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A tunable family of CAAC-ruthenium olefin
metathesis catalysts modularly derived from
a large-scale produced ibuprofen intermediatef

*

Adrian Sytniczuk, & Filip Struzik, 2 Karol Grela'® and Anna Kajetanowicz

A series of tunable CAAC-based ruthenium benzylidene complexes with increased lipophilicity derived from
a ketone being a large-scale produced key substrate for a popular nonsteroidal anti-inflammatory drug—
ibuprofen was obtained and tested in various olefin metathesis transformations. As a group, these
catalysts exhibited higher activity than their known analogues containing a smaller and less lipophilic
phenyl substituent on the a-carbon atom, but in individual reactions, the size of the N-aryl moiety was
revealed as a decisive factor. For example, in the cross-metathesis of methyl oleate with ethylene
(ethenolysis)—a reaction with growing industrial potential—the best results were obtained when the
N-aryl contained an isopropyl or tert-butyl substituent in the ortho position. At the same time, in the
RCM, CM, and self-CM transformations involving larger olefinic substrates, the catalysts with smaller aryl-
bearing CAAC ligands, where methyl and ethyl groups occupy ortho, ortho' positions performed better.
This offers a great deal of tunability and allows for selection of the best catalyst for a given reaction
while keeping the general structure (and manufacturing method) of the ibuprofen-intermediate derived

rsc.li/chemical-science CAAC ligand the same.

Introduction

Olefin metathesis has attracted persistent interest from both
academia and industry for many years, as it enables the synthesis
of a wide range of useful organic compounds with carbon-
carbon double bonds."? This includes preparation of biologically
active ingredients used in the pharmaceutical industry® or
fragrance compounds needed by F&F companies,” but also
transformation of raw materials of natural origin, such as rape-
seed or palm oil, into materials used in the production of
lubricants, plasticisers, or surfactants.” Important milestones in
the development of this methodology have been the introduction
of well-defined ruthenium and molybdenum complexes,*’ the
application of N-heterocyclic carbenes (NHCs) as ligands to
increase the stability of catalysts,**® the discovery of
stereoselective ™ and stereoretentive complexes'** providing
the products with defined geometry of the double bond, and,
more recently, the use of cyclic (alkyl)(amino)carbenes (CAACs).
The latter were introduced by Bertrand'® and were further uti-
lised by Grubbs'” and Pederson™® to synthesise the corresponding
ruthenium catalysts. CAACs themselves are more nucleophilic
and electrophilic than NHCs, as a result of the replacement of the
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m-donating and c-attracting nitrogen atom in the latter by the o-
donating quaternary carbon atom. This change also alters the
geometry around the metal centre, as the CAAC ligands create
a kind of “wall”, while in the case of NHCs it is more an
“umbrella” over the ruthenium atom." These factors may be
responsible for the lower sensitivity to ethylene due to the higher
stability of the ruthenacycle to B-elimination, but also their
increased susceptibility to bimolecular decomposition.*

Initially, catalysts containing CAAC-type ligands were mainly
used in ethenolysis, an important industrial reaction that
converts, among others, vegetable oils rich in unsaturated fats
into materials used in the production of, for example, cosmetics
and household chemicals.** Later, however, their applicability
was extended to other types of olefin metathesis, including ring-
closing metathesis (RCM), cross metathesis (CM), en-yne
metathesis, and ring-opening metathesis polymerisation
(ROMP).*

The first promising results obtained with the new type of
complexes triggered further research, including modification of
the structure of aniline and substituents on the «- or yy-carbon,?
introduction of six-membered CAACs,” obtaining complexes
with enantiomerically pure ligands,> modified with polar
groups to increase water solubility> or possessing CAAC with
bicyclic structure increasing the thermal stability of the resulted
catalyst (Fig. 1).>* The focus was also on changes within the
benzylidene ligands, introducing additional substituents in the
aromatic ring® or modifying the structure of the chelating
group.”® A series of indenylidene catalysts with two CAAC

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1

(a) Examples of CAAC-based ruthenium complexes showing diverse structural modifications of the CAAC ligand structure. (b) Upper path,

original synthetic pathway to Ibuprofen by Boots UK Limited. Lower path, currently used Friedel-Crafts acylation optimised to meet Green

Chem. principles.

ligands were also obtained.?” Despite the diversity of structures
of CAAC-based complexes, selected examples of which are
shown in Fig. 1, there is a lack of systematic studies on the effect
of the architecture of individual ligands on catalysts activity in
different types of metathesis reactions. An exception is the study
by Grubbs et al.,** but here the authors focused exclusively on
ethenolysis reactions.

To join this general trend towards the synthesis of more
active and selective catalysts, we turned our attention to systems
containing more lipophilic substituents on the a-carbon atom.
Looking for inspiration, we came across the Ibuprofen synthesis
developed in Boots UK Limited that uses 4-isobutylace-
tophenone (2) as the key intermediate.* In the original Boots'
synthesis ketone 2 reacts with chloroethylacetate to give epoxide
3, which—in a one-pot process of hydrolysis, decarboxylation
and rearrangement—produces 2-(4-isobutylphenyl)propanal
(4).** Recently, a new protocol for Friedel-Crafts acylation
optimised to meet Green Chem. principles was introduced by
BHC Company (now BASF Corporation) leading to 2 with high
atom economy. We believe that commercial mass-produced
ketone 2 may be a convenient and inexpensive starting mate-
rial for the synthesis of CAAC-type ligand precursors, in which
the phenyl substituent on the o-carbon is decorated with
a lipophilic isobutyl group.

