
simpler and local differences or thermal fluctuations can be
included in contrast to the continuum approach. However,
spring constants can depend strongly on the mesh configu-
ration as shown in ref. 54. In fact, ref. 54 shows that discrete
spring models have anisotropic mechanical properties, in gen-
eral. Furthermore, when studying biological membranes, local
area incompressibility has to be enforced which is not possible
using simple discrete spring models.54 Additional terms have to
be included. This approach is also known to suffer less numer-
ical instability than the continuum approach.52 This discrete
approach is discussed in Section IIIB.

Fig. 3 Discrete mechanics approach (left) vs. continuum mechanics approach (right). On the discrete mechanics approach the dynamics of the
membrane is given by a connected network of springs. On the continuum mechanics approach the membrane is treated as a surface i.e. a continuum
medium. The advantages and disadvantages of each approach are highlighted.
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The elastic forces are treated differently in each approach.
In the continuum approach, these are solved using continuum-
based solvers such as the finite element method (FEM) while in
the discrete approach, the motion and interaction of individual
springs are treated in a particle-based manner. Each approach
has its own advantages and drawbacks which we highlight in
the following sections. The bending along with the volume and
area constraints are in common with both the continuum and
discrete approaches and are discussed in Section IIIC. Addi-
tionally, the fluid can be coupled with membrane dynamics
using the immersed boundary method (IBM). In Section IIID,
we discuss how to couple the fluid mesh with the membrane
mesh. This review focuses on LBM for the fluid which has a
Cartesian fixed mesh and for the membrane a (triangular)
evolving mesh. The IBM has proven to be useful for partitioned
simulations, where the flow and the displacement of the
structure are calculated separately55 and where the elastic
bodies have negligible mass.56 In IBM, the flow is solved on
an Eulerian grid while the membrane is treated on a Lagran-
gian grid.57 The total force acting on the membrane is treated
as a source term in the NS equation. This means that artificial
forces are spread as body forces around the membrane bound-
ary in order to mimic the effects of the moving membrane.
In the LBM, this is included in the g term of eqn (1), which
ensures no slip and no flow penetration boundaries. Because
the IBM is often employed for structures with negligible inertia
(overdamped regime), the velocity of a membrane node is
interpolated from the surrounding fluid while the forces acting
on the membrane node are spread in the surrounding fluid
nodes. IBM is discussed in more detail in Section IIID.

Once we define the constitutive models and constraints, it is
straightforward to derive the nodal forces as will be shown.
However, it is nontrivial to implement the force calculations.
The vast majority of meshes used in the literature are triangular
meshes in both the continuum and discrete approaches.
We aim, in the following sections, to describe approaches to
obtain those forces for elastic, immersed bodies. We illustrate
different possible shapes with the fluid–structure-based models
in Fig. 6.

A. Continuum approach

The membrane can be treated as a continuum sheet with
infinitesimal thickness. The total energy of a membrane is

W = Ws + Wb + WA + WV, (10)

where Ws is the elastic strain (in-plane) energy, Wb is the
bending energy, WA is the area penalty energy, and WV is the
volume penalty energy. We highlight that Ws is described by a
continuum function which describes the in-plane energy. It is
possible then to calculate elastic in-plane forces from Ws using
FEM. Moreover, explicit expressions can be used for the calcu-
lation of bending and area/volume penalty forces as this does
not necessarily require the FEM. In general, to solve the physics
of the continuum membrane we need to discretize it using an
appropriate mesh (usually triangular). The elementary surfaces
in the mesh are connected by nodes which interact with the

fluid. The force acting on membrane node i at position xi is
given by the principle of virtual work,58–61

F i ¼ �
@W

@xi
: (11)

Details about derivations using the equation for each term can
be found in ref. 62. For simplicity, we usually consider more
straightforward expressions for the force instead of the full
expressions derived in the next sections.

1. Elastic membrane models and finite element method.
To determine the elastic forces acting on membrane nodes, it is
essential to choose an appropriate constitutive equation that
accurately captures the membrane’s inherent properties. We
refer the reader to ref. 63–65 for commonly used models which
we also discuss in this section. The Neo-Hookean (NH) model63

is one of the most straightforward choices among different
constitutive equations, in the form

WNH
s ¼

ð
A

Es

6
l12 þ l22 � 3þ 1

l12l22

� �
dA; (12)

where Es is the surface shear elasticity modulus, l1 and l2 are
the principle stretch ratios (see Fig. 4a) and dA is a surface
element area. The NH constitutive equation describes the
membrane as a material that doesn’t change volume when
deformed. If the membrane area increases, it gets thinner to
keep the volume constant. An alternative form of eqn (12) is the
zero-thickness (ZT) shell representation66 with the strain energy
function given as:

WZT
s ¼

ð
A

Es

6
l12 þ l22 � 2� log l12l22

	 
�

þ 1

2
log 2 l12l22

	 
�
dA:

(13)

A widely used model suggested by Skalak;68 see e.g. ref. 18
and 69. The membrane is treated as a thin, 2D elastic surface
due to its small thickness compared to its surface area. This
allows for an effective modelling of the membrane’s behaviour
under both low stress and strong deformations. In this model,
the strain energy density function is defined as:

WSK
s ¼

ð
A

Es

12
l14 þ l24 � 2l12 � 2l22 þ 2
	 
�

þ C l12l22 � 1
	 
2i

dA;

(14)

where Es and C are the membrane elastic shear and area
dilation moduli. The same is true for other elastic models.
Eqn (12)–(14) can also be written as a function of the strain
invariants I1 and I2 defined for a 2D membrane (with isotropic
and homogeneous properties) as

I1 ¼ l12 þ l22 � 2;

I2 ¼ l12l22 � 1:
(15)

We note that some of the methods, such as that proposed by
ref. 43, allow one to model a more generic capsule whose
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interface is also a 2D isotropic sheet with no bending energy.
The membrane energy is given by W = W(I1, I2, a1, a2, a3) with

W ¼ W0 þ
1

2
a1 � a3ð Þ log I2 þ 1ð Þ

þ 1

8
a1 þ a2ð Þ log 2 I2 þ 1ð Þ þ a3

1

2
I1 þ 2ð Þ � 1

� �
;

(16)

where W0 is a reference value, I1 and I2 are the strain invariants
and a1, a2 and a3 are coefficients which control the elasti-
city and deformation of the capsule. In fact, one can tune
these coefficients to obtain other models such as the Skalak or
Neo–Kookean models previously mentioned and even the prop-
erties of a droplets.70

Once the constitutive law is chosen, we can compute the
elastic forces using the linear FEM.58 The elastic forces are
calculated at the Lagrangian nodes of the membrane mesh,
using a linear FEM, commonly employed in capsule deforma-
tion studies.4,18,71 These forces result from the planar deforma-
tion of discrete surface elements deviating from their original
configurations. To enable a comparison between the current

and reference configurations, each deformed surface element is
projected onto a common plane, aligning with its initial
configuration, as shown in Fig. 4b. Triangular surface elements
are often used to discretize the membrane thus we also use
triangular surface elements in this review. Next, the in-plane
displacements, denoted as ux and uy, can be calculated at every
vertex. The procedure, as described below, is motivated by ref.
18, 58, 59, 62 and 67,72,73.

Let us denote a undeformed membrane marker described by
the reference coordinates x and y and after deformation by X
and Y. The relation between the undeformed and deformed
state is given by:

X ¼ xþ ux;

Y ¼ yþ uy:
(17)

As the membrane is modelled using an 2D energy law W, the
nodal forces, Fs,i

x and Fs,i
y , are derived using the principle of

virtual work for a discrete element. This is expressed in terms of
virtual displacements, dui

x and dui
y, given by:

dWs ¼
X3
i¼1

duixF
s;i
x þ duiyF

s;i
y

� �
(18)

where, as in Fig. 4b, we use the superscripts i = 1, 2, 3 to identify
the variables vertices of the triangle. dWs is the first order
variation in the strain energy of the discrete surface element.

