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Encapsulation of cells inside microfluidic droplets is central to several applications involving cellular

analysis. Although, theoretically the encapsulation statistics are expected to follow a Poisson distribution,

experimentally this may not be achieved due to lack of full control of the experimental variables and

conditions. Therefore, there is a need for automatic detection of droplets and cell count enumeration

within droplets so a process control feedback to adjust experimental conditions can be implemented. In

this study, we use a deep learning object detector called You Only Look Once (YOLO), an influential class

of object detectors with several benefits over traditional methods. This paper investigates the application of

both YOLOv3 and YOLOv5 object detectors in the development of an automated droplet and cell detector.

Experimental data was obtained from a microfluidic flow focusing device with a dispersed phase of cancer

cells. The microfluidic device contained an expansion chamber downstream of the droplet generator,

allowing for visualization and recording of cell-encapsulated droplet images. In the procedure, a droplet

bounding box is predicted, then cropped from the original image for the individual cells to be detected

through a separate model for further examination. The system includes a production set for additional

performance analysis with Poisson statistics while providing an experimental workflow with both droplet

and cell models. The training set is collected and preprocessed before labeling and applying image

augmentations, allowing for a generalizable object detector. Precision and recall were utilized as a

validation and test set metric, resulting in a high mean average precision (mAP) metric for an accurate

droplet detector. To examine model limitations, the predictions were compared to ground truth labels,

illustrating that the YOLO predictions closely matched with the droplet and cell labels. Furthermore, it is

demonstrated that droplet enumeration from the YOLOv5 model is consistent with hand counted ratios

and the Poisson distribution, confirming that the platform can be used in real-time experiments for cell

encapsulation optimization.

1. Introduction

Droplet microfluidics often involve encapsulation of cells and
beads in individual drops of volumes ranging from nanoliters
to picoliters.1,2 This approach is unique as thousands to
millions of droplets can be generated with encapsulated
objects using microfluidic flow-focusing devices.3,4 Such an
approach has opened a wide array of applications ranging
from cell culture models5 to emulsion PCR6 to single-cell
studies.7 One influential technology that utilizes this is Drop-
seq, capable of analyzing mRNA transcripts from thousands

of individual cells (e.g., mouse retinal cells) by encapsulating
individual barcoding beads inside the droplets.8 Other critical
applications using customized generators to analyze specific
components of biological cells include genomic, epigenomic,
transcriptomic, and proteomic studies.9–13 The success of
these applications relies on robust and reproducible
encapsulation of a defined number of cells or beads,
indicating the need for techniques to detect, monitor, and
control encapsulation, preferably in real-time.

Studies show that encapsulation statistics of objects in
microfluidic droplets follow a Poisson distribution, i.e., to
minimize the number droplets containing two or more
objects a maximum of 10% would contain only one object.1,14

Clearly, such a theoretical single-object encapsulation rate,
with a lambda value of 0.1, is inefficient leaving 90% of
droplets containing no objects. In result, strategies to sort
droplets have been implemented to address this limitation.15
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The encapsulation efficiency can further suffer from
additional experimental issues such as cell sedimentation,
aggregation, or clogging during the experiment necessitating
significant operator supervision to ensure high efficiency
encapsulation. One approach to ensure Poisson statistics and
address these experimental issues associated with a long
operation time is using a magnetic stirrer to mix the cells
while the dispersed phase is running. However, this could be
damaging to the cells and require a complex and challenging
setup with homemade syringes and expensive equipment.16,17

If no automatic stirring device is present, droplet generation
can be a time-consuming process of adjusting experimental
variables such as cell concentrations, droplet diameters, and
flow rates of the dispersed and continuous phase.18–20

Machine learning (ML) approaches offer promise to
reduce the burden on operator supervision of cell
encapsulation by auto-detecting both droplets and
encapsulated objects from acquired images. Indeed, recently,
several studies have successfully implemented ML
approaches in droplet microfluidic studies, see Table 1. Most
modern object detectors use Convolutional Neural Networks
(CNNs) to learn high level features from the training set to
predict multiple bounding box coordinates in an output
tensor.21–23 You Only Look Once (YOLO), an influential object
detector,24 is based on having the whole detection pipeline as
a single network, i.e., going straight from image pixels to
bounding box coordinates and class probabilities. This
approach makes YOLO detectors faster and more lightweight
than most other object detectors.25,26 In recent years, there
have been several updates to increase performance from the
original publication in 2016 including: (1) YOLOv3 in 2018,
(2) YOLOv4 in April 2020, and (3) YOLOv5 in June 2020.26–28

The most recent update, YOLOv5, was released shortly after
the YOLOv4 model and, although maintained on GitHub with
the PyTorch library, is not well supported yet by a published
paper.28–30 Therefore, we pursue both YOLOv3 and YOLOv5
models and compare the results from the two object
detectors.

