
This journal is © The Royal Society of Chemistry 2024 Mater. Horiz., 2024, 11, 499–509 |  499

Cite this: Mater. Horiz., 2024,

11, 499

A high-dimensional in-sensor reservoir computing
system with optoelectronic memristors for high-
performance neuromorphic machine vision†
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In-sensor reservoir computing (RC) is a promising technology to

reduce power consumption and training costs of machine vision

systems by processing optical signals temporally. This study

demonstrates a high-dimensional in-sensor RC system with opto-

electronic memristors to enhance the performance of the in-sensor

RC system. Because optoelectronic memristors can respond to

both optical and electrical stimuli, optical and electrical masks are

proposed to improve the dimensionality and performance of the in-

sensor RC system. An optical mask is employed to regulate the

wavelength of light, while an electrical mask is used to control

the initial conductance of zinc oxide optoelectronic memristors.

The distinct characteristics of these two masks contribute to the

representation of various distinguishable reservoir states, making it

possible to implement diverse reservoir configurations with mini-

mal correlation and to increase the dimensionality of the in-sensor

RC system. Using the high-dimensional in-sensor RC system, hand-

written digits are successfully classified with an accuracy of 94.1%.

Furthermore, human action pattern recognition is achieved with a

high accuracy of 99.4%. These high accuracies are achieved with

the use of a single-layer readout network, which can significantly

reduce the network size and training costs.

Introduction

A conventional machine vision system relies on optical sensors
within the camera to collect analog visual data, which are
converted to digital form through additional processing. However,
this process requires analog-to-digital data conversion and exten-
sive data transportation between the sensors and processors,

resulting in significant energy consumption.1–3 Furthermore,
conventional processors based on the von Neumann architec-
ture demand significant data transmission between the sepa-
rate memory and processing units, further exacerbating power
consumption.4,5 Therefore, the conventional machine vision
system has certain constraints for application in the Internet of
Things and mobile devices, which require high energy efficien-
cies. Therefore, interest in in-sensor computing to address these
issues is growing, inspired by the functioning of the human eye,
where preprocessing occurs in sensory neurons.6–9

Recently, many neuromorphic machine vision systems have
been proposed using optoelectronic memristors as the central
component of in-sensor computing systems.10–12 Optoelectronic
memristors can detect light directly and perform preliminary
processing of visual input as in the biological sensory
neurons.13–18 Neuromorphic machine vision systems based on
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New concepts
The current in-sensor reservoir computing (RC) systems involve fused in-
sensor computing with RC by utilizing volatile optoelectronic memristors
as optical reservoirs. However, prior in-sensor RC approaches faced a
challenge in creating higher-dimensional reservoirs, limiting the system’s
performance or versatility. This study introduces a novel method to
address this limitation, capitalizing on the dual responsiveness of
optoelectronic memristors to both optical and electrical stimuli. This
method employs optical and electrical masks to diversify the reservoir
state and enhance the reservoir dimensionality. Unlike conventional
masking processes requiring intricate signal conversions, this tech-
nique enhances dimensionality efficiently in a controllable manner.
Leveraging zinc oxide (ZnO) deposited using the atomic layer
deposition technique, optoelectronic memristors were fabricated, which
exhibited a large optoelectronic switching window of B103. Utilizing the
fabricated ZnO optoelectronic memristor as a reservoir component, this
system successfully classified MNIST handwritten digits (94.1%) and
recognized human action patterns (99.4%). These results were achieved
with a single-layer readout network, offering higher accuracy than
previous studies. This study underscores the potential for novel
computing hardware in materials research fields, marking a significant
step toward the neuromorphic computing era.
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optoelectronic memristors are promising because data latency
and power consumption can be significantly reduced without
requiring analog-to-digital conversion.

Besides, reservoir computing (RC) is a promising approach
to further decrease the power consumption and training costs of
the neuromorphic system by incorporating temporal processing
through reservoirs.19–24 Reservoirs within the RC system trans-
mit temporal signals to high-dimensional states, which are
processed by a simple readout layer. This approach substantially
decreases the overall network size and the expenses associated
with training. Therefore, implementing an in-sensor RC system
with optoelectronic memristors provides a unique opportunity to
combine the benefits of both models and significantly enhance
the efficiency of processing optical signals. Driven by this
motivation, various in-sensor RC systems have recently been
proposed based on optoelectronic materials, such as metal
oxides and 2-dimensional materials, and applied to temporal
sensory signal processing and pattern classification.25–30