There are two assumptions one can make for simplicity.
Firstly, a discrete element can be assumed to undergo uniform
deformation which leads to the stretch ratios being constant on
that discrete element. Consequently, the virtual work for an
discrete element is given by

dWs = A0dW, (19)

where A0 is the original area of the discrete element and W
strain energy density. Secondly, one can assume that the strain
energy is related to the principal stretch ratios, l1 and l2 due to
the membrane being isotropic and incompressible. This leads
to the first variation of the strain energy function, dW, com-
puted using the chain rule resulting in the following equation
for virtual work of a discrete element due to displacements, dui

x

and dui
y:

dWs ¼ A0

X3
k¼1

dukx
@l1
@ukx

@W

@l1
þ @l2
@ukx

@W

@l2

� ��

þ duky
@l1
@uky

@W

@l1
þ @l2
@uky

@W

@l2

 !#
:

(20)

To obtain expressions for the nodal forces, Fs,i
x and Fs,i

y , eqn (18)
and (20) are substituted in eqn (19) and using the fact that
displacements, dui

x and dui
y, are arbitrary gives:

F s;i
x ¼ A0

@W

@l1

@l1
@uix
þ A0

@W

@l2

@l2
@uix

; i ¼ 1; 2; 3

F s;i
y ¼ A0

@W

@l1

@l1
@uiy
þ A0

@W

@l2

@l2
@uiy

; i ¼ 1; 2; 3;

(21)

Fig. 4 (a) Example of a deformation of a 2D sheet due to forces F1 and F2.
Deformation in the x direction is characterised by the stretch ratio l1 or by
the displacement u1 (the same in the y direction). l1 and l2 are the stretch
ratios in two principle directions, defined as the ratio of the final to the
initial length. (b) Computation of the deformation is done by mapping both
the original and the deformed triangles to a common plane. Inspired by ref. 67.
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The forces Fs,i
x and Fs,i

y are in the local coordinate system, which
after computing are then transformed back to the global
Cartesian coordinates and added to the node’s Lagrangian
force term as shown in ref. 58. As an example, in a triangular
mesh, every node serves as the vertex for 5 or 6 triangles as
shown in Fig. 5 where we highlight a few Lagrangian nodes in
red. Consequently, the total elastic force at each node is the
combined force from each of these 5 or 6 triangles.

The derivatives in eqn (21) are computed using a linear FEM,
with linear shape functions, Ni, i = 1, 2, 3, where N1, is defined
as58,67,73

N1ðx; yÞ ¼ 1

2A0
yð2Þ � yð3Þk
� �

xþ xð3Þ � xð2Þ
� �

y
h

þxð2Þyð3Þk� xð3Þyð2Þ
i (22)

and N2 and N3 can be obtained by cycling the indices from 1 -

2 - 3 - 1. 2A0 is twice the area of the undeformed element
and is computed as follows:

2A0 = |(y(2) � y(3))x(1) + (x(3) � x(2))y(1) + x(2)y(3) � x(3)y(2)|.
(23)

In turn, the spatial dependence of the displacement on the
element can be expressed as

uxðx; yÞ ¼ N1ðx; yÞuð1Þx þN2ðx; yÞuð2Þx þN3ðx; yÞuð3Þx

uyðx; yÞ ¼ N1ðx; yÞuð1Þy þN2ðx; yÞuð2Þy þN3ðx; yÞuð3Þy :
(24)

The relation between (x, y) and (X, Y) (see eqn (17)) is given in
matrix notation by dX = F�dx where the matrix of the Cartesian

components of the deformation gradient tensor is F ¼ @X
@x
¼

Iþ @u
@x

as shown in ref. 58 and 59. Lastly, one just needs to

compute the principle stretch ratios, l1 and l2, from the
eigenvalues of the two-dimensional right Cauchy–Green tensor,
G = FTF, whose components are given by

G11 ¼ 1þ @ux
@x

� �2

þ @uy
@x

� �2

G22 ¼ 1þ @uy
@y

� �2

þ @ux
@y

� �2

G21 ¼ G12 ¼ 1þ @ux
@x

� �
@uy
@y

� �
þ 1þ @uy

@x

� �
@ux
@y

� �
:

(25)

The derivatives of the in-plane displacements, u and v, in
eqn (25) for G21 = G12 are computed by differentiating their
linear representations given by eqn (24). Finally, the principle
stretch ratios are expressed in terms of the components of G as
follows:

l12 ¼
1

2
G11 þ G22 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G11 � G22ð Þ2þ4G12

2

q� �

l12 ¼
1

2
G11 þ G22 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G11 � G22ð Þ2þ4G12

2

q� �
:

(26)

B. Discrete approach

A different approach to model membrane elasticity is based on
molecular dynamics, as initially suggested in ref. 74, and
subsequently widely used.75,76 Although theoretically possible
to use molecular dynamics to model fluid–structure interaction
flows, the computational cost of molecular dynamics is prohi-
bitively expensive to reach the length and time scales relevant
to the motion and deformation of flexible objects. Addressing
this regime requires a mesoscale method. One strategy involves
using a discrete arrangement of springs and (coarse-grained)
particles. As one represents multiple atoms as a single particle,
the computational cost is reduced. In addition, this simplifica-
tion helps in studying larger spatial scales or longer timeframes
while sacrificing some fine-scale details. Furthermore, this
allows for defining an effective interaction potential between
each particle to simulate the mechanical behaviour of the
system. By adopting this approach, the number of degrees of
freedom is minimised, and the time and length scales are
increased. The force acting in each particle can be obtained
by taking the derivative of the potential energy. Other forces
such as fluid forces and particle–particle repulsion are also
taken into account.

While membranes have different constituents, most share
common physical properties. The in-plane stretching energy
can be modelled through several different potentials. These can
range from the simple linear such as the harmonic potential
to a complex nonlinear ones such as worm-like-chain (WLC)
potential or the finite extensible nonlinear elastic (FENE) poten-
tial. This approach has proven effective in making predictions

Fig. 5 Loop subdivision mesh. The mesh is started from a solid such as an
icosahedron (or other initial shapes such as a pyramid) which has 20 sides
and 12 nodes. A triangular surface element is divided into 4. There are 3
levels of refinement shown: (a)–(d). For clarification, we highlight an initial
triangle 1 which is divided into triangles 1a, 1b, 1c, and 1d. The red points
just indicate the nodes of the initial face element.
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that consistently match the energy density functions used in the
continuum model.54,74 The total energy of a membrane is

W = Wstretch + Wbending + Warea + Wvolume, (27)

where Wvolume is included only for 3D simulations. Once again,
the nodal force at node i at position xi derived from the
potential energy is given by

F i ¼ �
@W xið Þ
@xi

: (28)

Full derivations are not shown but can be found in ref. 77.
1. Elastic membrane models. A harmonic stretching

potential can be used to model the stretching energy as

Wstretch ¼WHAR ¼
1

2
ks

X
j¼1;...;Ns

lj � lj0
	 
2

; (29)

where ks is the linear spring stretching constant, NS is the
number of springs, lj and lj0 are length and the equilibrium
length of the j-th spring, respectively. Eqn (29) has been used to
study diseased RBCs,78 blood flow in capillaries79 and has been
validated against modern experimental techniques such as
atomic force microscopy.80 Eqn (29) is one of the simplest form
of in-plane to model in-plane streching energy, however it is
restricted in its ability to model nonlinear characteristics. None-
theless, some attempts have been made to account for an increase
in stretching resistance with elongation of the spring by using a
nonlinear spring constant ks as ks = ks0e2(i�1) where the bond
stretch ratio (i) is included.81 The stretch ratio i is defined as i = l/
l0 where l and l0 are length and the equilibrium length of the
spring, respectively. It has been shown to achieve good results
between experiments and simulations.79 Similarly, other non-
linear potentials may be used to model the stretching energy.
The two most popular nonlinear potentials75 are the WLC
potential and FENE potential. Explicitly, they are defined as

WWLC ¼
kBTlm

4p

3x2 � 2x3

1� x
; WFENE ¼ �

ks

2
lm

2 log 1� x2
� �

;

(30)

where kB is the Boltzmann constant, p is the persistence length,
T is the temperature, x = l/lm A (0,1), lm is the maximum spring
extension and ks is the FENE spring constant. Notice that in both

models the maximum extension is limited to lm as the force will
approach infinity as the spring length approaches lm.

Note that these springs (FENE and WLC) represent attractive
potentials, thus they tend to reduce the area (area compres-
sion). A repulsive force field should be combined to restrict this
reduction. ref. 75 proposed two potentials, one of which is an
inverse power repulsive potential (WPOW) that is based on the
spring length i.e. it will restrict the length of the spring.
This means

Wstretch = WWLC + WPOW or Wstretch = WFENE + WPOW,
(31)

where the inverse power repulsive potential is given by

WPOW ¼
kp

ðn� 1Þln�1 n4 0; na1 (32)

and kp is the repulsive stiffness. Finally, the forces for eqn (30)
and (32) are

FWLCðlÞ ¼ �
kBT

p

1

4ð1� xÞ2 �
1

4
þ x

� �
l̂ ij ;

FFENEðlÞ ¼ �
ksl

1� x2
l̂ ij ;

FPOWðlÞ ¼
kp

lm
l̂ ij ;

(33)

where x = l/lm and l̂ij =
-

lij/l is the vector of unit length between
nodes i and j.

C. Bending and area & volume constraints

1. Bending. The resistance to bending and the prevention
of buckling is relevant in many membrane-bounded bodies,
particularly biological ones. The implementation of bending is
not trivial and it is computationally intricate. In fact, it has
been the subject of several reviews.82–84 Since there are many
ways to implement bending, for simplicity, we focus on the two
most common approaches, one for the continuum approach
and another for the discrete approach. We refer the reader to
ref. 82 and 83 for bending models and numerical implementa-
tions. In line with the continuum approach, one of the most
popular bending formulations is that of Helfrich85

Wb ¼
EB

2

ð
A

2k� c0ð Þ2dAþ EG

ð
S

kGdA; (34)

where k is the mean curvature and kG is the Gaussian curvature,
c0 is the spontaneous curvature (curvature for which the bend-
ing energy is minimal). It has been shown that the bending
force acting on node i can be written as86,87

Fb
i = EB[(2k + c0)(2k2 � 2kg � c0k) + 2DLBk]n (35)

where n is the outwards normal vector to the surface and DLB is
the Laplace–Beltrami operator. Calculation of eqn (35) and
DLBk can be found in ref. 82, 83 and 88.