Studies that have reported the application of machine
learning in droplet-based microfluidics can be broadly
classified into two groups (see Table 1). In the first group,
studies have implemented ML approaches to physical
mechanisms such as coalescence and droplet breakup that

are relevant to droplet-microfluidic applications. For
example, Arjun et al. deployed both Singleshot Multibox
Detector (SSD) and YOLOv3 object detectors to classify
merged droplets into three categories of low mixing,
intermediate mixing, and high mixing from binary
coalescence.31 Likewise, Siemenn et al. developed a method
employing Bayesian optimization and watershed
segmentation with targets of circularity and droplet yield to
converge to optimum flow rates.33 In the second group,
studies have focused on cell sorting where the objective is to
encapsulate cells and use machine learning approaches to
detect individual droplets with cells so that they can be
sorted. For example, Howell et al. used YOLOv4-tiny to detect
cells, beads, and cell doublets in microfluidic droplets and
performed ML-assisted sorting.34,35

The present work follows closely the studies in the second
group that involve cell encapsulation. Rather than training a
model on single droplets, here, we increase the throughput
of detection by training the model on a collection of droplets
present in the expansion chamber of the microfluidic device.
Employing our detector in this manner allows for several
advantages over previous droplet studies including: (1)
simultaneous droplet and cell detection, (2) higher detection
capability, (3) superior precision, and (4) real time statistical
analysis. Specifically, our automated detector not only labels
droplets containing cells, but also detects the individual cells
inside the droplets, providing information on cellular
aggregates.

To build the detector we employed the new YOLOv5 model
and well-known YOLOv3 PyTorch implementation while
comparing their performances.28,29,37 With our lightweight
object detection method, it is feasible to process over 1080
droplet per second, whereas other studies found in Table 1
detect less than 200 droplets per second. After the boundary
of the droplet is realized from one model (droplet model) the
individual cells are predicted for each droplet with another
pass through the YOLO layers (cell model). We received high
mAP and precision when training the models in this manner
resulting in less false positive cell predictions. Lastly, with
our high detection capability, we evaluated droplet ratios
from numerous YOLO predictions for Poisson distribution
comparison to provide real-time statistical analysis for future
experiments. This detector can be leveraged for cell

Table 1 ML approaches in droplet microfluidic studies summarizing application, the model architecture used, the detection output and detection
capability

Droplet application ML model

Detection output Detection
capability Ref.Droplets Cells

Coalescence YOLOv3, SSD Multiple droplets No ≈117 drop per s Arjun et al., 2020 (ref. 31)
Regimes of droplet generation Handcrafted CNN classifier Breakup behavior No ≈100 drop per s Chu et al., 2019 (ref. 32)
Droplet optimization Watershed segmentation,

Bayesian optimization
Multiple droplets No ≈135 drop per s Siemenn et al., 2022 (ref. 33)

Cell sorting Handcrafted CNN classifier Single droplet No ≈200 drop per s Anagnostidis et al., 2020 (ref. 34)
Cell sorting YOLOv4-tiny Single droplet Yes ≈60 drop per s Howell et al., 2021 (ref. 35)
Cell sorting Image thresholding and SVM Single droplet Yes ≈50 drop per s Sesen et al., 2020 (ref. 36)
Cell encapsulation YOLOv3, YOLOv5 Multiple droplets Yes ≈1080 drop per s This work
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encapsulation experiments to assemble a process control
inspection, where the droplet fractions containing cells are
compared to the Poisson distribution in real time, allowing
for cell visualization and their aggregation events for future
analysis. Furthermore, the droplet flow rate parameters could
be controlled to obtain the correct encapsulation ratios
through a Bayesian optimization technique. For example,
instead of using a circularity and yield target as in Siemenn
et al., a monodispersity and cell encapsulation ratio target
could be used to predict the correct flow rates to use in the
experiment.33 Single cell encapsulation experiments are
already limited from the Poisson distribution, where only
10% of droplets contain cells. In result, this optimized
process where a software predicts the correct control
parameters for complete automation is essential to obtain
the correct droplet ratios.2,38 Finally, the process control
inspection can allow for a feedback loop so that experimental
variables may be regulated to keep the maximum Poisson
ratio.39