Results

The new aldiminium salts were synthesised according to a well-
known literature procedure.” First, we carried out the alkylation

© 2023 The Author(s). Published by the Royal Society of Chemistry

of  2-(4-isobutylphenyl)propanal (4) with  3-chloro-2-
methylpropene under PTC conditions in the presence of tetra-
butylammonium bromide and sodium hydroxide (Scheme 1).
The resulting aldehyde 5 was then converted into a series of
imines 7a-e by reaction with variously substituted anilines 6a-e
in the presence of catalytic amount of p-toluenesulfonic acid. In
all cases but for aniline 6¢, the obtained yields were very good,
reaching at least 90%. In the next step, we converted the imines
7a-e to the corresponding aldiminium salts 8a-e in a two-step
procedure that first led to the closure of the corresponding
chloride salt and then to the exchange of counterions from CI™
to BF, . Here, the yields were rather moderate; nevertheless, we
were able to obtain sufficient amounts of aldiminium salts for
further studies.

In subsequent reactions, we used the obtained aldiminium
salts 8a-e to synthesise the desired catalysts (Scheme 2). To do
so, we generated the corresponding carbenes in situ by means of
LiHMDS in tetrahydrofuran at room temperature, which were
treated with the Hoveyda-Grubbs first-generation complex
(Hov-I). The expected Rull-Rul5 catalysts were obtained as
a result of PCy; to CAAC ligands exchange; in most cases the
yields exceeded 70-80%, which is a very good result for this type
of catalysts.”* The newly obtained catalysts in a solid form are
stable on air, and can be stored under typical conditions (+4 °C)
for an extended period of time without loss of activity. Inter-
estingly, in comparison with Rul the ibuprofen-intermediate
derived catalysts are better soluble in nonpolar organic
solvents such as n-hexane (Table 1); a property that we found
potentially useful, as some metathetical transformations of fatty
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Scheme 1 Synthesis of aldiminium salts 8a—e, being the CAAC ligand precursors.

oils, waste a-olefins or other lipophilic substrates are best made
in neat.

The structure and purity of all complexes were confirmed
using standard analytical techniques, such as NMR, IR, HR-MS,
and EA (for details, see ESIT). All complexes were isolated as
green microcrystalline solids, yet we were able to grow a single
crystal suitable for X-ray diffraction of only Ru12 (Fig. 2a and
Table 2). The crystal grown via liquid to liquid diffusion of
n-pentane into concentrated DCM solutions of the catalyst
crystallised in the monoclinic P2,/c space group with one
molecule of the compound in the asymmetric unit of the crystal

Table 1 Solubility of CAAC-based Hoveyda—Grubbs-type complexes
Rul (benchmark) and Rul1-Rul5 in n-hexane at room temperature

Complex Rul Rull Rul2 Rul3 Rul4 Rul5

Solubility [mg mL™"]  0.039 0.400 0.580 0.478 1.525 0.333

lattice. The superimposition of Ru12 on Ru1l (the crystal struc-
ture taken from Grubbs' paper)* shows no significant differ-
ences in the structure of these complexes (Fig. 2b). As expected,
the Ru atom in both analysed complexes is pentacoordinated.

CAAC

BF; G
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Scheme 2 Synthesis of CAAC-based complexes Rul1-15. R = p-(Me,CHCH,)CgHa.
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The change in the carbene ligand in Ru12 compared to Rul has
no significant effect on the length of the Ru-O bond. The values
of this parameter are 2.3192(15) and 2.332(8) A for Ru12 and
Rul, respectively. The Ru-C(1) (carbene atom in N-heterocycle)
bond length for Ru12 and Rul also does not show a substantial
difference and is equal to 1.936(2) and 1.940(7) A for Ru12 and
Rul, respectively (Table 2). A comparison of the bond lengths
between Ru and C(2) (carbene atom in benzylidene) also shows
no significant differences. In both complexes these bond
lengths are comparable: 1.840(2) and 1.836(9) A, respectively.
The values of the Ru-Cl bond lengths in Rul2 (2.3342(6) and
2.3543(6) A) do not differ from these in Rul complex (2.3356(18)
and 2.3271(13) A). The angles between atoms C(1)-Ru-O(1) and
C(1)-Ru-C(2) differ between these two complexes, although not
significantly. Furthermore, no significant differences were
observed in the values of dihedral angles, N(1)-Ru-C(1)-Cl(1)
and N(1)-Ru-C(1)-Cl(2) (Table 2). Structural differences in the
geometry of the coordination centre of Rul and Rul2 become
more pronounced after the respective alignment of their
molecules (Fig. 2b). The overlay of Rul and Ru12 depicted in
Fig. 2 reveals that the molecular skeletons of these complexes
exhibit different degree of deflection of the phenyl ring at the
quaternary carbon atom in the plane of alkoxy benzylidene
ligand.