Fig. 6 Examples of different shapes that can be used in the lattice-
Boltzmann method with finite elements and immerse boundary. (a) is a
sphere, (b) is a biconcave shell and (c) is an ellipsoid. An icosahedron was
used for the subdivision scheme and there were 5 subdivisions, so the total
number of elements is Ne

5 = 20 � 45 = 20 480 faces.
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Another popular and simplified expression for the bending
energy84 often used with the discrete approach is,

Wbending ¼ kb
X

j21...Nb

1� cos yk � yk0ð Þ½ �; (36)

where kb is the spring constant for bending, Nb is the number of
bending springs, yk is the angle between two outward surface
normals of two neighbouring triangular elements that share
the edge k and yk0 is the equilibrium angle. The corresponding
force eqn (36) is given by

Fb
i ¼ �kb sin yk � yk0ð Þ@yk

@xi
: (37)

Details on the calculation of
@yk
@xi

can be found in ref. 62 and 84.

2. Area and volume constraints. In order to impose area
and volume conservation it may be necessary to include appro-
priate constraints. This will depend on the problem at hand. In
some cases like a capsule in shear flow, the volume change is
negligible and it is not necessary to impose volume conserva-
tion. The area and volume energy constraints can be enforced
by adding the energy terms62

WA ¼
ka

2

A� A0ð Þ2

A0
;

WV ¼
kv

2

V � V0ð Þ2

V0
:

(38)

where ka and kv are the area and volume coefficients that
control the strength of the force which regulates the change
in total area A and the volume V from the initial area A0 and
volume V0. While A0 and V0 are input parameters, A and V need
to be computed at every time step. From eqn (38) we find that
the corresponding forces are

FA
i ¼ ka

A� A0ð Þ
A0

@A

@xi
;

FV
i ¼ kv

V � V0ð Þ
V0

@V

@xi
;

(39)

More details and computation of
@A

@xi
and

@V

@xi
may be found in

ref. 62. While A can be calculated by summing the elemental
areas (e.g. triangles), the calculation of volume requires a more
sophisticated approach. An efficient way to calculate V is
described in ref. 89. We can also express eqn (38) as,90

FA
i ¼ � ka

A� A0

A0
n;

FV
i ¼ � kv

V � V0

V0
n;

(40)

where n is the outwards normal to the surface. These con-
straints for area and volume are also used in models which
employ a discrete approach.

Finally, since a node can be the vertex of multiple surface
elements, the total force Fi = Fs

i + Fb
i + FA

i + FV
i acting on node i is,

F i ¼
X
j

F i;j ; (41)

where j runs over each surrounding element.

D. Linking fluid to structure

The field of fluid–structure interaction (FSI) revolves around
the intricate dynamics and interdependence between two fun-
damental components: a fluid and a solid. This dynamic inter-
play gives rise to a range of challenges and opportunities,
offering insights into complex phenomena across various
scientific and engineering domains, encompassing areas like
paint pigments, polymers, gels, proteins, red blood cells flow in
the heart, and more.91–93 The essence of FSI lies in under-
standing how fluids and solids interact dynamically. When a
fluid flows around or interacts with a solid structure, it induces
forces and deformations in the solid, while the solid, in turn,
influences the behaviour of the fluid. This mutual influence
creates a complex coupling that is prevalent in numerous
natural and engineered systems. However, they pose challenges
due to their nonlinear and multiscale nature. The nonlinear
interactions between fluid and solid components, coupled with
the need to consider multiple scales of phenomena, make
analytical solutions often impossible. leading to the develop-
ment of numerical methods to simultaneously address fluid
and structure dynamics. In these methods, interface boundary
conditions are of crucial as they ensure consistency and con-
tinuity between the fluid and solid domains. They dictate how
forces, velocities, and deformations are transmitted across the
interface. When considering interfacial conditions, there are
two main approaches. The first is the Arbitrary Lagrangian–
Eulerian (ALE) method.91 In the ALE method, the mesh used to
discretize the fluid domain is allowed to move. Unlike the
traditional Eulerian approach where the mesh is fixed in space
or the Lagrangian approach where the mesh moves with the
fluid, the ALE method allows the motion of the mesh. On the
interface between fluid and solid, the velocity and stress should
be continuous. The fluid mesh follows the shape of the solid
mesh, making it easy to set accurate and efficient boundary
conditions at the fluid–solid interface. Yet, when solids
undergo significant deformations, re-meshing is often needed
to prevent mesh tangling which can affect the mesh motion.
This process of mesh regeneration can be challenging during
simulations. As an alternative the (IBM) was proposed57 using a
non-boundary fitting method. The IBM uses two independent
meshes for fluid and solid components. The solid boundaries
are immersed in the fluid mesh, and forces from the solid are
spread into the fluid. This eliminates the need for the fluid
mesh to conform to the solid boundaries.

The mechanics of the solid and fluid flow need to be solved.
This can be done in two ways: a partitioned way where the structural
mechanics and flow equations are solved separately or a monolithic
way where they are solved simultaneously. FSI problems using the
LBM often use the IBM as a coupling algorithm. This allows
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software modularity and different, possibly more efficient
algorithms can be used to solve the structural mechanics.

This section will discuss the technical details of IBM and its
coupling with the LBM and is primarily driven by ref. 25, 57, 94
and 95. Other coupling techniques such as the stress integra-
tion approach96 and friction coupling approach29,97–99 are
briefly mentioned. The IBM was selected due to its efficiency
and popularity. It was first proposed by Peskin to study blood
flow in the heart57,100 using vortex methods. The fluid is solved
on a stationary mesh, while the immersed solids are modelled
using a flexible moving mesh. This mesh is not tied to the fixed
structure of the fluid mesh. Information is exchanged between
the fluid and solid mesh through nodal interpolation. Two-way
coupling implies that both the fluid and the immersed struc-
tures influence each other. The motion and forces of the fluid
impact the immersed structures, and, conversely, the motion
and forces of the immersed structures affect the fluid through
an effect force density and can prevent fluid penetration in
the solid. IBM has been used in the simulation of jellyfish,101

blood flow18,102,103 and platelet migration.104 We refer the
reader to ref. 57 and 105 for a more detail description of IBM
and applications.

Firstly, one can start a description of IBM through a Lagran-
gian perspective. The immersed structure is characterised as a
parametric surface, denoted as X(p, q, r, t). This means that the
shape and position of the structure are defined by curvilinear
coordinates (p, q, r) varying in a 3D space, with the additional
temporal parameter t representing time. Curvilinear coordi-
nates are particularly useful for describing complex shapes or
deformations that may not align with a Cartesian coordinate
system (e.g. fluid domain). In contrast, The fluid domain is
described by coordinates which are fixed in space and provide a
frame of reference independent of the motion of the fluid i.e.
Eulerian coordinates denoted by x. Ref. 57,95 defines the force
density g(x, t) exerted by the structure on the fluid as

gðx; tÞ ¼
ð
Fðp; q; r; tÞdðx� Xðp; q; r; tÞÞdpdqdr: (42)

This force is distributed then used by the momentum equation
of the surrounding fluid nodes. d(x) is the delta function
d(x)d(y)d(z) where x, y, z are the Cartesian components of the
position vector x. Likewise, the structural velocity v(X(p, q, r, t),t)
is updated by interpolating the neighbouring fluid velocities
u(x, t) as

vðXðp; q; r; tÞ; tÞ ¼
ð
uðx; tÞdðx� Xðp; q; r; tÞÞdx: (43)

Note that eqn (43) represents the continuity of velocity on the
fluid–solid boundary.

The idea of IBM coupling is shown in Fig. 7 where the black
dots represent fluid nodes, and magenta dots represent the
solid structure. How many nodes are used for the interpolation
and their weights depend on d(x). For instance, Fig. 7(a)
illustrates that the velocity of the magenta node X will be
interpolated from the surrounding four black fluid nodes

within the shaded square frame. Likewise, in Fig. 7(b) the
structural force will spread to the four surrounding nodes.

1. Spatial and temporal discretization. Implementing the
IBM requires both spatial and temporal discretization of
eqn (42) and (43), is needed for the numerical implementation
of the IBM. Following ref. 57 and 94, we address the discretiza-
tion in space first, then proceed to discuss the selection of d(x),
and, finally the discretization in time.