In the meantime, the dimensionality of the reservoirs, which
refers to the number of input neurons, is a crucial factor that
determines the performance of the RC system when dealing
with complex problems.24,31–33 Increasing the dimensionality
of the reservoirs enables the RC system to achieve higher

prediction accuracy by providing a larger capacity to capture
and differentiate information from the input signals within a
broader feature space. The most widely adopted approach
to achieve higher dimensionality involves using a mask.22 Typi-
cally, a mask is a matrix where random binary values (1 and �1)
are assigned, transforming the original input signals into various
modified input signals. However, applying such a mask in an in-
sensor RC system is too complicated because optical inputs must
be converted into electrical signals and then subjected to ran-
dom modifications based on the mask. In addition, the mask
cannot be controlled according to specific requirements since it
is based on a random process. Thus, no methods were reported
to enhance the dimensionality of in-sensor RC systems.

This paper proposes novel methods to improve the dimen-
sionality of in-sensor RC systems, which can enhance the
performance of neuromorphic machine vision systems. Since
optoelectronic memristors can respond to both optical and
electrical stimuli, two kinds of masks are adopted, which control
the optical inputs and the memristor’s electrical properties. As
illustrated in Fig. 1a, an optical mask is employed to regulate light
wavelength. An electrical mask is utilized to control the initial
conductance of zinc oxide (ZnO) optoelectronic memristors before
receiving the optical inputs. The distinct characteristics of these

Fig. 1 High-dimensional in-sensor reservoir computing (RC) using the ZnO optoelectronic memristor, (a) schematic illustrations of the proposed high-
dimensional in-sensor RC system. The optical and electrical masks are utilized to make diverse distinguishable reservoir states and enhance the
dimensionality of RC. (b) Planar view (upper panel) and cross-sectional (lower panel) scanning electron microscopy images of the ZnO optoelectronic
memristor with a line cell structure. (c) Schematic illustrations showing the operating principle of the ZnO optoelectronic memristor. Optical and
electrical stimuli can change the conductance of the device.
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two masks help represent various distinguishable reservoir states,
enabling the implementation of diverse reservoir configurations
with minimal correlation and enhancing the dimensionality of
the in-sensor RC system. Unlike conventional masking processes,
complex conversion or random modification processes are unne-
cessary. Using such a high-dimensional in-sensor RC approach,
handwritten digits are successfully classified with 94.1% accuracy
using the Modified National Institute of Standards and Technol-
ogy (MNIST) dataset, corresponding to the highest performance
among previously reported in-sensor RC works. In addition,
human action pattern recognition shows its capability for
complex motion perception with a high accuracy of 99.4%.
Notably, these accomplishments are achieved by utilizing a
single-layer readout network, which can significantly reduce the
network size and minimize the training costs.

Results and discussion
ZnO optoelectronic memristors

In this work, ZnO was used as an active layer of the optoelec-
tronic memristor due to its excellent photoactivity.26,34 As shown
in the planar view (upper panel) and cross-sectional (lower
panel) scanning electron microscopy (SEM) images of Fig. 1b,
a line cell structure was designed to maximize the light-receiving
area, where the TiN electrodes were positioned on the sides of
the ZnO active layer. The detailed fabrication process is
explained in Fig. S1 (ESI†) and the Experimental section.
Fig. 1c illustrates the operating principle of the ZnO optoelec-
tronic memristor. When an optical stimulus is applied, the
electrons become excited and are captured by trap sites asso-
ciated with oxygen vacancies.29 As these trap sites are filled, the
Fermi level approaches the conduction band, increasing the
number of free electrons. Consequently, the conductance of
the device is increased by an optical stimulus. Upon removal
of the optical stimulus, the trapped electrons gradually escape
due to thermal disturbance, which refers to the random motion
of electrons caused by their thermal energy. Such thermal
disturbance decreases conductance and short-term plasticity
(STP) behavior.29,35 This characteristic is typical of optoelectronic
memristors in in-sensor RC systems.25–30 It should be noted that
optical behavior depends on the wavelength of light, as photonic
energy is determined by the wavelength. This wavelength depen-
dency can be utilized to implement the optical mask, enabling
the achievement of high dimensionality in in-sensor RC systems.
In addition to an optical stimulus, the device’s conductance can
be altered by applying an electrical stimulus. When a negative
voltage is applied, the trapped electrons quickly escape due to
the electric field, resulting in a decrease in the conductance. The
initial conductance of the device before applying an optical
stimulus can be controlled to implement an electrical mask,
further enhancing the dimensionality of in-sensor RC systems.