To analyse closer the structure-activity relationship in the
newly obtained complexes, we calculated the percent buried
volume (V%) and topographic steric maps®~* for CAAC
ligands in benchmark Rul and in the new complex Rul2
(Fig. 3). As expected, due to the different substitution pattern in
the aniline part, percent buried volume of CAAC in known Rul
(38.1%) is greater than V},,;% value of the CAAC ligands in newly
obtained complex Rul2 (37.7%), although the latter contains
rather a bulky Ph fragment with isobutyl substituent. Analysis of
topographic steric maps shows that Ru centre in Rul is slightly
more crowded at both R (Me, Ph) and Ar-sites compared to the
newly obtained complex. This is caused by the twist of the N-aryl
and phenyl substituents toward the ruthenium metallic centre
visible on X-ray, whereas in Ru12 both substituents are twisted
in a way that gives more space close to the metal centre.
Moreover, it is clearly visible on Fig. 3 that, in the case of Ru12,
there is a small cavity, which further decreases overall steric
demand of the ligand.

4

Fig. 2
Rul and Rul2.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Selected bond lengths (A) and angles (°) of complexes

Ru1®? Rul2

Ru-C(1) 1.940(7) 1.936(2)
1.931(12)

Ru-O(1) 2.332(8) 2.3192(15)
2.325(15)

Ru-C(2) 1.836(9) 1.840(2)
1.828(18)

Ru-Cl(1) 2.3356(18) 2.3342(6)
2.335(4)

Ru-Cl(2) 2.3271(13) 2.3543(6)
2.307(3)

C(1)-Ru-0(1) 179.0(3) 176.13(8)
177.7(5)

C(1)-Ru-C(2) 102.9(3) 102.50(10)
101.6(7)

N(1)-Ru-C(1)-Cl(1) —87.11 —83.21
—~125.91

N(1)-Ru-C(1)-Cl(2) 116.60 117.20
77.10

“ Data taken from ref. 21. > Two molecules in the asymmetric cell unit.

The next logical step was to investigate the activity and
selectivity of a set of new catalysts and compare them, where
appropriate, with the benchmark catalysts.

Activity of new complexes in ethenolysis

If one asked most organic or organometallic chemists which
olefin metathesis reaction is most associated with the Ru-CAAC
catalysts, the vast majority would probably indicate ethenolysis
(cross-metathesis with ethylene) of methyl oleate (9). As already
mentioned, it is the model reaction of CAAC-based complexes,
which is related to their excellent ethylene tolerance, due to the
high resistance of the ruthenacycle formed during the catalytic
cycle to B-elimination.*® Ethenolysis of 9 was also our first
choice, in which we tested Rul1-15, as well as complex Rul
which is highly efficient in this type of processes,* thus serving
us as the benchmark (Table 3). The reaction conditions were
adapted from the literature, allowing the best comparison to
Rul, however, we extended the reaction time to 6 h and—to
make the process more user-friendly—prepared reagents,
catalysts, and reaction setup outside of a glovebox.>* All

T

Legend . Ru1 . Ru12

(a) Solid-state crystallographic structures of complexes Rul2. Hydrogen atoms removed for clarity. (b) Side view of molecule overlay of

Chem. Sci., 2023, 14, 10744-10755 | 10747
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Fig. 3 Vpu steric parameters and maps calculated in SambVca software for CAAC ligands in complexes Rul and Rul2. Left: Standard radii
(3.5 A), centre: enlarged radii (10 A), right: enlarged radii (15 A). The structures of the complexes (and not simply the ligands) are shown to enhance
the readability.

Table 3 Ethenolysis of 9 (95% pure) using ethylene grade 3.5 and 4.5¢

Cco,M
f\% oMe Catalyst MCOZMe . Me -
g -
9

CH,=CH, (10 bar) 10 1
T 40°C,6h the desired products
@
A

+ %MeOZCMC?zMe
From plant/algae + self-CM

renewable sources by-products +1% Me Me
WA 43

Me

Entry Catalyst Loading Ethylene Conversion  Selectivity Yield TON

[ppm] grade [%] [%] [%]
1 Ru1 3 35 42 96 43 144000
1 4.5 28 97 27 274000
2 Ru11 3 3.5 36 90 32 107 000
1 4.5 18 89 16 160 000
3 _ Rut2 3 35 54 91 49 164000
3 1 4.5 24 92 22 221000
L
4 & Ru3 30 3.5 87 87 76 25000
- 20 3.5 79 90 71 35000
% 3 3.5 57 95 54 181000
g 1 4.5 38 96 36 362000
£
5 Ru14 3 35 68 87 59 197 000
1 4.5 30 90 27 274000
6 3 35 55 97 54 179000
Ru15
! 1 4.5 27 99 27 270000