This paper is structured as follows: sec. II gives a brief
overview of microfluidic device fabrication and cell culture,
in addition to the process used for data collection and
annotations. Sec. III presents the results of model training,
testing, and predictions of both droplet and cell bounding
boxes. In addition to test set metrics, the droplet ratios from
the trained model are compared to hand counted images as

well as the Poisson distribution. Lastly, sec. IV gives the final
remarks and future strategies to improve the detector for
production employment.

2. Results and discussion
A. Data collection and preparation for ML models

Image data sets were collected by conducting microfluidic
experiments along with video acquisition. As shown in
Fig. 1a and b, the flow-focusing device was used to produce
droplets with encapsulated PC3 cancer cells. These generated
droplets flow into the downstream collection chamber where
their velocity was reduced to form an ensemble of droplets.
Images for ML model generation were collected from only
the collection chamber at 100 frames per second (Fig. 1c).
These images were used for two different types of ML
models: (1) an object detection model to detects individual
droplets in the ensemble referred to as the droplet model,
and (2) an object detection model to detect the cells inside
the droplets referred to as the cell model.

For the droplet model, preprocessing consisted of
cropping a square section in the collection-chamber image
that was filled with droplets and skipping images to make
sure the same droplet did not appear in the training set
twice. For most of the experiments, this square section was
in the middle of the collection-chamber. Around every 50th

Fig. 1 (a) The physical microfluidic device used for droplet generation. The continuous phase inlets (1, 2) and discrete phase inlet (3) are marked
on the left with the outlet of the device on the right (4). The orifice and expansion chamber are labeled with black arrows. (b) A zoomed in view of
the droplet generation process. The white circles in the discrete phase are PC3 cancer cells in aqueous suspension. Images are spaced at 10 ms so
that the shearing at the orifice and droplet generation is visualized. Individual droplets take only 30 ms to pass allowing for high throughput
droplet generation. Scale bar: 150 μm. (c) The expansion chamber of the droplet generator device with droplets tightly packed together. The red
box indicates the microscope visualization box displayed on the computer. Scale bar: 400 μm.
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frame in the video was pre-processed and uploaded to
Roboflow Annotate (Roboflow, Des Moines, Iowa) to begin
annotations.40 During the annotation process, the images
containing a majority of droplets with one or zero cells were
discarded to maintain an even class balance ratio.

The cell model was to detect the cells inside each of the
droplets that were predicted from the droplet model. For the
cell model, preprocessing consisted of taking every 5th image
in the droplet dataset (training, validation, and test set) and
cropping the annotated droplets with one or more cells. The
droplets without cells were not used since this would result
in no annotations for model training. The ground truth
bounding boxes from the droplet model were exported from
Roboflow in YOLO label format and converted to corner
coordinate format so that the individual droplet images could
be cropped from the larger image containing multiple
droplets. After the width and height were averaged the
cropped images were uploaded to Roboflow Annotate to draw
bounding boxes on cells.40

A typical representation of an annotated training example
for the droplet model can be seen in Fig. 2(a). The four
different classes in the dataset include: (1) drop_0cell (red
box), are droplets with no cells encapsulated (2) drop_1cell
(yellow box), are droplets with one cell encapsulated as, (3)
drop_2cell (green box), are droplets with two cells
encapsulated and (4) drop_3cell are (pink box) droplets with
more than two cells encapsulated. In all training and testing
examples, there are some droplets that are cutoff and not
fully contained in the cropped image. To minimize the effect
of wrongly classifying droplets, the bounding boxes were only
drawn around the droplets that were approximately more
than 85% in the image. This was done to train the object
detection model to not inaccurately classify droplets that
have a cell not contained within the boundaries of the image.