The optoelectronic properties of the fabricated ZnO optoe-
lectronic memristor were verified by measuring its current–
voltage (I–V) characteristics, as shown in the left panel
of Fig. 2a. A white light stimulus with an intensity of
5 mW cm�2 was applied during the positive sweeps. As a result

of the light illumination, the device transitioned into a low-
resistance state (LRS), confirming the optical SET process.
During the negative sweeps, the device gradually returned to
a high-resistance state (HRS) due to negative voltage applica-
tion, confirming the electrical RESET process.

The conductance values obtained from 100 consecutive
optical SET and electrical RESET cycles are presented in the
right panel of Fig. 2a, demonstrating excellent cycle-to-cycle
uniformity. The conductance values were extracted at a reading
voltage. In this study, a consistent �3 V read voltage was used,
and Fig. S2 (ESI†) demonstrates that the read operation at �3 V
does not affect the memristor’s conductance. The results of
Fig. 2a show that the fabricated device exhibits an exceptional
on/off ratio exceeding 103 at the read voltage, outperforming
prior research on optoelectronic memristors.12,29,36 This sub-
stantial switching range not only offers sufficient capacity for
representing various input patterns but also facilitates the
implementation of the masking process, thereby contributing
to the establishment of a high-dimensional reservoir state. The
operation of the ZnO optoelectronic memristor is not asso-
ciated with capacitive effects or ferroelectric polarization and
does not exhibit non-zero crossing I–V characteristics,37 as
illustrated in Fig. S3 (ESI†). Additionally, Fig. 2b exhibits the
I–V curves of 15 independent devices, indicating minimal
device-to-device variation.

Fig. 2c and d depict the conductance changes observed
while applying optical pulses. The conductance values were
read at a voltage of �3 V. The optical pulses increased the
conductance, attributed to the capture of electrons in trap sites,
a common property of optoelectronic memristors. When the
illumination was removed, the conductance gradually decayed
as the trapped electrons were released. This phenomenon
represents a typical light-induced STP mechanism employed
to achieve in-sensor RC.23,25–29 Besides, pair-pulse facilitation
(PPF) results from STP, which plays a vital role in biological
synapse function.29 To further substantiate the presence of STP
in this device, an additional experiment was conducted to
measure the PPF characteristics. When a pair of optical pulses
are applied, the PPF ratio is defined as A2/A1, where A1 repre-
sents the conductance resulting from the first pulse, and A2

represents the conductance resulting from the second pulse. In
devices exhibiting STP, the PPF ratio is influenced by the pulse
interval (Dt) due to a decrement in conductance over time. As
shown in Fig. S4 (ESI†), the PPF ratio decreased from 1.3 to 1.08
when Dt increased from 0.1 s to 1.0 s, confirming the STP in
this device.

Two parameters were controlled to manipulate the conduc-
tance changes. First, the wavelengths of the light were varied,
and second, the initial conductance of the device was modu-
lated. Wavelength modulation was achieved using an optical
mask, while the initial conductance modulation was accom-
plished using an electrical mask. These masks enabled high-
dimensional operations within the in-sensor RC.

The optical masks, controlling the wavelengths, were
achieved using colored cellophane papers for filtering while
generating identical optical pulses from the light source. Three
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different kinds of cellophane papers were used for masking:
transparent cellophane paper for white light illumination, blue-
colored cellophane paper for blue light illumination, and red-
colored cellophane paper for red light illumination. It is worth
noting that these colored cellophane papers can be substituted
with a color filter array, commonly used in practical applica-
tions of image sensors.38,39 As shown in Fig. 2c, when the
cellophane papers had colors, the increase in conductance due
to optical pulses became smaller, as only photons with specific
wavelengths were applied to the device. When the red-colored
cellophane paper was used as the mask, the conductance
increase was smaller than the blue-colored cellophane paper,
owing to the lower photonic energy of red light.40 The decay
rate was slower when illuminated with red light, as the activa-
tion energy at the lower conductance state is higher, and
electrons rarely escape from the trap sites. For the quantitative
activation energy analysis, the time-dependent current-
relaxation characteristics were measured, as shown in Fig. S5
(ESI†). From the Arrhenius plots, the activation energies of the
low and high conductance states were extracted as 0.27 eV and
0.18 eV, respectively.41 Because of the higher activation energy,
it was difficult to detrap the trapped electrons from the trap

sites at the lower conductance state formed by red light
illumination.