The discretization in space of the Eulerian grid, denoted by
gx is a uniform and regular grid in x, y, z coordinates, e.g., x =
(xj, yj, zj)Dx, where Dx is the spacing, (xj, yj, zj) are the
components of the position in each direction. This discretiza-
tion also matches the discretization used in the LBM, which
leads to Dx = dx and Dt = dt. Equally, the discretization of the
Lagrangian grid, denoted by Gs, is the set of (p, q, r) of the form
(pkdp, qkdq, rkdr), where (pk, qk, rk) are integers. Ref. 57 recom-

mended that dso
Dx
2
; s 2 fp; q; rg to prevent fluid penetration/

leaking. However, ref. 62 systematically studied mesh ratio

between solid and fluid for small deformations, e.g.,
ds
Dx
; and

concluded that a range of approximately (0.5, 1.5) is enough to
prevent fluid penetration/leading without notably affecting the
results. Nonetheless, if large deformations occurs that the
mesh should be refined accordingly to capture these deforma-
tions. Resuming, the force spreading eqn (42) becomes

gðx; tÞ ¼
X

ðp;q;rÞ2Gs

Fðp; q; r; tÞdDðx� Xðp; q; r; tÞÞDpDqDr; (44)

where F(p, q, r, t) is the force density from the solid structures.
As in ref. 94, let us define F ¼ Fðp; q; r; tÞDpDqDr. F can be
viewed as the integration of the force density F over the element
of volume dv = DpDqDr, which is the force term applied to each
node. The Lagrangian nodes of the solid can be indexed as i
without losing generality. Eqn (44) is then simplified to

gðx; tÞ ¼
X
i2Gs

FidD x� X ið Þ; (45)

Fig. 7 IBM two-way fluid–solid coupling. (a) The solid velocity v(X,t) is
interpolated from neighbouring fluid nodes within the shaded square box.
The contribution from a fluid node is weighted by the d(x) function. (b) The
solid force g(x,t) will spread to the local fluid nodes as a force density. We
see that the fluid node x will receive a force contribution from the magenta
nodes within the shaded area as the magenta nodes will spread the force
to the nearest four black nodes. As x is the nearest fluid node to the
magenta nodes in the shaded area, it will receive the force from them. The
spread of the force among fluid nodes is given by the d(x) function. The
number of neighbouring nodes to spread the force can vary. Inspired by
ref. 62.
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where Xi is the position of the i-th Lagrangian node. Eqn (43) is
simplified to

v X i; tð Þ ¼
X
x2gx

uðx; tÞdD x� X ið ÞDx3: (46)

In the LBM, the time and spatial step in LB units are usually
assumed unity, e.g., Dt = 1, Dx = 1, respectively. Thus, eqn (46) is
simplified to

v X i; tð Þ ¼
X
x2gx

uðx; tÞdD x� X ið Þ: (47)

ref. 57 demonstrated that the dD(x) function must adhere to
specific constraints and properties to ensure consistent calcu-
lation of mass, force, and torque from both Eulerian and
Lagrangian point of view. Here, we assumed that dD(x)
expressed through the scalar function f(x)

dD(x) = f(x)f(y)f(z), (48)

where (x, y, z) are the three components of the position vector x.
We do not delve into the specifics of the f(x) function. Rather,
our intention is to highlight the frequently utilised four-point
interpolation function, which is,

fðxÞ ¼

0; jxj � 2

1

8
5� 2jxj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7þ 12jxj � 4x2

p� �
; 1 � jxj � 2

1

8
3� 2jxj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jxj � 4x2

p� �
; 0 � jxjo 1:

8>>>>>><
>>>>>>:

(49)

Ref. 57 showed that f(x) can be accurately estimated using a
straightforward formula

fðxÞ ¼
0; otherwise

1

4
1þ cos

px
2

� �� �
; jxj � 2

8><
>: : (50)

However, eqn (49) is much faster as it involves evaluating
polynomial functions rather than the cos(x) function. Given
that the delta function is used to transfer quantities between
the solid and the fluid, the choice of its regularisation deter-
mines the accuracy of the IBM. Certain properties have to be
satisfied in a discrete way by the discrete version of the delta
function, to ensure the conservation of force, mass and torque,
or to prevent void jumps of variables on the grid nodes.106

Often three or four-grid approximations are sufficient to satisfy
the necessary discrete conditions. Linear interpolation is too
simplistic of an approximation and does not lead to the
conservation of the physical quantities. Studies of the stability
of different regularised delta functions and smoothing techni-
ques can be found in ref. 106–108.

Because the fluid and solid are solved in an alternating
fashion, the IBM follows a partitioned approach. To achieve a
temporal discretization scheme with second-order accuracy,
ref. 57,95 suggested an integration scheme based midpoint
rule.57 For the sake of simplicity, the solution at time step n will
be denoted by a superscript on the variable. We can then

consider the solid nodal position Xn
i at time step n, the inter-

mediate position at time step nþ 1

2
is calculated using

X
nþ1

2
i ¼ Xn

i þ
1

2

X
x2gx

undD x� X ið Þ: (51)

Using the updated solid nodal position at the nþ 1

2
time step,

the force acting on the structure can be evaluated as

F
nþ1

2
i ¼ F

nþ1
2

i DpDqDr ¼ � @

@X i
W X

nþ1
2

i

� �
; (52)

where we take the gradient of the energy function W. Next, the

structure force F
nþ1

2
i will be spread out into the fluid through

gnþ
1
2ðxÞ ¼

X
X2Gs

F
nþ1

2
i dD x� X ið Þ: (53)

For specific 2D simulations (e.g. sedimentation) an area scaling

factor Ab can be used in eqn (53).109 Using the force density gnþ
1
2

in the LBM forcing scheme (e.g. eqn (8)), we can then stream

and collide using eqn (7) and then calculate velocity unþ
1
2 using

eqn (9). Finally, the solid position at time n + 1 is updated as

Xnþ1
i ¼ Xn

i þ
X
x2gx

unþ
1
2dD x� X

nþ1
2

i

� �
: (54)

We recall that we use Dt = 1 and Dx = 1 in the above equations.
2. Lubrication corrections. When the gap between particles

or between particles and the wall is equal to or less than the
resolution of the discretization, the fluid flow can no longer be
resolved in this region. In most cases this happens when the
gap is less than one lattice spacing. To solve this, there are two
alternative solutions. The first one is to use a refined mesh for
the entire fluid system (or just near the region in question if
possible). This would lead to a more expensive simulation.
Depending on the problem a slightly finer mesh might prove to
be enough. The second approach is to introduce a lubrication
force that mimics the repulsive force of the fluid being
squeezed out of the gap. This second approach is computa-
tionally more manageable. This idea has been incorporated
into the LBM,110–112 using lubrication theory. The lubrication
force between two rigid spheres is

F lub
ij ¼ �

3pmr
s

x̂ij x̂ij � ui � uj
	 


; (55)

m is the dynamic viscosity of the fluid, where r is the radius of
the spheres, s is the dimensionless gap s = R/r� 2 where R is the
central distance between two spheres. xij is the position vector
difference between sphere i and j, defined as xij = xi � xj, x̂ij is
the unit vector. u is the sphere’s velocity. Eqn (55) can also be
extended to the case where a sphere approaches a stationary
wall or object by setting uj = 0.

For deformable bodies, a repulsive force between any two
nodes of two meshes in close proximity is sufficient.113 This
force is zero for node-to-node distances larger than one lattice
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constant and increases as 1/r2 at smaller distances

gintij ¼
�kint dij

�2 � 1
	 
d ij

dij
for dij o 1;

0 for dij � 1

8><
>:

where dij is the distance between the two nodes i and j, kint is a
constant regulating the strength and gint

ji = �gint
ij .

3. Other coupling schemes. Here we discuss only the no-
slip boundary conditions between fluid and structure, moti-
vated by ref. 94, which consists of imposing velocity and force
continuity along the interface

uf ¼ us on U

sfijnj ¼ ssijnj on U
(56)

where uf and us are the fluid and solid velocity, U is the fluid–
solid boundary and sij is the stress tensor with superscript f and
s meaning fluid and solid, respectively. nj is the surface normal.
In the IBM, the solid velocity is interpolated from the fluid, as seen
in eqn (43), while the force is spread into the fluid, as shown in
eqn (42). Alternatively, the inverse method can be used.96,114 In this
approach, we initially apply the fluid stress to the structure,
subsequently solve for the structural response, and ultimately
enforce the structural velocity as a boundary condition on the
fluid. This technique is referred to as the stress integration
approach.96,115 The total force acting on the structure is

Ti ¼
ð
sijnjdA (57)

where dA is the differential area over the interface. The stress tensor
sij is given by

sij = �pdij + rn(ui,j + uj,i). (58)

The pressure term p is usually assumed to follow an ideal gas
law p = rcs

2. Following ref. 116, the deviatoric shear stress in the
LBM tij := rn(ui,j + uj,i) can be evaluated as

tij ¼ � 1� o
2

� �X
a

xaixaj �
dij
D

na � na
� �

f neqa Dt (59)

where o ¼ Dt
t
; t is the relaxation time for the LBM. a represents

the discrete lattice speed, f neq
a is the non-equilibrium part

of the density distribution defined as f neq
a = fa � f eq

a with
f eq
a calculated from eqn (6). na is the discretized velocity vector.

Using the stress computed from the LBM through eqn (58) and
(59), the force exerted on the structure can be calculated by
taking the dot product between the surface normal and the
stress tensor, using the second equation in (56).