Typical annotated training examples for the cell model are
illustrated in Fig. 2(b) with bounding boxes drawn for all
distinguishable cells. We note that the droplet model discussed
above is sufficient for calculating the Poisson statistics,
however, labeling the bounding boxes for each cell in the
droplet allows for phenotypic analysis of individual cells
encapsulated in the droplets. The phenotypic analysis of
individual cells could be useful in the future to relate
application outcomes to variations in individual cellular
features.

For both ML models, the cropped images were resized to a
resolution of 544 × 544 pixels and split between three separate
datasets. We chose to use 20% of the data for testing, leaving
80% for training and validation sets. After taking another 20%
for the validation set the resulting 64–16–20 split allowed for no
bias or misrepresentation in test set performance. After a
dataset was split, augmentations were applied to training sets,
while validation and test sets were used as is to achieve testing
on realistic examples. Specifically, there were three outputs per
training example consisting of random combinations of vertical
flip, hue change between −15° and +15°, and brightness change
between −10% and +10%. Since data was collected over multiple

experiments the image quality and brightness may fluctuate
between examples. The brightness augmentations alleviated
this variance and allowed for more generalizable data to be used
for testing and inference.41 The droplet model had only vertical
flipping while the cell model had horizontal and vertical
flipping since the cells can be in any orientation within the
droplet. These image augmentations allowed the model to be
more robust to data that it had not seen before by increasing
the diversity of input examples.

A total summary of the dataset before augmentation is
described in Table 2 where the total number of labels and
images are provided for both models. The total count for the
number of images and labels in the droplet model is 643 and
14 916 respectively while the total count for the images and
labels for the cell model is 2063 and 4207 respectively.

B. ML models and performance metrics

Typical applications of microfluidic droplet generation
operate at speeds of a few to tens of kHz.1 This results in

Fig. 2 Ground truth annotation summary for the droplet (a) and cell
(b) models used as training examples. The droplet model images
include four different annotated classes of drop_0cell representing a
droplet with 0 cells (red boxes), drop_1cell representing a droplet with
one cell (yellow boxes), drop_2cell representing a droplet with two
cells (green boxes), and drop_3cell representing a droplet with three
or more cells (pink boxes). The cell model training examples include
one annotated class representing the individual cells in each droplet
(green boxes).
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thousands of droplets produced in one second, requiring a
fast object detector to process as many droplets as possible.
Since the YOLO object detector goes straight from image
pixels to bounding box coordinates it is faster and more
lightweight than other object detectors. With high
computational power and state of the art GPU's the more
recent versions of YOLO can reach up to 100 FPS depending
on the accuracy and dataset used.25,26 In the droplet model,
we use the recently developed YOLOv5 model and the
established YOLOv3 PyTorch implementation from Ultralytics
Inc., to compare their performances. In the cell model, we
employ the more established YOLOv3 PyTorch
implementation and leave the newer YOLOv5 model for

further production applications. The full model architectures
for YOLOv3 and YOLOv5 can be seen in Fig. S3 and S4.†

The workflow for the droplet and cell ML models are
shown in Fig. 3. Images were preprocessed and the
annotations were performed in Roboflow. The labeled data
set is stored with an 80, 10, 10 split between training,
validation, and test sets. The dataset is transferred to Google
Colaboratory and passed through the YOLO object detector
containing a feature extractor and output tensor. Feature
extraction is the process by which an initial set of data is
reduced by identifying key features, giving a higher-level view
of objects in the data set examples. The output tensor for the
YOLO model is divided into multiple grid cells each
containing numerous bounding boxes. For each proposed
bounding box there exists nine parameters containing four
spatial coordinates (tx, ty representing the box center and tw,
th representing the box width and height), four class
probabilities (p1, p2, p3, p4), and one confidence value as the
likelihood of the proposed box being a droplet (C). After
thresholding the proposed box confidence values there may
still be multiple bounding boxes for one droplet. Non-
maximum-suppression (NMS) technique was employed to
obtain the proposed bounding box with the highest
confidence value. Finally, the resulting bounding box
coordinates were stored, and the final YOLO class predictions
were compared against ground truth labels with python
plotting libraries. A second model was trained to detect each
cell in an individual predicted droplet after cropping and

Table 2 Model annotation summary before augmentation. Drop_0cell
refers to a droplet with zero cells, Drop_1cell a droplet with one cell,
Drop_2cell a droplet with two cells, and Drop_3cell a droplet with three
or more cells