On the other hand, with the electrical masks, the initial
conductance of the device was regulated by applying negative
electrical pulses before exposing it to light. The trapped elec-
trons were released by applying negative voltages. Modifying
the initial conductance can result in various reservoir states, as
the optical response varies based on the initial conductance.
Fig. S6 (ESI†) shows the conductance as a function of the
number of electrical pulses. Such conductance modulation
was utilized to control the initial conductance for the operation
of the electrical mask. For example, memristors with three
distinct initial conductance states can be created by not apply-
ing any electrical pulses to the first memristor (low initial
conductance), applying a small number of negative electrical
pulses to the second memristor (middle initial conductance),
and applying a large number of negative electrical pulses to the
third memristor (high initial conductance). As the initial con-
ductance increased, the conductance increase by optical pulses
became smaller because a significant number of electrons were
already trapped at the trap sites, as shown in Fig. 2d. The decay
rate was faster when the initial conductance was high, primarily

Fig. 2 The optoelectronic properties of the fabricated ZnO optoelectronic memristor. (a) Current–voltage (I–V) characteristics and extracted
conductance from 100 cycles. Optical SET was utilized to change the device to a low-resistance state (LRS), and electrical RESET was employed to
change the device to a high-resistance state (HRS). (b) I–V characteristics of 16 independent devices indicating minimal device-to-device variation. The
conductance change under optical pulses at (c) various wavelengths (optical mask) and (d) various initial conductance (electrical mask). (e) A heatmap
displaying the normalized conductance value after applying the various optical inputs depending on 9 different mask sets, which are the combinations of
3 optical masks and 3 electrical masks. Each mask set is identified using numbers 1 to 9.
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because the activation energy was lower, allowing electrons to
escape the trap sites more easily. Note that this behavior differs
from that of the optical mask used for wavelength modulation. In
the case of the optical mask, the increase and decay were lower at
longer wavelengths (red light). However, in the case of the electrical
mask, the increase rate was lower at higher initial conductance,
while the decay was activated. These distinct characteristics of the
optical and electrical masks can help represent various distinguish-
able reservoir states, thereby enhancing the dimensionality of the
in-sensor RC system with minimal correlation.

Fig. 2e depicts the heatmaps showing the normalized conduc-
tance value after applying different optical inputs, representing
the operations of the optical reservoir. The input stream consisted
of four optical pulses, corresponding to the input bits ranging
from ‘0000’ to ‘1111’ for the 4-bit in-sensor reservoir operations.42

The current at each bit was measured at 0.1 s after the optical
pulses, while a reading voltage was set to �3 V. The detailed
measurement setup for the in-sensor reservoir operations is
explained in Fig. S7 (ESI†) and the experimental section. The
initial conductance used for each optical mask is summarized in
Table S1 (ESI†). Notably, all 16 reservoir states were distinguish-
able, demonstrating the successful experimental implementation
of in-sensor RC. It is essential to highlight that even when the
same input stream was applied, the conductance varied depend-
ing on the wavelength (optical mask) and initial conductance
(electrical mask). This finding implies that different optical and
electrical masks can represent a wide range of distinguishable
reservoir states, enhancing the dimensionality of the in-sensor RC
system. In this work, 9 mask sets were employed, comprising
combinations of 3 optical masks and 3 electrical masks. As
depicted in Fig. 2e, each mask set was assigned a numerical
name ranging from 1 to 9. Considering that the current passing
through the ZnO optoelectronic memristor ranges from 1 to 400
pA, and the reading voltage is set at 3 V, the power consumption is
within the range of 0.003 to 1.2 nW. This value is lower than from
previous studies, which is attributed to the low operation current
of the ZnO optoelectronic memristor.25–30

As previously mentioned, the distinct characteristics of the
optical and electrical masks play a crucial role in representing
various distinguishable reservoir states. Fig. 3 shows the con-
ductance of the ZnO memristor at each time step (t1–t4) when
applying 4-bit inputs, demonstrating the significance of adopt-
ing two different types of masks (optical and electrical). The
results in Fig. 3 include the 5 repeated measurements on a total
of 16 devices for each input pattern and the 4 mask sets,
revealing the reproducibility of the results. As shown in
Fig. 3a, the input patterns ‘1001’, ‘1110’, and ‘0101’ were not
distinguishable when mask set 1 (white light and low initial
conductance state) was used. However, Fig. 3b shows that the
‘0101’ pattern became distinguishable when mask set 3 (white
light and high initial conductance state) was applied, showing
the impact of the electrical mask. Specifically, the conductance
difference between ‘1110’ and ‘0101’ significantly increased
from 3% to 20% when changing mask set 1 to mask set 3.
In this mask set, the ZnO optoelectronic memristor experienced
weaker potentiation and stronger relaxation than in mask set 1.