@ Methyl oleate purity 95%, ethylene purity 99.95% (grade 3.5) or 99.995% (grade 4.5). Conversion = 100 x [1 — (Ay x Afs)/(A9 x Ag)]; selectivity = 100
X (N10 + Ma1)/[(N10 + Ma1) + 2 X (n4p + 113)]; yield = (conversion x selectivity)/100; TON = yield x [(ng/nf’Ru])]/loo; Aq, Ars = GC area of methyl oleate and
internal standard at the end of the reaction; A9, Afs = GC area of methyl oleate and internal standard before the reaction. IS = internal standard
(methyl stearate).
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reactions were conducted for 6 h at 40 °C in a steel autoclave at
ethylene pressure of 10 bar. At this point, quality of methyl
oleate (9) should be commented briefly. From our earlier
studies**® we know that the purity of the starting material is
crucial to the efficiency of the process; however, taking into
account high price of extra-pure 9 (>99%) used by Grubbs** and
others,* in our study we decided to go for methyl oleate of 95%
purity. In addition to the number of catalytic cycles leading to
ethenolysis products (10 and 11), we also measured the selec-
tivity of the reaction as the proportion of ethenolysis products to
undesired side products 12 and 13 originating from the para-
sitic self-CM process according to the definition used by experts
in the field.”* Other by-products were not detected. Finally,
since ethenolysis technology is believed to be used on a large-
scale in biorefineries, making economical production of bulk-
chemicals, usually low catalysts loading—not more than a few
dozen ppm (part per million)—is targeted in this reaction.***°

To gain a better insight into the influence of the catalyst
structure on the results obtained, we first analysed a series of
complexes that differ in the size of the substituents in the 2 and
6 positions of aniline, namely Rul1, Rul2, Rul3, and Rul5.
Remarkably, at a catalyst loading of 3 ppm all complexes but
Rull, surpassed a TON of 140 000, and their activity increased
in the following sequence of substituents: 2-Et-6-Me (Rull) <
2,6-di(Et) (Ru12) < 2,6-di(i-Pr) (Rul5) < 2-i-Pr-6-Me (Ru13) (Table
3, entries 2-4,6), which is consistent with previous observations
by Grubbs and Bertrand.”* and confirms the authors’ hypothesis
that at least one of the substituents in the ortho position of the
nitrogen-bound aromatic ring should be sterically hindered.
The hypothesis was strengthened when Ru14 complex—which
has a large tert-butyl substituent at position 2 and no substit-
uent at position 6—was included in the study and which
showed even better activity in ethenolysis of 9 (Table 3, entry 5).
On the other hand, it also appears that to obtain high selectivity
toward ethenolysis products 10 and 11 instead of self-
metathesis by-products 12 and 13, a substituent at position 6
(e.g- Me, i-Pr) in addition to a large substituent at position 2 (e.g.
i-Pr) is necessatry, as the best results were obtained for Ru13 and
Rul5. For reactions carried out at a catalyst loading of 1 ppm,
the trends for both activity and selectivity were preserved.
Furthermore, to our delight, the results obtained in the reaction
catalysed by Ru13, regardless of catalyst loading (yield 54%,
TON 181 000 for 3 ppm, and 36%, TON 362 000), outperformed
its closest analogue Rul, differing by the aromatic substituent
on the a-carbon (Ph in Rul versus 4-iso-butylphenyl in Ru13,
Table 3, entries 1 and 4), which justifies the search for new
structural modifications.

Although it is currently difficult to predict at what conversion
levels the future ethenolysis-based biorefineries will operate in
practice, it seemed interesting to check the Ru loading neces-
sary to obtain a high conversion in ethenolysis. To do so, we
repeated the ethenolysis reaction of neat 9 using Ru13, the best
catalyst selected previously, to find that 20-30 ppm are enough
to secure 80-87% conversion (70-79% yield) in this reaction
(Table 3, entry 4).*° It is worth mentioning that these results are
in line with recently published activities reported for sterically-
activated catalyst Rul0 bearing a CAAC ligand with (Ph, Me)-

© 2023 The Author(s). Published by the Royal Society of Chemistry
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substituents at C(2) carbon and di(i-Pr)phenyl aniline frag-
ment.*” This catalyst in ethenolysis of neat 9 (99% pure) gave
36% yield, TON 3600 at 100 ppm loading; 10% of yield, TON
10 000 at 10 ppm; and 8% yield, TON 16 000 at 5 ppm. Inter-
estingly, it was possible to reach full conversion (97% of yield),
however, using 9 as 0.02 M solution in toluene and 1000 ppm
(0.1 mol%) of Rul0.*”” However direct comparison between
Mauduit and Bertrand's and our system meaningless due to
different conditions used.*”

Activity of new complexes in self-CM reactions

To expand the applicability of 4-isobutylphenyl-based
complexes to new types of metathesis reactions, we turned
our attention to the self-metathesis of methyl oleate (9) leading
to valuable diester 12 (Scheme 3). In this case, it is important to
keep in mind that because the internal olefin is being used as
the only substrate (and no volatile product such as ethylene is
being removed from the reaction mixture) this transformation
is an equilibrium process, so the maximal theoretical conver-
sion achievable in this case is 50%.>**%*