In soft matter systems, the flows are often at low Reynolds
numbers. Therefore, it is appropriate to Stokes friction force to
couple the immersed solids and fluids.97–99,117 In ref. 98,
polymer monomers are treated as points with a friction force

Fz = �z(us � uf), (60)

where z is the friction coefficient, which might differ from the
one provided by Einstein’s diffusion relation. us, uf are solid
point and local fluid velocities, respectively. Ref. 97 notes that

uf can be estimated through interpolation from the nearest
neighbouring fluid nodes. The solid will experience a friction
force Fz, among other forces such as elastic, to determine its
motion. Notice that in order to conserve momentum, a force of
equal magnitude but opposite direction �Fz is applied to the
neighbouring fluid nodes. For example, ref. 97 and 98 uses a
force density �Fz/dx3. Tuning might be necessary for an appro-
priate choice of the friction coefficient to reduce the effect
of slip.

Lastly, while in this section we focus on the simulation of
membrane-bound particles such as capsules using primarily
the IBM, recent works have also used the IBM to simulate
droplets.70,118,119

IV. Fluid–fluid based methods

This section gives an overview of widely multicomponent
(different fluids) models for studying droplets and emulsions
using the LBM as seen in ref. 25, 35, 120 and 121. These have
applications in several fields, such as for example in injet
printing.122 The LBM facilitates the relatively seamless integra-
tion of inter-particle forces, forming interfaces between com-
ponents. However, these forces are often simplified to save time
in numerical simulations. Various models have been modified
and improved to explore different parameters and reduce
issues. Despite these efforts, no single model is perfect for all
situations. First, we present the multicomponent formulation
of each method and then we explain how frustrated coalescence
can be achieved.

A. Colour modelling

Colour modelling was among the early multicomponent
models developed as seen in ref. 123. This model is an exten-
sion of a basic lattice-gas cellular automaton (LGCA) that
handles two immiscible components with surface tension.
Instead of the usual indistinguishable particles, it uses two
distinct particles labelled as red and blue. The model follows
rules similar to the standard LGCA, ensuring that collisions
maintain the count of red and blue particles. This modification
enables the simulation of immiscible fluids and incorporates
surface tension effects within the LGCA framework. Yet, addi-
tional rules are introduced to promote the clustering of similar
colours and generate surface tension effects. Following this, the
model was integrated into the LBM in ref. 124 and later, in ref.
125 the model underwent changes to accommodate variations
in viscosity and density ratios. Another key development was
proposed in ref. 126, namely, to add a recolouring step which
significantly reduces the computational requirements while
minimising the spurious currents and removing the lattice
pinning effect.127,128 The model works by introducing the
distribution function for each of the fluid components fa,k(x,t),
where k is the component index. The discrete LBM equation is
given by

fa,k(x + naDt,t + Dt) = fa,k(x,t) + Oa,k(x,t), (61)
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where Oa,k is the multistage collision operator expressed as

Oa,k = [O(1)
a,k + O(2)

a,k]O(3)
a,k. (62)

Each has a distinct aim:
� O(1)

a,k is the normal single-phase collision operator for each
component;
� O(2)

a,k is the perturbation operator, generating the interfacial
tension;
� O(3)

a,k is the recolouring operator responsible for phase
separation.

Macroscopic quantities are obtained by calculating the
standard moments of fa,k(x,t):

rk ¼
X
a

fa;k;

ru ¼
X
a;k

nafa;k;
(63)

where r = Skrk. Consequently, the velocity u is referred to as the
colour-blind velocity. The perturbation step, responsible for
creating surface tension at the interface between two fluids i.e.
components, is expressed as:

Oð2Þa;k ¼
Ak

2
jrrj wa

na � rrð Þ2

jrrj2 � Ba

" #
; (64)

whererr is the colour gradient, Ak regulates the intensity of the
surface tension and Ba are constants unique to the DNQn set.
For the D2Q9 velocity set, Ba are given by

B0 ¼ �
w

3wþ 6
c2; B1;...;4 ¼

w
6wþ 12

c2 and

B5;...;8 ¼
1

6wþ 12
c2:

(65)

Likewise, for the D3Q19 velocity set, Ba are given by

B0 ¼ �
2þ 2w
3wþ 12

c2; B1;...;6 ¼
w

6wþ 24
c2 and

B7;...;18 ¼
1

6wþ 24
c2;

(66)

where w is a free parameter: values for Ba and w are derived in
ref. 129. Calculation of partial derivatives is necessary for rr
and it has been shown130 that the following isotropic central
difference contributes to enhancing numerical stability and
lowering the discretization error,

@jrðx; tÞ 	
1

cs2Dt

X
a

war xþ naDt; tð Þxaj ; (67)

where j runs through the spatial coordinates. Lastly, one just
needs to do the recolouring. In ref. 123 this involves the
minimisation of the work, W, which is given by

W(f r,f b) = �rr�q(f r,f b), (68)

where q is the local or colour flux

q f r; f b
	 


¼
X
a

na f ra � f ba
	 


: (69)

Nevertheless, this recolouring method may lead to pinning.
This was corrected in ref. 126 by enabling the blending of red
and blue components through symmetric colour distribution
concerning the colour gradient. The particle distributions after
recolouring are given as

Orð3Þ
a f ra
	 


¼ rr
r
f
0
a þB

rrrb
r2

f eqa ðr; u ¼ 0Þ cos yað Þ;

Obð3Þ
a f ba
	 


¼ rb
r
f
0
a �B

rrrb
r2

f eqa ðr; u ¼ 0Þ cos yað Þ;
(70)

where B 2 ð0; 1Þ is used to manage the thickness of the inter-

face, f
0
a ¼

P
k

f
0
a;k where f

0
a;k is the post-collision state after O(1)

a,k

and O(2)
a,k have been applied. The term cos(ya) is conveniently

expressed as

cos yað Þ ¼
na � rr
jnajjrrj

: (71)

The total zero-velocity equilibrium distribution function
f eqa ðr; u ¼ 0Þ ¼

P
k

fa;kðr; u ¼ 0Þeq is given by

f eqa ¼ r fa þ wa 3xa � uþ
9

2
na � uð Þ2�3

2
ðuÞ2

� �� �
(72)

where the weights fa (along with wa) are lattice
dependent.131,132 Further modification of the recolouring step
in eqn (70) to improve spurious velocities, lattice pinning and
convergence was done first in ref. 131. Furthermore, ya is the
angle between rr and na. Finally, the streaming step is carried
for each colour.

The advantages of the colour model include its ease of
extension beyond two components. Moreover, it provides free
control over both the surface tension and thus, the interface
thickness. Recent advancements have enabled the simulations
of fluids with high density133 and viscosity ratios.134 One
possible limitation, contingent on the modelling needs, is the
absence of a direct connection to thermodynamics. Another
downside involves the creation of undesired velocities at curved
interfaces, a phenomenon commonly observed in various other
fluid–fluid models.

Frustrated coalescence. In colour modelling, a repulsive
force has been used to prevent the coalescence of immiscible
droplets.135–137 This repulsive force term (operating exclusively
on the fluids interfaces) can be introduced to account for any
near-contact forces acting between droplets that are closer than
the lattice spacing

Frep = �Ah[h(x)]ndI, (73)

where Ah[h(x)] is the parameter controlling the strength of this
repulsive force, n is a unit normal to the interface and dI ¼
1

2
jrfj is a function proportional to the phase field f ¼ r1 � r2

r1 þ r2

which confines the repulsive force to the interface. A graphical
representation of this force is shown in Fig. 8. Ah[h(x)] can be
set equal to a constant A if h r hmin, it decays as f�3 if hmin o
h r hmax and it is equal to zero if h 4 hmax. For example in
ref. 137, hmin = 2 and hmax = 4 lattice spacing. Despite the
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possibility of other functional forms, this one is generally
adequate to prevent droplet coalescence and, more signifi-
cantly, to accurately describe the physics at various length
scales. The repulsive force leads to

@ðruÞ
@t
þr � ruuð Þ ¼ �rpþr � rv ruþruT

	 
� �
þr � ðRþ plÞ;

(74)

which is the NS momentum equation for a multicomponent
system, with a surface-localised repulsive term, expressed
through the potential function rp. Including extra forces to
frustrate coalescence can in principle be used for any multi-
component method, as will be discussed in the following
sections.

B. Free-energy modelling

We introduce a straightforward free-energy LBM for binary
liquid mixtures.138,139 In this method, discrete density distribu-
tions fk,a for each k-component model the hydrodynamics and
the evolution of a phase field, respectively. This approach
utilises a Cahn–Hilliard phase field method to represent a
scalar determining the fluid’s composition. We will describe a
model where both the fluid flow and evolution of the scalar
phase field are solved with the LBM. However, it is also possible
to use a hybrid scheme such that the fluid flow is solved with
LBM while the phase field is solved with finite differences
which leads to reduced memory requirement and usually a
marginal loss of numerical stability.140–143 The scalar not only
moves with the flow but also undergoes diffusion to minimise a
free-energy functional. The functional includes two components:

a double-well potential leading to phase separation and an energy
penalty discouraging composition gradients, giving tension to
interfaces. The thickness of the interface and its interfacial
tension can be specified independently (in terms of a and kf as
discussed below eqn (83)) which is an important advantage over
the pseudopotential models described in the next section.