On the other hand, when employing mask set 7 (red light
and low initial conductance state), the ‘1110’ pattern became
distinguishable, as shown in Fig. 3c, highlighting the effect of
the optical mask. In this mask set, the device underwent
stronger potentiation due to the longer wavelength, leading to
a weaker relaxation effect. As a result of the reduced relaxation,
mask set 7 enhanced the capacity to detect ‘1’ in the input
pattern, leading to a significant increase in the conductance of
the ‘1110’ pattern. As shown in Fig. 3d, all three patterns
became distinguishable by applying mask set 9 (red light and
high initial conductance state), showing that combining both
masks is essential. Mask set 9 minimized the potentiation
effect while providing substantial relaxation, enabling clear
differentiation among the three patterns. It should be noted
that the effectiveness of the mask set in distinguishing patterns
varies depending on the patterns themselves. Therefore, it is
essential to create diverse reservoir states by utilizing different
mask sets. Such various distinguishable reservoir states
enhance the dimensionality and significantly improve the
performance of the in-sensor RC system, which will be further
discussed in the following sections.

Motion perception using the ZnO optoelectronic memristor array

Fig. 4 shows the motion perception using a 4 � 4 array of 16
ZnO optoelectronic memristors. As illustrated in Fig. 4a, it was
attempted to distinguish the clockwise and counter-clockwise
motions of a cross-pattern. As time passed from t1 to t4, an
optical pulse was applied to each ZnO optoelectronic memristor

Fig. 3 The distinguishable output of 4-bit reservoir states by adopting
optical and electrical masks. The average and standard deviations for the
80 measurements (5 repeat in 16 devices) were plotted using symbols and
error bars, respectively. (a) Conductance of the ZnO memristor at each time
step when the input patterns ‘1001’, ‘1110’, and ‘0101’ were applied. The
initial mask set (white and low) does not exhibit the three input patterns. (b)
Distinction of the ‘0101’ pattern by applying the electrical mask. (c) Distinc-
tion of the ‘1110’ pattern by applying the optical mask. (d) Distinction of all
three patterns by combining both optical and electrical masks.
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corresponding to each pixel when the pattern was detected
(white pixel), and no pulse was applied when the pattern was
not detected (black pixel). For instance, for the clockwise motion,
an input stream of ‘0001’ was applied to the pixel located in the
first column of the third row, while ‘0100’ was applied for the
counter-clockwise motion. Fig. 4b shows the heatmaps repre-
senting the normalized conductance value of each ZnO optoe-
lectronic memristor for both motions when 9 different mask sets
(1 to 9) were applied. It is worth noting that the heatmaps of the
two motions exhibit similar distributions with the same mask
set, making it difficult to classify the two motions using a single
mask set. However, the combination of various optical and
electrical masks allows for generating multiple reservoir states,
thereby enhancing the dimensionality of the in-sensor RC sys-
tem. Fig. 4c shows the Pearson correlation matrix, which is
determined by the following equation:

Pearson coefficient; r ¼
P
ðsi;a � saÞðsi;b � sbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðsi;a � saÞ2

P
ðsi;b � sbÞ2

p

for i ¼ 1; . . . ; n

(1)

where si,a and si,b are the reservoir state of the ath and bth mask
sets at ith time step, respectively, and sa and sb are the averages
of each vector element.43 The reservoir states generated by
different mask sets were not correlated with each other due to
the distinct properties of the optical and electrical masks.
To evaluate the quantitative impact of this high-dimensional
in-sensor RC system on classification accuracy, a software simu-
lation was conducted. Training and test datasets were created by
intentionally introducing variations to the measured data. These
datasets were then fed into a readout network consisting of a
single layer to classify clockwise and counter-clockwise motions,
as illustrated in Fig. 4d. As a result, two motions were classified
with 100% accuracy when all 9 mask sets were employed, thanks
to the high dimensionality (Fig. 4e). In contrast, low accuracy
was obtained when only a single mask set was used. The
confusion matrix depicted in Fig. 4f demonstrates that success-
ful classification was achieved when all 9 mask sets were utilized.
Motion perception was accomplished by employing a simulated
readout network that utilized the measurement data from the
ZnO optoelectronic memristor as input. A detailed explanation