The reactions were performed in the presence of 1 ppm
catalyst in neat at 55 °C. We were pleased to find that in this
process Rul4 provided maximum conversion after only three
hours, which, to the best of our knowledge, makes it the most
active CAAC-based catalyst for the self-metathesis of methyl
oleate (9) (so far, the best was Ru5 developed by Skowerski et al.
giving a conversion of 45% at a loading of 5 ppm).> When the
same reaction was performed in the presence of 0.5 ppm of
Ru14 after 4 hours at 55 °C 45% of conversion of 9 was observed,
which corresponds to TON equal to 450 000.** To our best
knowledge, it is the first example of self-CM reaction of 9 per-
formed at part-per-billion level published in scientific literature.
The second best catalyst Rul2 was at 1 ppm loading
8 percentage points worse, while the other complexes were even
less productive, and the most crowded Rul5 did not produce

A MeOZCMC?ZZMe

Catalyst (1 ppm)

WCOZMe
)7 9

neat, 55 °C +% M Me
Me 7 Mo R0
50
45 |
v v v
40 |
v
;\? 35 A A A
T s
S 30 -
&2 =)
o 254 X Q
Z o
s i
8 204 2
(%]
154 A
104 ¥ — 8
i ¥
51a [}
L}
0 ~E"'E1_Q_r_'_\ T T T T T T T T 4
0O 20 40 60 80 100 120 140 160 180 200 220 240

Time (min)

Scheme 3 Self-metathesis of methyl oleate (9, 95% pure). Conversion
=100 x [1 — (Ag x AR/(AS x Aig)l; AS, A% = GC area of methyl oleate
and internal standard before the reaction. Lines are visual aids only.
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even a trace of the products. It is important to stress that, as was
in the case of ethenolysis reaction, the production of 12,
a commodity chemical, requires the use of the smallest possible
loading of the noble metal catalyst, to make it economically**
Increasing the loading to 2.5 ppm improved the results for most
catalysts (for example, Rul2 achieved a conversion of 50% and
Rul1l was only 3 percentage points worse, for details, see ESIT),
but the most crowded Rul5 remained inert in this reaction also
at higher loading.

Next, self-CM reaction of a-olefins was selected, because of
its potential high industrial importance, allowing for the
transformation of low-value Fischer-Tropsch feedstocks into
added-value chemicals. The metathetical “dimerisation” (self-
CM, Scheme 4) of the abundant linear «-olefins present in
Fischer-Tropsch fractions (30 to 70%) that are composed of C5
to C10 olefins offers an attractive direction, and was studied
before.*® Unfortunately, this initial study has shown that several
key issues must be addressed to make this technology appli-
cable at large-scale industrial production. First, the catalyst
should be robust and exhibit high activity at low loadings (ppm
level or below). Second, this high catalytic activity must be
associated with an extremely high selectivity towards the

Catalyst
ANEY (1pem-100ppb) AN
14 neat, 70 °C 15
waste a-olefin TON 1'550'000 valuable internal olefin
Selectivity > 99%
Catalyst Loading Time Yield TON = é
Ru5 1ppm (4x025) 1h 74% 370000 ==
Ru12 1 ppm (4 x 0.25) 1h 78% 390000
Ru12 02ppm(8x0.025) 2h 50% 1250000
Ru12 0.1ppm(4x0.025) 1h 31% 1550000

Scheme 4 Self-metathesis of 1-decene (14, 96% pure). TON = 0.5 x
yield x [(n4/n%ky)]/100.2° Where: n%,, ntk,; = initial moles of 1-decene
and catalyst used.

View Article Online

Edge Article

desired product, and elimination of unwanted processes such
as C-C double bond migrations through the alkene chain of the
linear olefinic substrate or product (“isomerisation”).*** Using
1-decene as the model a-olefin, we decided to test the perfor-
mance of our new catalysts being used at extremely low loadings
(Scheme 4). Here, we tested Rul2, the second best catalyst
selected in self-CM of 9 (see above), because this complex was
synthesised from more available and less expensive 2,6-dieth-
ylaniline (according to Sigma-Aldrich web page 2,5-di-tert-
butylaniline is almost 40 times more expensive than 2,6-dieth-
ylaniline, which substantially increases the cost). It is also the
closest analogue of Apeiron's Ru5 used previously in this
process. As a result, we observed that even one part per million
of this catalysts can convert 78% of substrate 14 into internal
olefin 15. Of similar importance, we noted that selectivity in this
reaction was =99% (no isomerisation products were observed).
To explore the potential of further decreasing the amount of
catalyst used, we decreased the loading of Rul2 to part per
billion levels and recorded up to 1 550 000 productive turn-over
cycles (TON)**** before the catalyst molecule was deactivated.