The distribution function fk,a evolves according to

fk;a xa þ naDt; tþ Dtð Þ

¼ fk;a xa; tð Þ � Dt
tk

fk;a xa; tð Þ � f
eq
k;a xa; tð Þ

h i
þFk;aDt;

(75)

where tk specify the relaxation rates. By relating macroscopic
values to the density distributions and appropriately choosing
the equilibrium distributions feq

k,a, the simulations model the
required continuum equations. For the fk,a field, the macro-
scopic density and momentum are

rk ¼
X
a¼0

fk;a; rkuk ¼
X
a¼0

fk;ana: (76)

and the equilibrium distribution is

f eq
k,a = Aa + Bau�na + Cau�u + Da(u�na)2 + Ga,xyxa,xxa,y, (77)

where index notation has been used for the last term and
summation over repeated xy indices is implied. The coefficients
Aa, Ba, Ca, Da and Ga needs to adhere to conservation con-
straints, yet these constraints do not uniquely define the
coefficients. It is possible to use coefficients that reduce spur-
ious currents.144 For a D2Q9 velocity set, the full list of
coefficients is given in ref. 44 and details for construction on
a D3Q19 velocity set are given in ref. 144.

For the phase field, the scalar f specifies the composition of
the fluid, and it varies between �1 (continuum phase) and
1 (droplet phase). It is determined from the density
distribution by

f ¼
X
k;a

fk;a: (78)

The continuum equation for f is the Cahn–Hilliard one

@f
@t
þr � ðufÞ ¼Mr2m; (79)

where M is the mobility of the chemical potential m. This
diffusivity is determined by the relaxation time tf and a free

parameter P according to M ¼ P tg �
1

2

� �
, while the chemical

potential is determined by the free-energy of the system. The
free-energy functional [f(x)] is139

F ¼
ð
V

1

cs2
r ln rþ 1

2
f2 �Aþ B

2
f2

� �
þ kf

2
ðrfÞ2

� �
dV (80)

The first term gives an ideal gas equation of state, the second
term is a double-well potential that causes phase separation

with minima at compositions f0 ¼ 

ffiffiffiffi
A

B

r
; and the third term

sets the interfacial tension by associating an energy penalty for
changes in f with an elastic constant kf. The parameters A and

Fig. 8 Near contact forces representation. Mesoscale modelling of the
interactions at the point of contact of two immiscible fluid droplets. The
repulsive force is denoted by Frep, and the unit vector n = �rr/|rr| is
perpendicular to the fluid interface. The dotted line follows the fluid
interface outermost boundary, and the vectors x and y represent the
coordinates taken there. The repulsive parameter maximum and minimum
values are AhM and Ahm, respectively. The colours represent the density
field i.e. yellow is the continuum fluid and blue is the dispersed (droplets)
fluid.
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B specify the shape of the double-well potential. Two symme-
trical phases with f0 = 
1, are obtained when A = B. The
strength of the free energy resulting from concentration gradi-
ents is governed by the parameter kf. The chemical potential is
then given by

mf ¼
dF
df
¼ �Afþ Bf3 � kfr2f (81)

The one-dimensional steady-state solution for f between two
infinite domains offers crucial insights into the interface,
particularly regarding its thickness and excess free energy.
The solution is as follows139

fðxÞ ¼ f0 tanh
x

‘f
; (82)

where ‘f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kf=B

p
is the interfacial thickness of the droplets.

The free energy model is also used to study active droplets.141,145,146

Frustrated coalescence. Literature on frustrated coalescence
using the free energy LBM is scarce. We present a method used
by ref. 147 to study the shear thinning of immiscible droplets in
a 2D channel driven by flow. It tracks two fields: the phase-field
variables representing each droplet’s density fi where i = 1, . . .,
N is the number of droplets and the fluid velocity field u. The
free energy is given by:

F ¼
ð
V

a
4

XN
i

fi
2 fi � f0ð Þ2 þ kf

2

XN
i

rfið Þ2 þ e
X

i;j;io j

fifj

" #
dV;

(83)

where the first term represents the double well potential which
ensures droplet stability. It yields two minima for fi = f0 and
fi = 0, which represent the inside and outside region of the i-th
droplet, respectively. The droplet deformability properties are

determined by their surface tension G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kfa=9

p
; and can

therefore be tuned by changing the value of kf in eqn (83). The
parameters kf and a also determine the interfacial thickness of

the droplets ‘f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kf=a

p
. The third, final term describes a soft

repulsion pushing the droplets apart when they overlap, there-
fore preventing coalescence. The strength of this repulsion is
regulated by the value of the positive constant e. The dynamics
of fi is given by

@fi

@t
þr � ufið Þ ¼Mr2mi; (84)

where M is the mobility and mi ¼ @F=@fi � @a@F=@ @afið Þ is the
chemical potential of the i-th droplet. Eqn (83) and (84) are
solved using a combination of the LBM (for the fluid flow) and
finite differences (for the phase field) similar to ref. 138 and
148. This may be used for a small number of droplets. As the
number of times that eqn (83) and (84) are solved increases
the computational cost rapidly as the number of droplets
increases. This method is also useful to simulate droplets
inside droplets.149

C. Pseudopotential method

The pseudopotential (or Shan–Chen models) first introduced in
ref. 150 and 151 as a way to simulate multicomponent and
multiphase flows. It works by adding inter-particle interactions
resulting in the separation of components. Some instances of
applications of pseudopotential models include gravity driven
droplets in confined environments152 and transport of H2O in
air.153,154 Different fluids in a multicomponent mixture have
different molecular forces. The force acts on pairs of molecules
located at x and x̃ a x. It is also assumed that a higher density
r(x) of molecules leads to larger forces. The total force is given
as an integral over all possible effective interactions as

FðxÞ ¼ �
ð
ð~x� xÞGðx; ~xÞcðxÞcð~xÞd3~x; (85)

where G(x,x̃) strength of force between two fluid elements at x
and x0 and c(x) is the pseudopotential, which is a function of
the fluid density. Assuming nearest-neighbour interactions at
the mesoscopic scale, the effective force on the kth component
is given by

Fr
kðxÞ ¼ �ckðxÞ

X
~k

G~kk

X
i

wic ~k xþ niDtð Þni (86)

where Gk̃k is a k � k matrix for the molecular interaction
strength between fluid components and its sign regulates
whether the forces are attractive (negative) or repulsive (positive).
Subscript r stands for repulsive. To create immiscible droplets Fk

r

needs to be repulsive. k and k̃ are just two different components of
the fluid system. For a multicomponent mixture (no multiphase),
the diagonal components of the matrix are zero and GAB = GBA for
two components A and B. ck is the pseudopotential (or effective
density). The pseudopotential can take different forms. A com-
monly used form is

ckðx; tÞ ¼ r0 1� exp
rk
r0

� �� �
; (87)

where r0 is a freely chosen reference density, usually unity.
ck(x,t) = rk can also be used and it is an approximation of
eqn (87) at low-density. However, at higher densities, this assump-
tion will lead to numerical instabilities.155 In the absence of
attraction between components, the pseudopotential can often
be reduced to the physical density for simplicity. Nevertheless,
using eqn (87) instead of ck(x,t) = rk leads to improved numerical
stability.

The pseudopotential model allows for multicomponent
multiphase (MCMP) simulations, but, for simplicity, we do
not present the variants of pseudopotential MCMP LBM. In
what follows, we focus only on the multicomponent variant as it
is the most widely used method for immiscible droplets. In ref.
150 and 151, they proposed a simple forcing scheme to include
these interactions. Similar to the body force, it is also possible
to incorporate the effective force of the interaction potential in
the fluid velocity field. Nevertheless, for a multicomponent
system, we introduce ueq which is a combined velocity (different
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from the physical velocity) of different components given by:

ueq ¼

P
k

rkuk
tkP

k

rk
tk

; (88)

where rkuk is the kth component of momentum and tk is the
relaxation time of the BGK collision operator for the component k.
The barycentric velocity u of the fluid mixture, i.e., the physical
velocity and the total density are given by

u ¼

P
k

rkuk

r
; r ¼

X
k

rk: (89)

Also, the density and momentum of each component can be
calculated using,

rk ¼
X
a¼0

fk;a; rkuk ¼
X
i¼0

fk;ana þ
Fk

2
: (90)

For a multi-component system, the time evolution of fk,a(x,t)
is given by the discrete Boltzmann equation for each compo-
nent k (similar to eqn (7)),

fk;a xi þ naDt; tþ Dtð Þ

¼ fk;a xi; tð Þ � Dt
tk

fk;a xi; tð Þ � f
eq
k;a xi; tð Þ

h i
þFk;aDt:

(91)

The equilibrium distribution is given by

f
eq
k;a ¼ rkwa 1þ ueq � na

cs2
þ ueq � nað Þ2

2cs4
� ueqð Þ2

2cs2

" #
: (92)