Fig. 4 Motion perception using the fabricated ZnO optoelectronic memristor array, (a) schematic illustrations depicting two different motions of a
cross-pattern: clockwise and counter-clockwise. (b) The heatmaps displaying the normalized conductance values obtained for both motions when
9 mask sets (1 to 9) were adopted. (c) The Pearson correlation matrix presenting the correlation coefficient between the two mask sets. (d) Schematic
illustrations representing the in-sensor RC system, which comprises an optical mask, an electrical mask, and a readout network. (e) The classification
accuracies as a function of the number of training epochs. Higher accuracy was achieved when all 9 mask sets were used compared to when only a
single mask set was employed. (f) Confusion matrix when a single mask set was used, and all 9 mask sets were employed.
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of the step-by-step process of motion perception can be found in
Fig. S8 (ESI†).

MNIST pattern classification using high-dimensional
in-sensor RC

To evaluate the network’s performance and compare it to previous
studies, handwritten digit classification was performed using the
MNIST dataset, which had 60 000 digits for training and 10 000
digits for testing. The pixel values were binarized, and the 28 � 28
images were chopped into 4-bit segments to apply a 4-bit optical
pulse stream to the ZnO optoelectronic memristor, as illustrated
in Fig. 5a.44 The measured conductance from each mask set
(Fig. 2e) comprised the reservoir state representing each image.
Consequently, a 196 � 1 conductance vector is generated for each
mask set, and the combination of the conductance vectors of the
mask sets is input to the readout network. Depending on the
number of mask sets utilized (N), the readout network comprised
196 � N input and 10 output neurons.

As shown in Fig. 5b, the classification accuracy was low
when a single mask set was utilized due to the limited dimen-
sionality. However, when two mask sets were employed, the
classification accuracy improved to over 91%. It should be

noted that the classification accuracy was inversely propor-
tional to the correlation coefficient between the two mask sets,
as demonstrated in Fig. 5c. For a detailed analysis, the Pearson
correlation matrix shows the correlation coefficient between the
reservoir states generated by two mask sets and the confusion
matrix displays the classification accuracy, which are shown in
Fig. 5d. These results suggest that diverse dynamics in reservoir
operations are necessary to achieve high performance, which is
why this study adopted two different types of masks (optical
and electrical). Fig. 5e exhibits the classification accuracies of
four cases: when only mask set 1 was used as the baseline,
when mask sets 1 and 3 were used to observe the effect of the
electrical mask, when mask sets 1 and 7 were used to observe
the effect of the optical mask, and when mask sets 1, 3 and 7
were used to examine the combined effects of the electrical and
optical masks. The classification accuracy could be further
enhanced when both electrical and optical masks were
employed, thanks to the increased dimensionality. Notably,
the accuracy was higher when combining the electrical and
optical masks rather than using three electrical or optical
masks separately (Fig. S9, ESI†). This is because electrical and
optical masks can represent various distinguishable reservoir

Fig. 5 MNIST pattern classification using high-dimensional in-sensor RC. (a) Schematic illustrations of the in-sensor RC system for MNIST pattern
classification. (b) The classification accuracy depends on the mask set when a single mask set was used with low dimensionality. (c) The classification
accuracy as a function of the correlation coefficient when two mask sets were used. (d) The Pearson correlation matrix shows the correlation coefficient of the
two mask sets and the confusion matrix shows the classification accuracy of each case. (e) The classification accuracy of four cases when only mask set 1 was
used, when mask sets 1 and 3 were used, when mask sets 1 and 7 were used, and when mask sets 1, 3 and 7 were used. (f) The classification accuracy as a
function of the number of training epochs, contrasting the adoption of a single mask set with the adoption of all 9 mask sets. (g) Confusion matrix for each case.
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states, thus enhancing the dimensionality of the in-sensor RC
system with minimal correlation. Fig. 5f shows the classification
accuracy as a function of the number of training epochs,
comparing the use of a single mask set with the utilization of
all 9 mask sets, which are the combinations of 3 optical and 3
electrical masks. Furthermore, Fig. 5g presents the confusion
matrix for each case. The successful classification was achieved
with an accuracy of 94.1% when all 9 mask sets were employed,
which is the highest accuracy among previously reported in-
sensor RC works.27,29 Notably, this outstanding performance in
MNIST recognition was accomplished using a readout network
that consisted of a single layer without any hidden layers. To
further validate these outcomes, the impact of device variations
was tested. Cycle-to-cycle (C2C) and device-to-device (D2D) varia-
tions were included in the recognition process. Based on normal
distributions with an average (m) of 1 and various standard
deviations (s), random scale factors with errors were incorpo-
rated into the training and inference of MNIST images. C2C
variation was introduced to induce variations in device respon-
siveness across different samples, whereas D2D variation was
employed to generate variations in device responsiveness within
a specific sample. Fig. S10 (ESI†) shows the RC performance
based on the various s/m ratios of 0–0.125, including the experi-
mental C2C and D2D variation values obtained from the DC
cycling test (Fig. 2a) and the device variation test (Fig. 2b). This