Activity of new complexes in CM reactions

Taking a step further, we investigated the cross metathesis reac-
tion between allylbenzene (16) and Z-1,4-diacetoxy-2-butene (17)
which is a prototypical CM transformation, suggested by Grubbs
to be used as a standard benchmark reaction (typically with
1 mol% of Ru catalyst).”* Following this general guidance® the
CM reaction was carried out in toluene at 55 °C (Table 4) using,
however, a much reduced loading of CAAC-catalysts (250 ppm).
To our satisfaction, virtually all complexes led to a conver-
sion close to 90% (up to 75% yield) after only 4 hours and in the
presence of as little as 250 ppm of catalyst. In all the cases, the
yields were around 10% lower than the conversions, as allyl-
benzene dimer 19 was formed as a side product (importantly,
no C-C double bond migration was noted neither in 18 nor 19).
Interestingly, the newly disclosed sterically activated CAAC
catalyst Ru10 gave, in the same reaction, a 62% yield at a much

Table 4 Cross metathesis of allylbenzene (16) and Z-1,4-diacetoxy-2-butene (17)

T

Toluene, 55

Ohc Catalyst (250 ppm) OAc Ph
oo 55°C 41 Ph/““'»/m\/ ¥ N

16 AcO 17 19
(unwanted)

Entry  Catalyst Time (h) Conversion [%] Selectivity [%] Yield [%] (E)/(Z)
1 Ru1 4 88 81 72 87:13

2 3 Ruft 4 87 84 74 88:12

3 '§ Ru12 4 86 85 74 89:11

4 % Ru13 4 90 82 74 85:15

5 § Rul4 4 89 84 75 8713

6 g Ru15* 16 69* 79 55 69:31

“ Additional 100 ppm added after 4 h.
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0] ( SCOaOtaIyst) 1)
ppm
M o)kﬂ/\ + A e —— X
e s CN  “hhme, 70°c  MeO” R
20 21 (2 equiv.) 22 CN
Catalyst Ru8 Ru11 Ru12 L
Yield [%] 97 96 96 ‘!. ‘
(Z)I(E) 78:22 7822 79:21 == Polyamide-11
Catalyst
(300 ppm)
A X + A — . N
S CN  “hhme 70°c A0 TR
23 21 (2 equiv.) 24 CN
Catalyst Ru1 Ru8 Ru11 Ru12
Yield [%] 51 61 72 83
(2)(E) 79:21  82:18 84:16  80:20

Scheme 5 Cross metathesis between (a) 10-dodecenoic acid methyl
ester (20) and (b) undec-10-en-1-yl acetate (23) and acrylonitrile (21,
2 equiv.).

higher loading of 5000 ppm (0.5 mol%).*” Also, in the case of
cross metathesis between 16 and 17 the least active complex was
the most hindered one, namely Rul5 possessing two isopropyl
ortho-substituents in the aniline moiety. However, even this
complex gave a moderately satisfactory conversion of 69%
which was reached after 16 hours, with an additional portion of
catalyst added to the reaction mixture. A relatively high contri-
bution of the E-isomer of 4-phenylbut-2-en-1-yl acetate (18) was
observed for all complexes except Rul5, which is typical for
complexes with NHC*” rather than CAAC ligands.*® On the other
hand, Grubbs®® observed that more active catalysts with CAAC
ligands at high conversions yield more E-product, which may

EtO,C CO,Et
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suggest that also here thermodynamic factors play more
important role than inherent properties of the catalysts.

Encouraged by the results obtained in the cross-metathesis
reaction of allylbenzene (16) and Z-1,4-diacetoxy-2-butene (17),
we decided to investigate the activity of our catalysts in reaction
with a challenging electron-deficient olefin—acrylonitrile (21)—
an CM partner that typically requires 5-8 mol% catalyst
loading.**** This compound belongs to type III olefins (less
reactive) according to the Grubbs classification,”” and was
classified as a “poison” to Ru-based metathesis catalysts.”

To do so, we focus on a reaction leading to nitrile 22,
a precursor of a valuable monomer used in Arkema's Nylon-11
(Rilsan® Polyamide 11) production.®® It should be noted that
CM reactions of acrylonitrile (21) with 10-dodecenoic acid
methyl ester (20) and other fatty acid esters were exhaustively
studied by Bruneau in cooperation with scientists from
Arkema.** In this research use of at least 3 mol% (30 000 ppm)
of Hoveyda-Grubbs NHC-containing catalysts was necessary to
get high conversions of 20. In our study, two of the most active
“small-CAAC” complexes (Rull and Ru12) were compared with
the benchmark catalysts Rul and Ru8. As a result, we were
pleased to see that with only 300 ppm of Ru1l1 and Ru1l2 it was
possible to get 96-97% conversion in this industrially relevant
reaction (Scheme 5, upper). This result places our new catalysts
ex aequo with the nitro-activated CAAC complex Ru8 which was
specially designed for CM with acrylonitrile.”