The Guo forcing scheme156 can be used to implement these
forces acting in a fluid as it yields a viscosity-independent
surface tension,157 particularly with the frustrated coalescence
mechanism described in the next section. Thus similar to
eqn (8),

Fk;a ¼ 1� 1

2tk

� �
wa

na � ueq

cs2
þ na � ueqð Þna

cs4

� �
� Fk; (93)

where Fk is the total force acting on component k. In this case
Fk = Fr

k. Different forcing schemes can be used. Additionally, as
shown in the next section, the frustrated coalescence mecha-
nism can be introduced as an extra force term. Although we
described a model based on the BGK operator, extensions for
MRT are possible.158

The pseudopotential model provides isotropy of the surface
tension and spontaneous component separation which
improves the numerical efficiency of the simulation. The
method is successful because of its simplicity and flexibility
in large-scale simulations of complex fluids. The implementa-
tion is relatively simple when compared to the other models
reported so far. However, it also comes with some nonphysical
features such as a diffusing interface and spurious currents.25

Some attempts have also been made to derive a thermodyna-
mically consistent pseudopotential model.159–161 Moreover, it is
possible to obtain an effective free energy in the pseudopoten-
tial models.162,163

Frustrated coalescence. To prevent coalescence a multi-
range repulsive force is used which acts between the nearest
neighbours and the next nearest neighbours.157,164 This force is
used in addition to the repulsive component separation force Fr

k.
This means that in eqn (93), Fk = Fr

k + Fc
k where Fc

k is a competing
force given by

Fc
k ¼ � Gk;1ckðxÞ

XL1
i¼0

mick xþ nið Þni

� Gk;2ckðxÞ
XL2
j¼0

njck xþ fj
	 


fj ;

(94)

where Gk,1 and Gk,2 regulate the strength of force. It is a
competing mechanism (superscript c) where the first term is
an attractive force and the second term is a repulsive force
between same components. This multi-range potential uses 2
different lattices L1 and L2. In 2D these are the D2Q9 and
D2Q25,164 respectively while in 3D they are D3Q41 for L1 and
D3Q39 for L2.165 In 2D, it is possible to completely separate the
range of the forces i.e. the L1 lattice runs over only on the first
belt of neighbours while L2 runs over on the second belt of
neighbours. However, in 3D both lattices (D3Q41 and D3Q39)
run over to the third belt of neighbours but on different lattice
points which is sufficient to prevent droplet coalescence.166 In
the competing force Fc

k, the attractive force must overcome the
repulsive force to stabilise droplets, so we set |Gk,1| 4 |Gk,2|.
To obtain the desired repulsive and attractive forces: Gk,1 o 0,
Gk,2 4 0, and Gk,%k 4 0. For simplicity, we assume: GA,1 = GB,1, GA,2 =
GB,2, GA,B = GB,A for the two components A and B.

The computational cost does not increase with the number
or size of the droplets by contrast to the colour gradient.
Compared to the free energy model where each droplet is a
different component, the pseudopotential model performs
computationally better. This provides an efficient algorithm
for simulating a large number of droplets.167 This is because
the repulsion between droplets is based on the density of each
LB lattice node. The extra cost comes from using a second
lattice to calculate the force. However, this model suffers from
spurious velocities caused by an imbalance between the forces.

Fig. 9 Droplets moving in a channel. This was obtained using a free
energy LBM and solving eqn (84). Colour depicts

P
i

fi which is E2 for
droplets (yellow) and E0 for the background fluid (black).
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Using a higher order lattice for the streaming can help to
reduce these velocities.166 These velocities increase as the
viscosity ratio deviates from unity or the surface tension
increase. Proper and careful calibration of the G parameters is
necessary otherwise the droplet may increase or decrease in size.
With this method, it is not possible to vary the surface tension and
the interface thickness independently (Fig. 9 and 10).

V. Benchmarks

We now summarise a few simple benchmarks that can be used
to test the model implementation in hydrostatic and hydro-
dynamic conditions. The benchmarks are for one capsule/
droplet in shear flow, capsule sedimentation and a test of the
Laplace law. We refer the reader to ref. 157 for benchmarks on
multiple droplets.

A. Capsule and droplet in shear flow

Shear flow is a common validation flow to test for both
droplets168,169 and capsules115,170 (fluid–structure interactions).
Here we use capsules as a generic term for membrane-bound
particles. This benchmark consists of placing a spherical
(circular in 2D) droplet/capsule in shear flow (between two
parallel walls with opposite velocities) and allowing it to deform
until a steady state regime is reached169 (see Fig. 11). In what
follows, we have separated into two sections the shear flow of a
droplet and a capsule for clarity.

1. Droplet. As a droplet deforms in shear flow, the final
shape is a result of viscous forces competing with surface
tension. The ratio of these forces is the Capillary number,

Ca ¼ uwm
G

R

H
; (95)

where uw is the wall velocity, H is the distance between walls, R
is the radius of the droplet, m the dynamic viscosity and G is the
surface tension. Ca is the main parameter that controls the
deformation and final shape of the droplet. The final shape is
evaluated using the Taylor deformation parameter given by

D ¼ a� b

aþ b
(96)

where a and b are the lengths of the major and minor axis,
respectively. In the limit of small Capillary numbers (thus small
deformations) a steady state is always achieved. In the limit of
nearly spherical droplets an analytical solution was first
reported in ref. 171 by solving the momentum and continuity
equation using the Lorentz reflection method. ref. 171 gives the
first order solution DSH (SH stands for the initials of the
original authors in ref. 171) for small confinements ratio R/H
between two parallel walls171,172

DSH ¼ DTaylor 1þ CSH
1þ 2:5p

1þ p

R

H

� �3
" #

; (97)

where p is the viscosity ratio between the droplet and surround-
ing fluid, H is the gap between the walls, R is the droplet radius
and parameter CSH which depends on the position of the
droplet relative to the walls and this value grows when closer
to the walls. Ref. 171 performed analytical calculations for
which they found that a droplet placed in the middle of the
walls (R/H = 0.5) has CSH = 5.699 while a droplet at R/H = 0.125
has CSH = 193.3. Other values at different droplet positions
are also reported. Some values have been tested against
experiments as shown in ref. 172. The theoretical model
given eqn (97) and ref. 171 has an additional term DTaylor

Fig. 10 (a) The D3Q41 lattice and (b) the D3Q39 lattice. The D3Q41 is a zero-
one-three lattice meaning that it is analogous to the Brillouin zones (also
referred to as lattice-belts, or lattice-stencils) covered by xa. The D3Q39 is a
zero-one-two-three lattice. (c) The D2Q9 lattice for short-range nodes (red).
The D2Q25 lattice for short and mid-range nodes (blue).

Fig. 11 The final steady-state shape of droplet/capsule with the major
axis, a, the minor axis of deformation, b, and the third axis, c. An additional
reference frame (x0, y 0, z0) is defined, with the axes corresponding to the
deformed droplet principal axes. The different regions of the droplet have
been also highlighted for ease of reference: tips (green), belly (red) and
sides (blue). Inspired by ref. 169.
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obtained from Taylor small-deformation bulk theory173,174 and
is given by

DTaylor ¼ Ca
16þ 19p

8ð1þ pÞ sin y cos y; (98)

where Ca is the Capillary number and y is the angle between
reference axis x and major axis a (see Fig. 11) and usually
assumed to be p/4 radians as in ref. 172 and 173. Taylor bulk
theory173,174 is valid for small deformations and viscosity ratios
p close to 1. Furthermore, while this theoretical model predicts
that the magnitude of the deformation will scale with the
confinement ratio, the shape should remain ellipsoidal.

We highlight that this test can be performed in both 2D and
3D for droplets. For small Ca the deformation parameter is the
same for a 2D and 3D droplet (same parameters), while for
higher Ca results for 2D and 3D droplets start to deviate.
An extensive study of 2D vs. 3D droplets can be found in
ref. 175. The methodology presented here is valid for all the
fluid–fluid models mentioned in this review.

2. Capsule. A capsule in shear will also reach a steady state
and the main parameter defining the deformation is also

the Capillary number now defined as Ca ¼ uwRm
ksH

where ks is

the stretching coefficient and has the same physical units as the
surface tension G. The Taylor deformation parameter is also
used to characterise capsules in shear flow. We highlight that
the correct constitutive model needs to be used to compare
with other literature or analytical results. Results and validation
for Hookean constitutive laws can be found in ref. 176–178. For
Skalak models we refer the reader to ref. 18, 179 and 180. It is
not trivial to obtain analytical results from constitutive models.
In most cases, models are validated against other numerical
implementations. An analytical result for the Taylor deforma-
tion parameter has been found for the neo-Hookean and Skalak
laws, eqn (12) and (14) and is given by,18,43,181

D ¼ 5

4

3a2 þ 4a3
a1 3a2 þ 5a3ð Þ þ 2a3 a2 þ a3ð ÞCaþO Ca2

	 

(99)

where a1 = 0, a2 = 2/3, and a3 = 1/3 are coefficients extracted
from the constitutive model. Eqn (99) is only valid for small
deformation in Stokes flow (Re o 1). More details can be found
in ref. 18.