result demonstrated the robustness of classification accuracy
even with C2C or D2D variations.

Employing multiple mask sets in parallel proves efficient for
creating a high-dimensional reservoir state. This approach
significantly enhances system performance but increases the
number of optoelectronic memristors. Therefore, the power
consumption of reservoirs will increase when there are too many
optoelectronic memristors, while the speed remains constant
due to their parallel operation. However, it should be noted that
the power consumption of the entire system can be reduced by
simplifying the readout network. Remarkably, in this work, high
accuracies were achieved even with a single-layer readout net-
work, which can significantly decrease the power consumption
of the entire system by reducing training synapses and training
costs. Besides, a ‘mask blending’ technique can be adopted to
enhance the performance without increasing the number of
optoelectronic memristors. Blending multiple masks to specific
regions can yield better results since frequently appearing pat-
terns differ from region to region. When red, blue, and white
masks were applied to the central, border, and edge sections
of the 20 � 20 image, an improved accuracy of 90.35%
was achieved while reducing the number of optoelectronic
memristors by approximately 50% compared to the case using
a single mask set based on 196 memristors (Fig. S11, ESI†).
Therefore, achieving high accuracy while reducing the number

Fig. 6 Human action pattern recognition using high-dimensional in-sensor RC. (a) Schematic illustrations of the in-sensor RC system for human action
pattern recognition. (b) The classification accuracy as a function of the number of mask sets. (c) The classification accuracy as a function of the number of
training epochs when a single mask set was used, and all 9 mask sets were employed. (d) Confusion matrix for each case.
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of optoelectronic memristors is possible, reducing power
consumption.

Human action pattern recognition using high-dimensional
in-sensor RC

Finally, human action pattern recognition was demonstrated to
show its capability for complex motion perception. The human
action patterns, comprising 10 activities including bending,
jacking, jumping, p-jumping (jumping in position), running,
siding, skipping, walking, wave1 (in one hand) and wave2
(in two hands), were taken from the Weizmann dataset.45 A
total of 90 sample videos were collected for the dataset, with
each action being performed by a group of 9 individuals. The
simulation was carried out using 4-frame units composed of
70 � 30 pixels by deleting unused borders from the original
datasets (Fig. S12, ESI†), which is an identical preprocessing
method used in the previous study.28 Considering practical
visual scenarios, 4-frame units were constructed at 5-frame
intervals in each sample video rather than utilizing long-
range averaging. A total of 3345 4-frame units were generated
from the sample video, resulting in a dataset size of 3345 �
2100 for one mask set. 80% of the dataset was used for training,
while the remaining 20% was used for testing to guarantee the
evaluation of a precise model. As time passed from t1 to t4, an
optical pulse was applied to each ZnO optoelectronic memris-
tor corresponding to each pixel when the human was detected
(white pixel), and it was not applied when the human was not
detected (black pixel), as illustrated in Fig. 6a. The measured
conductance of each reservoir state shown in Fig. 2d was then
fed into a single-layer readout network. When employing N
mask sets, the readout network consisted of 2100 � N input
and 10 output neurons.

As shown in Fig. 6b, it is evident that the recognition
accuracy increased as the number of mask sets increased,
thanks to the higher dimensionality. Fig. 6c depicts the recog-
nition accuracy as a function of the number of training epochs,
comparing the use of only one mask set versus all 9 mask sets,
which are the combinations of 3 optical and 3 electrical masks.
Furthermore, Fig. 6d shows the confusion matrix for each case.
The recognition accuracies for all mask set combinations are
presented in Fig. S13 (ESI†). When all 9 mask sets were used,
successful recognition was achieved with a remarkable accu-
racy of 99.4% while using a single-layer readout network with
189 000 training synapses. It should be emphasized that this
result is higher than that observed in previous literature
(97.14%),28 even though previous literature employed a multi-
layer readout network with 211 000 training synapses. In this in-
sensor RC system, the mask set combination can be flexibly
adjusted, allowing for the selective utilization of mask sets to
achieve additional savings in training synapses and training
costs. For example, when employing three mask sets, an
accuracy rate of 98.44% was achieved while reducing the
number of training parameters to 63 000. This significant
improvement was attributed to the high dimensionality of
our in-sensor RC system, which incorporates optical and elec-
trical masks. The impact of device variation on system