Next, we opted to test another olefinic substrate: undec-10-
en-1-yl acetate (23) in CM with acrylonitrile (21), using the same
conditions and set of catalysts (Scheme 5, lower). We were
pleased to note that in this case the catalysts containing 4-iso-
butylphenyl moiety provided the desired product 24 in 83
(Ru12) and 72% (Ru11) isolated yields, a result superior not only
to that obtained with the benchmark complex Rul (51%), but

Et0,C_ CO,Et

Catalyst
= B —
Toluene, 40 °C
25 26
a) 1000 ppm b) 100 ppm
100 goo o2 - - - - 100 P o L]
wf AT
s\
807 804 AW
4 y/
704 | —~ 704 /
s 1 . & t/
§ 604 ;‘. c 60 '/
c I 2 A
2 50| 5504 | ¢ = Rul
o . 2 y
2 40 & 404 |7 £ | 4 Rutt
s {1 o . & | v Rut2
S 30l 30_5‘: L ® Ru13
I . /¢ 9 Ru14
20+ 20 {a® % |, Ruls
f <\
10—; - 10—;.
0 e — T T T T T 1 0 p —— + T /T T T
0 20 40 60 80 100 120 0 20 40 60 80 100
Time (min) Time (min)

Scheme 6 Time/conversion curves for the RCM reaction of diethyl 2,2-diallylmalonate (25, 99% pure) with 1000 ppm of CAAC-based

complexes (monitored by GC). Lines are visual aids only.
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also to Ru8 (61%), recently commercialised by Apeiron-
Synthesis.

Activity of new complexes in RCM reactions

CAAC-based complexes are mainly associated with the ethe-
nolysis reaction, whereas other types of metathesis catalysed by
them are much less explored."** To fill this gap, we next turned
our attention to ring-closing metathesis (RCM), a trans-
formation that is frequently used in the context of medicinal
chemistry*®»** and natural product synthesis.®*** For RCM
reactions tried in APIs (active pharmaceutical ingredients)
production, ruthenium-based metathesis catalysts were typi-
cally applied in 0.1-2 mol%.** One of the established model
reactions to study cyclisation-effectivity of metathesis catalysts
are the reactions of diethyl 2,2-diallylmalonate (25) and 2-allyl-2-
(methylallyl)tosylate (27).*> RCM of 25 was carried out in toluene
at 40 °C and with catalyst loading equal to 1000 ppm (0.1 mol%,

Ts

N v& Catalyst N

)/ Toluene, 40 °C
Z o
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Scheme 6), conditions similar to those applied previously by
Gawin for reactions with CAAC-Hoveyda and bis(CAAC)Ru
indenylidene complexes.*

The best catalyst described in the literature being an
analogue of Rul with two methyl substituents on o-carbon
reached full conversion after 30 minutes.> To our delight, our
complexes, excluding Rul5 containing the most sterically
hindered substituent on nitrogen in the pyrrolidine ring, ach-
ieved the same result after just 20 minutes, and the best of
them, namely Rul1 and Ru12, reached quantitative conversion
in as little as 5 minutes (for details, see ESIT). Furthermore, the
slowest of the complexes—Rul5—also accomplished full
conversion, although in 6 hours. The high activity of the
complexes studied prompted us to investigate their behaviour
at 10 times lower loading, i.e., 100 ppm. As expected, more time
was needed to achieve full conversion; however, Rul1l, Rul2,
and the benchmark Rul achieved it in only 30 min, and Ru13

a) 1000 ppm
100 v ’ : —% $ g
90 e °
80 4
70 2
—_ [ 4
& 604
c Q
S 50
§ 4—
Z 40
S <
30 =
Q
20 L
¢ IS
10 A 2]
* * *
0 T T T T T 1 T T T T T T T
0 5 10 15 20 25 30 200 400 600 800 1000 1200 1400
Time (min) Time (min)
b) 100 ppm
100 0 e —
90 4 90 -{‘
80 4 80 z
I
70 70 |
S /
3 |
60 60 || =
c @ | 5
'% 50 s0d/ B
» 504 7 Q
g 44— L‘ :
40 - 40 =
5 i «
© 304 0
\‘ .
20 - 20|
i
104 104
8o
[ T T T T T 1 0 -+ T T T T T T T
0 10 20 30 40 50 60 0 200 400 600 800 1000 1200 1400
Time (min) Time (min)

Scheme7 Time/conversion curves for the RCM reaction of 2-allyl-2-(methylallyltosylate (27, 96% pure) with (a) 1000 and (b) 100 ppm of CAAC-

based complexes (monitored by GC). Lines are visual aids only.
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took twice as long. The two remaining complexes appeared
much less active, with Ru14 giving 80% conversion after 2 hours
and Ru15 almost completely dormant. Interestingly, in the RCM
reaction the trend observed in ethenolysis was disrupted as
catalysts containing relatively small substituents in the aniline-
derived moiety performed best. It also appears that the smaller
substituent on the a-carbon (phenyl instead of 4-iso-
butylphenyl) has a positive influence on the reaction rate (Rul
versus Ru13), although the differences are marginal.

Encouraged by the high activity of our complexes, we tested
them in RCM of a more challenging substrate, 2-allyl-2-
(methylallyl)tosylate (27), which reacts to form product 28
containing a trisubstituted double bond (Scheme 7).

At a catalyst loading of 1000 ppm, the trends observed for
RCM of 25 were retained. Also here, the best performing
complexes were those containing relatively small aromatic
substituents on the nitrogen atom of pyrrolidine, viz. Ru11 and
Ru12, which achieved full conversion after only 10 minutes;
slightly worse, but still excellent results were obtained for Rul,
Ru14, and Ru13 (full conversion after about 20 minutes). Again,
Ru15 decorated with two isopropyl substituents was found to be
the least active, but even it fully transformed 27 into 28 after
a sufficiently long time, viz. 24 hours. Decreasing the loading
tenfold, to 100 ppm, in most cases did not affect the conversion,
but only increased the time needed for its achievement, to
60 min (for Rull and Ru12) and 120 min (for Rul and Ru15).
However, this time, the most sterically hindered complexes
were not active enough and decomposed before converting all
molecules of substrate 27 into the desired product 28, reaching
80 and 20% conversion after 24 hours for Rul4 and Rul5,
respectively.