Label/set Total count Training Validation Test

Droplet model
Drop_0cell 3519 2451 483 585
Drop_1cell 4308 3067 572 669
Drop_2cell 3585 2487 539 559
Drop_3cell 3504 2447 535 522
Combined 14 916 10 452 2129 2335
Images 643 412 103 128

Cell model
Cells 4207 2695 666 846
Images 2063 1321 330 412

Fig. 3 Machine learning workflow for detecting cell-laden droplets and encapsulated cells. The left displays the steps taken to train and test the
droplet model including the bounding box annotations, YOLO architecture, and droplet counting. The right displays the cell model after the
droplet predictions are cropped and resized. Predictions are illustrated for both droplet and cell models for an example image in the production
set. The numbers displayed on the colored boxes indicate the confidence values of the predictions.
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resizing. The bounding box annotations in the droplet model
were used to crop individual droplets that subsequently pass
through a separate YOLO model with the same architecture
as the droplet model for detecting cells within droplets.
Lastly, the enumerated droplet class predictions for a
separate production set were subsequently used to investigate
the Poisson statistics.

In object detection models, to compare performance, the
research community has converged to a single important metric
capturing precision, intersection over union (IOU), and
confidence threshold, called mean average precision (mAP).42,43

Precision can be defined as the proportion of correct positive
identifications and can be calculated by taking the ratio of true
positives over the total number of predictions:

precision ¼ TP
TPþ FP

(1)

where TP and FP are the number of true positive and false
positive predictions, respectively. On the other hand, recall is
the proportion of actual predictions identified correctly:

recall ¼ TP
TPþ FN

(2)

where FN is the number of false negative predictions. The
total mAP is an advanced calculation that uses the precision
recall curves at different IOU thresholds to determine the
mAP for each class, then averages each of the classes
together:

This formula is a representation of the mAP for the COCO
challenge.28,43 Microsoft released the MS COCO dataset in
2015.44 It has become a common benchmark dataset for
object detection models since then. Here, j is a sum over the
ten IOU thresholds in the COCO challenge (0.5 to 0.95 at
intervals of 0.05), k is a sum over the 101 interpolated
confidence threshold points on the precision–recall curve,
and i is a sum of the number of classes, C, used in the
dataset. Thus, the metric incorporates how well a model
performs when it is guessed correctly (precision), if the
model guessed every time that it should have guessed (recall),
and at different threshold levels. For this reason, we used the
mAP calculation in our studies to determine model
performance.

C. Model performance

Both YOLOv3 and YOLOv5 models were trained and tested
on an NVIDIA Tesla P100-PCIE-16GB GPU offered by Google
Colaboratory Pro platform with a patience level of 100 epochs

for early stopping. For the droplet model, YOLOv3 training
took approximately 11 hours to complete 468 epochs with no
improvements after epoch 367 while YOLOv5 training took
approximately 4 hours to complete 475 epochs with no
improvements after epoch 374. Thus, the best weights were
taken at epoch 367 and 374 for YOLOv3 and YOLOv5,
respectively. For the cell model, YOLOv3 training took
approximately 25 hours to complete 351 epochs with no
improvements after epoch 250 while YOLOv5 training took
approximately 4 hours to complete 139 epochs with no
improvements after epoch 38. Thus, the best weights were
taken at epoch 250 and 38 for YOLOv3 and YOLOv5,
respectively. It is clear that YOLOv5 took a shorter amount of
time for droplet and cell model training, most likely due to
the optimized complete IOU loss implemented in the
YOLOv5 objectness loss function.45

During the droplet model training, precision and recall
were calculated at each epoch for the validation set, as well
as the mAP at 0.5 IOU and 0.5–0.95 IOU shown in
Fig. 4(a) and (b). The curves are quite similar for both
YOLOv3 and YOLOv5 architectures, however, for the YOLOv5
model the mAP value seems to converge and stabilize
quicker. Additionally, both models take around the same
number of epochs to hit a patience level of 100 for early
stopping. After training was completed, the model was
evaluated with the test set to see the performance on data
that it had not seen before. The performance of an object
detector can be thoroughly described by the precision recall

curve illustrated in Fig. 4(c) and (d) for YOLOv3 and YOLOv5
models respectively. This curve (used for the mAP calculation)
incorporates both precision and recall values as the
confidence level of the predictions decrease.42 The
confidence threshold will not allow any of the proposed
boxes with confidence value C lower than the threshold to be
used as a prediction. For all four classes of the droplet
model, the precision declines and recall increases as the
confidence threshold decreases, symbolizing that the model
is making healthy predictions in the test set.