performance was tested to validate the results further. C2C
and D2D variations were incorporated into the human action
recognition process, similar to the variation test in MNIST
recognition. The results of the variation test shown in Fig.
S14 (ESI†) demonstrated the robustness of classification accu-
racy in the presence of C2C or D2D variations.

Conclusions

A high-dimensional in-sensor RC system with ZnO optoelec-
tronic memristors was demonstrated for high-performance
neuromorphic machine vision. The system achieved remark-
able accuracy in pattern classification and motion perception
by employing optical and electrical masks capable of generat-
ing diverse distinguishable reservoir states. Among the pre-
viously reported in-sensor RC works, the highest classification
accuracy of 94.1% was accomplished using the MNIST dataset
(Table S2, ESI†). Importantly, it was discovered that incorporat-
ing both optical and electrical masks, rather than relying on a
single type of mask, significantly improved the classification
accuracy. Human action pattern recognition was successfully
performed with a high accuracy of 99.4%, showing its excellent
capability for complex motion perception. Notably, these suc-
cesses were attained by using a single-layer readout network,
which can drastically reduce the network size and training
costs. The proposed high-dimensional in-sensor RC system will
open a new avenue for superior performance in neuromorphic
machine vision applications, including object detection,
motion perceptions, and robotics.

Experimental section/methods
Device fabrication

As a starting substrate, a thermally oxidized silicon wafer was
used. First, the 50 nm-thick TiN layer was deposited by sputter-
ing (Endura, Applied Materials) and patterned by photo-
lithography and dry etching. Next, the ZnO active layer was
formed by atomic layer deposition (ALD) utilizing a traveling-
wave-type ALD reactor (CN-1 Co. Plus 200). Diethylzinc [DEZn,
(C2H5)2Zn] and ozone generated by a plasma discharge of O2

gas were used as Zn-precursor and oxygen sources, respectively.
The ZnO layer was patterned by photo-lithography and dry
etching. A line cell structure was designed to maximize the
light-receiving area, where the TiN electrodes were positioned
on the sides of the ZnO active layer. Fig. S1 (ESI†) shows the
details of the fabrication process.

Electrical measurement

Measurements of the electrical characteristics were conducted
using a semiconductor parameter analyzer (4155A, Hewlett
Packard).

Optical test

White light illumination was applied with a lamp power supply
(MHF-D100LR, Moritex). An extra fast optical shutter (X-FOS,
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LC-Tec) controlled the application of optical pulses to the
device by receiving the pulse stream from the pulse generator
(B1110A, Agilent). Transparent cellophane paper, blue-colored
cellophane paper, and red-colored cellophane paper were used
to control the wavelength.

SEM analysis

SEM images were taken using a field emission SEM (S-4800,
Hitachi).

Software simulation. The single-layer readout network for
the motion perception, MNIST classification, and human
action pattern recognition tasks was trained using the logistic
regression algorithm. In this process, the reservoir state (x),
represented as a conductance vector with dimensions of n � 1
(where n is 16–144 for motion perception, 196–1764 for MNIST,
and 2100–18 900 for human action pattern recognition), was
multiplied by the weight matrix (W) of the readout layer. This
multiplication resulted in the weighted sum (z).

z = WT�x (2)

To obtain an output (ŷ), the weighted sum was fed into the
softmax function.

ŷj ¼ s zð Þj¼
ezj

Pn

k¼1
ezk

for j ¼ 1; . . . ; n: (3)

The elements of the output vector were normalized so that their
sum equaled 1, resulting in the output of the softmax function
being interpreted as a probability. To measure the loss, the
cross-entropy loss function was utilized, which is defined as:

loss ¼ � 1

K

XK

i¼1
yi log ŷið Þ þ 1� yið Þlog 1� ŷið Þ½ �; (4)

where K represents the number of samples, and yi denotes the
target output for the input xi. An Adam optimizer46 based on
gradient descent was employed for the readout layer to mini-
mize the loss. The learning process for the readout layer was
carried out using full-batch learning in PyTorch.
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