B. Capsule sedimentation

The process of capsule sedimentation involves placing a cap-
sule in a static fluid and allowing it to accelerate downward
under gravity until it reaches a terminal velocity, where the
resultant drag force balances the gravitational load (see Fig. 12).
We present a simple validation for a confined 2D capsule using
the harmonic potential given in eqn (29). The capsule should be
rigid. The elastic and bending coefficients can be adjusted to
achieve a quasi-rigid state. It is clear that simulating sedimen-
tation of a 2D capsule i.e. a cylinder, will encounter Stokes
paradox, which states that there is no drag force on the cylinder
in the Stokes regime. However, experiments and approxima-
tions have been derived for cylinder sedimentation in the

presence of walls. Therefore, this benchmark consists of pla-
cing the 2D capsule between 2 vertical parallel walls. The top
and bottom boundaries can be walls or periodic but the vertical
walls need to be long enough to minimize boundary effects.

According to ref. 109, the analytical wall-corrected settling
velocity of a 2D particle can be calculated from

Vc ¼
pgD2 rs � rfð Þ

4mL
; (100)

where D is the diameter of the particle, g is gravitational
acceleration, r is the density where s and f stand for solid
and fluid, respectively, m is the dynamic viscosity and L is the
wall correction factor. Subscript c stands for corrected. Notice
that eqn (100) is obtained by equating the gravitational force

per unit length Fg ¼
p
4
gD2 rs � rfð Þ with the drag force per unit

length Fd = VcmL. Moreover, eqn (100) is valid for low Reynolds
numbers. There are several approximations for L which can be
found in ref. 109 and 182. A commonly cited approximation can
be found in ref. 183 and 184 where Stokes equation for New-
tonian fluids using asymptotic expansion with no-slip bound-
ary conditions on the walls given by

L ¼ �4p
0:9157þ lnðkÞ � 1:724k2 þ 1:730k4 � 2:406k6 þ 4:591k8

(101)

where k = D/H is the dimensionless particle size. D is the
diameter of the particle and H is the distance between the
two vertical walls i.e., the width of the channel. Ref. 183,184
applied an integral transform which produces a convergent
series and allows the boundary conditions to be applied
simultaneously. It is generally known that eqn (101) is valid
for k A [0, 0.5]. Usually, L is only a function of k for low or very
high Reynolds numbers Re. For intermediate values, it is also a

Fig. 12 Schematic of an initially circular particle of diameter D moving in a
channel of length L and width H due to the force of gravity g. The particle is
placed at x0 = 0.5H. Terminal velocity Vt against dimensionless size k. The
particle has a diameter of 12.5 l.u. and the fluid has a relaxation parameter
t = 1. The analytical approximation corresponds to eqn (100).
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function of the Reynolds number. The results for a 2D sedi-
menting capsule are shown in Fig. 12 and are in agreement up
to k E 0.4 in the range k A [0, 0.5]. Note that for a 3D spherical
capsule, Stokes’ law can be used for validation.

C. Droplet Laplace test

The Laplace test consists of placing a spherical droplet in the
centre of a fluid domain and verifying the Laplace law. Laplace
law dictates that when the system reaches equilibrium, the
pressure difference across the droplet interface DP is related to
the interfacial tension G

DP ¼ 2G
R
; (102)

where R is the radius of the droplet. In 2D the Laplace pressure

is DP ¼ G
R

. One should measure the pressure at the droplet

centre and then as far away from the centre as possible to
prevent undesired effects from affecting the measurements
such as spurious velocities. The domain needs to be large
enough to prevent the effect of periodic copies (periodic
boundaries) or walls (solid boundaries). A linear relationship
should be obtained and the slope is the surface tension. As an
example, we plot results for a droplet using the pseudopotential
method depicted in Fig. 13. Additionally, it is possible to
compare the surface tension value to theoretical and numerical
values.185 Moreover, other hydrostatic tests such as contact
angle test185 (for wetting boundary conditions) can be useful
to further check the accuracy of the model.

VI. Summary and outlook

We reviewed different methods to model fluid-filled objects in
flow and addressed some of the advantages, disadvantages, and
trade-offs of the different methodologies, as perceived based on

our own (necessarily biased) experience and the literature
survey. Below, we summarise the main items.

Fluid–fluid models are usually computationally more eco-
nomical than fluid–structure ones because the interfaces
emerge spontaneously from the underlying mesoscale physics
and do not require any explicit tracking. The price for this
flexibility is a lack of specific control of the mechanical proper-
ties of the interfaces, as often required in biological applica-
tions. They are also generally affected by spurious currents
resulting from lack of sufficient isotropy of the underlying
lattice; even though several efficient remedies have been devel-
oped over the years, spurious currents remain an issue to be
critically monitored.

Both pseudo-potential and free energy must be supplemen-
ted with a model for near-contact interactions in order to
prevent droplet coalescence, especially under conditions typical
of microfluidic experiments. Such near-contact interactions can
be implemented very effectively within high-performance LB
codes, yielding excellent performances on parallel GPU clus-
ters. For instance, optimized codes running on GPU accelera-
tors can reach GLUPS performance (one billion lattice updates
per second) on single GPU machines with a few thousands
CUDA cores.186,187 To convey a concrete idea means that one
can simulate one millimeter cube material at micron resolution
in space and nanosecond resolution in time, over one milli-
second timespan in about 106 seconds, namely about two
weeks wall clock time. On massively parallel GPU clusters,
these figures can be boosted by two orders of magnitude,
meaning that the above simulation can be performed in just
a few hours of wall-clock time. These numbers open up exciting
perspectives for the computational design of new soft
materials.24,188 Fluid–fluid models readily extend to three
dimensions by simply enlarging the set of discrete velocities,
although at a correspondingly increased computational cost
(especially on account of memory access).189

As mentioned above, fluid–structure models are computa-
tionally intensive but offer a more accurate control of the
mechanical properties of the interfaces, hence of the shape of
the resulting droplets and capsules. They also provide a sig-
nificant latitude in shape-space and do not suffer from sig-
nificant spurious current effects. Since the structural dynamics
is explicitly taken into account, the computational cost raises
with the number of droplets and the number of degrees of
freedom per droplet/capsule, setting the case for a judicious
trade-off between physical fidelity and computational viability.
Significant progress over the recent years has led to near-GLUPS
performance on multi-million grid sizes with embedded
propellers.190

Finally, three-dimensional extensions are demanding not
only in terms of computational resources, but also in terms
of model and programming complexity, such as the switch
to finite-element representations of the internal degrees of
freedom.

By and large, it appears fair to say that the major progress of
LB models over the last decade, both in its fluid–fluid and
fluid–structure versions has come to a point of enabling the

Fig. 13 Laplace test using the pseudopotential method at equilibrium for
Gk,1 = �7.9, Gk,2 = 4.9 (see eqn (94)) and tA = tB = 1. From the linear fit we
obtain the surface tension G = 0.00367. The images show the steady state
of droplets as we vary the radius.
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computational study of new smart materials, both passive
and active. Furthermore, the capability of tracking droplets
and capsules in realistically complex geometries, such as the
human body, may disclose new exciting perspectives in com-
putational microphysiology and medicine.191
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Model., 2012, 36, 2237–2252.
130 H. Liu, A. Valocchi and Q. Kang, Phys. Rev., 2012,

85, 046309.
131 T. Reis and T. N. Phillips, J. Phys. A: Math. Theor., 2007, 40,

4033–4053.
132 S. Leclaire, A. Parmigiani, O. Malaspinas, B. Chopard and

J. Latt, Phys. Rev. E, 2017, 95, 033306.
133 Y. Ba, H. Liu, Q. Li, Q. Kang and J. Sun, Phys. Rev. E, 2016,

94, 023310.
134 H. Liu, L. Wu, Y. Ba, G. Xi and Y. Zhang, J. Comput. Phys.,

2016, 327, 873–893.

135 A. Montessori, M. Lauricella and S. Succi, Philos. Trans. R.
Soc., A, 2019, 377, 20180149.

136 A. Montessori, M. Lauricella, N. Tirelli and S. Succi, J. Fluid
Mech., 2019, 872, 327–347.

137 A. Montessori, A. Tiribocchi, F. Bonaccorso, M. Lauricella
and S. Succi, Philos. Trans. R. Soc., A, 2020, 378, 20190406.

138 M. Swift, E. Orlandini, W. Osborn and J. Yeomans, Phys.
Rev., 1996, 54, 5041–5052.

139 A. J. Briant and J. M. Yeomans, Phys. Rev. E: Stat., Non-
linear, Soft Matter Phys., 2004, 69, 031603.

140 D. Marenduzzo, E. Orlandini, M. E. Cates and
J. M. Yeomans, Phys. Rev. E: Stat., Nonlinear, Soft Matter
Phys., 2007, 76, 031921.

141 R. C. V. Coelho, N. A. M. Araújo and M. M. Telo da Gama,
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