An additional tool to evaluate model performance on the
test set is a multiclass confusion matrix. In a confusion
matrix the model predictions are compared to the ground
truth labels. For a prediction to match with a ground truth
box the IOU has to be greater than a certain threshold. If the
classes match between the prediction and label, then the
prediction is defined as a true positive. The confusion matrix
in Fig. 5 represents how well the model does at predicting
the right class for the bounding boxes. It is shown that only a
small number of predicted labels are predicted as the wrong

APi;COCO ¼ 1
10

Xj¼0:95

j¼0:5

Xk¼101

k¼1

Recall kð Þ −Recall k þ 1ð Þ½ � ×Precision kð Þf gthreshIoU¼j

mAP ¼ 1
C

Xi¼C

i¼1

APi;COCO

(3)
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class (see sec. 2D for model failures). Furthermore, most of
the predictions are correctly predicted with the appropriate
class.

To give a more in-depth comparison of the YOLOv3 and
YOLOv5 models evaluated on the droplet model we compared
test set metrics from the best weights after training. The mAP
and FPS for both networks in Table 3 reveal that the mAP is
nearly the same while the FPS in the YOLOv5 model is much
faster. In addition to the average mAP comparisons, we
provide a more comprehensive analysis for all classes of the
droplet model in Table S1.†

Furthermore, the inference time of the cell model would
also have to be fast since multiple droplets require cell
detection in each frame (around 20 droplets per image). Each
of the droplet images, after detection and cropping from the
droplet model, are resized and ran through another YOLO
pass for inference. Thus, it is critical that a fast object
detector is utilized for the cell model so that the cells may be
detected in real time for each predicted droplet. Table 4
demonstrates that both YOLO models allow for fast inference
time with the newer YOLOv5 at 63 FPS reaching 16 FPS more
than the original YOLOv3. Additionally, both networks reach

Fig. 4 Droplet model validation (a and b) and test (c and d) set metrics for both YOLOv3 and YOLOv5 networks. The validation metrics show the
mAP at 0.5 IOU threshold and 0.5–0.95 IOU threshold for all epochs trained with both models. Since we used early stopping with a patience of
100 for both models, the best weights for YOLOv3 was taken at 367 epochs while the YOLOv5 weights were saved at 364 epochs. The test set
metrics display the precision recall curve at 0.5 IOU threshold for each class in both models. This curve illustrates that as the bounding box
confidence decreases the recall will increase and the precision will decrease.
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a high mAP metric at IOU threshold of 0.5. However, as with
all object detection models when the precision is averaged
over all IOU thresholds from 0.5 to 0.95 the mAP decreases.
This decrease to 0.72 is most likely due to the predicted box
not exactly matching with the ground truth box, leading to
incorrect predictions at IOU threshold of 0.9. Furthermore,
with fast inference time and high mAP at 0.5 IOU, the
predictions allow for the encapsulated cells to be visualized
with high throughput during generation experiments.

A more detailed analysis of cell model performance is
described in Fig. S5 and Table S2.† A high precision was reached
for all classes in both droplet and cell models. Specifically, a
precision of 98% was realized from the cell model for both
YOLOv3 and YOLOv5, 6% higher than previously reported single
cell detection and 17% higher than cell aggregates in Howell
et al.35 Our method can detect every cell in the droplet, allowing
for cell aggregation events to be realized with distance analysis.
Thus, both models together can not only detect the droplet
itself containing different number of cells but a single cell or
cell aggregates with high precision.

With YOLOv5 built as a lightweight model for fast
inference, it was shown for both droplet and cell datasets to
be greater than 15 FPS faster than YOLOv3 while sacrificing
little performance in mAP. In production applications,

droplets are produced at high frequencies, thus fast inference
time in both models are critical. In result of both YOLO
networks having similar test set metrics and YOLOv5 almost
50% faster than YOLOv3 we used YOLOv5 for further analysis
and testing. Specifically, we used the YOLOv5 model to
examine model predictions and study Poisson statistics,
however the results were similar with the YOLOv3 network.