Finally, we decided to test the best catalyst, Ru12, in a more
challenging RCM, using a polyfunctional substrate of medicinal
chemistry interest, such as phosphodiesterase type 5 inhibitors
(PDE5 inhibitors).*® To do so, we opted to apply the best RCM
catalyst selected by us (vide supra) in the metathesis of Silde-
nafil®*® (marketed inter alia under the brand name Viagra)
analogue 29 (Scheme 8). From the point of view of catalytic
olefin metathesis, such a substrate exhibits a potential risk, as it
contains a number of Lewis basic centres that can chelate the
propagating 14-e~ Ru species, thus arresting the catalyst's
activity.®*””* To do so, RCM of 29 was conducted at RT in DCM
for 22 h, giving product 30 in 95% isolated yield with only
0.01 mol% of catalyst Ru12, which was also the best one in RCM
reactions with malonate models. Previously the same N,N-

MeN—l\\l MeN-— N
OW Ru12 o
HN. _N 0.01 mol% (100 ppm) HN _N
DCM, 20 °C, 22 h
OEt

92%
isolated yield

j 0, . )
NS ,s
o) ko)
ﬁ 29 30

Scheme 8 RCM reaction of Sildenafil analogue 29 (98% pure).

Sl/denafll
analogue
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Fig. 4 Relative stability of two representative CAAC-based ruthenium
complexes (0.024 M solution in toluene-dg, at 80 °C, under air over 20
days). Lines are visual aids only.

diallylsulfonamide substrate 29 was tested with NHC-bearing
catalysts, that however were used in 2-0.5 mol% loading.

Relative stability in solution as a function of N-aryl fragment
of the CAAC ligand

From the chemical reactivity picture described above one can
see that the new complexes (Ru11-Ru15), although very similar
in their structures (identical benzylidene ligand and akin
“ibuprofen intermediate-derived” CAAC ligands) exhibit
different reactivity profiles in different types of olefin metath-
esis transformations. For example, “small-CAAC” complexes
Rull and Rul2 were better in RCM of 16 and 18, while “larger-
CAAC” Rul3 and Ru14 were better in ethenolysis. To check how
the difference in the steric bulk exhibited by the “aniline frag-
ment” (Ar) translates into the catalysts stability in a solution,
relative decomposition rates of Rull and Rul5 in toluene-dg
solution under air atmosphere were measured (Fig. 4).”
Although in general the stability in solution of both complexes
was very high (only ~10% of decomposition after 2 days) under
rather harsh conditions used (80 °C, under air), we observed
a small but visible difference in stability that can be attributed
to the steric bulk of the N-aryl part of the CAAC ligand. Namely,
the bulkiest complex (2,6-di(i-Pr), Ru15) was visibly more stable
than the one bearing less substituted Ar fragment (2-Et-6-Me,
Rull, Fig. 4), which harmonises well with noted lower cata-
Iytic activity of the latter.

Conclusion

The replacement of the phenyl substituent with 4-iso-
butylphenyl (derived from a mass-produced ibuprofen inter-
mediate) yielded a promising family of CAAC-Ru complexes
whose stability and activity can be tuned by controlling the
bulkiness of the N-aryl part of the ligand, thus broadening the
spectrum of their applications (ethenolysis, RCM, self-CM, CM).
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Catalysts derived from relatively bulky anilines (Ru13 and Ru14)
at a loading of only 1-3 ppm exhibit high activity in the CM of
methyl oleate (11) with the smallest possible olefinic partner—
ethylene. This result is of interest as the ethenolysis reaction is
believed to gain industrial importance in the near future due to
increased demands for use of biomass in production of
sustainable chemicals with a reduced CO,-footprint. On the
other hand, complexes bearing smaller N-aryl groups perform
much better in RCM and CM reactions involving larger olefinic
substrates, allowing for small loadings from 0.1 mol% to
0.2 ppm (200 ppb), depending on the reaction/substrate type.
Therefore, while the relatively bulky N-aryl fragments in Ru13
and Rul4 make them very productive in ethenolysis of methyl
oleate, the less bulky Rull and Rul2 react better with the
bulkier substrates, such as the ones used in RCM and CM
reactions. Interestingly, very bulky Ru15 failed in almost every
transformation.

Maslow once stated “If your only tool is a hammer, then every
problem looks like a nail”.”® Accordingly, we believe that the
different substrate preferences exhibited by the new catalysts,
which is related to the size of the substituents in the N-aryl part
of the CAAC ligand, allow for a perfect fit between catalyst and
substrate, and in more general terms opens interesting oppor-
tunities in fine-tuning of future generations of Ru olefin
metathesis catalysts.
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