D. Predictions and cell visualization

Only examining ordinary test set metrics without visualizing
incorrect box predictions from YOLO results give a narrow
view of model inference and performance.41 For this reason,
we compared predictions with ground truth labels for both
droplet and cell models to examine model failures. An
example prediction from the droplet model test set in Fig. 6
show that the predictions match with the ground truth
labels. Here, Fig. 6(a) represents the ground truth labels,
while Fig. 6(b) illustrates the YOLOv5 predictions with
examples of negatives and positives. At a closer look, nearly
all predictions are correct including the droplets that have
less than 85% of the volume contained in the image.
However, there is one false positive towards the bottom of
the image signifying a droplet that most likely does not

Fig. 5 YOLOv3 (a) and YOLOv5 (b) confusion matrix for the droplet model test set. The vertical axis represents the predicted droplets while the
horizontal axis represents the ground truth droplets. The color bar on the right shows the colormap from 0 to the maximum predictions where
darkest blue color represents the maximum predictions. The confusion matrices were evaluated at a confidence and IOU threshold of 0.25 and
0.45 respectively.

Table 3 Droplet model test set comparisons between YOLOv3 and
YOLOv5 networks. (@ 0.5 IOU) represents the mAP at 0.5 IOU threshold
while (@ IOU 0.5:0.95) represents the mAP averaged between 0.5 to 0.95
IOU threshold with intervals of 0.05. The FPS is defined as inverse of the
average inference time

Network/metric
mAP
(@ 0.5 IOU)

mAP
(@ 0.5:0.95 IOU)

FPS
(1/inference)

YOLOv3 0.97 0.91 47
YOLOv5 0.97 0.91 68

Table 4 Cell model test set comparisons between YOLOv3 and YOLOv5
networks. (@ 0.5 IOU) represents the mAP at 0.5 IOU threshold while (@
IOU 0.5:0.95) represents the mAP averaged between 0.5 to 0.95 IOU
threshold with intervals of 0.05. The FPS is defined as inverse of the
average inference time

Network/metric
mAP
(@ 0.5 IOU)

mAP
(@ 0.5:0.95 IOU)

FPS
(1/inference)

YOLOv3 0.99 0.72 47
YOLOv5 0.99 0.71 63
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contain any cells. By only providing annotations for the
droplets that contained more than 85% of the volume in the
image the model was able to suppress nearly all the other
droplets on the boundary of the image. This advantage from

the YOLO model allows the ratio of droplets to be preserved
with only one false positive on the boundary predicted as a
droplet with zero cells. Furthermore, with around 80%
volume in the image has a high probability that the droplet
does not contain a cell on the right side. A larger set of
random testing examples with predictions are provided in
Fig. S6.†

An object detector for the entire droplet boundary only
gives the ratios of the different cell encapsulation events. To
obtain more information about the encapsulated cells, such
as size, shape, or distance, another object detector is trained
to detect bounding boxes around the individual cells inside
the droplets. Several examples of ground truth labels (green)
and predictions (red) in Fig. 7(a–d) demonstrate that the
predictions have a high IOU with the ground truth
annotations. The top labels on the predicted boxes give the
confidence value of that prediction in cyan. For the YOLOv5
predictions, the NMS was conducted with an IOU threshold
of 0.6, while the confidence threshold for plotting the
detections was fixed to 0.25. Since there were no false
negatives or false positive predictions only true positive
examples are shown. A larger set of random testing examples
with predictions is provided in Fig. S7.† This cell model could
be used, for example, to display the individual droplets on a
second screen during a droplet experiment, thus displaying
exactly where the cells are inside the droplets. If many of the
cells show a certain characteristic (perhaps a specific shape,

Fig. 6 Ground truth (a) and predicted (b) boxes for one test set image
in the droplet model containing four classes. The predictions were ran
using the YOLOv5 model weights while the NMS was conducted with
an IOU threshold of 0.45. The confidence threshold for plotting
bounding boxes was set to 0.6. Examples of a true negative, true
positive, and false positive are provided on the bottom of the
predictions.

Fig. 7 Ground truth and predicted boxes for four test set images in
the cell model (a–d). The green boxes show the ground truth
annotations, while the red boxes show the YOLOv5 prediction with the
objectness (confidence value) of each prediction in cyan.
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size, or fluorescence) the system will alert the user of that
specific property.

E. Comparison with Poisson statistics

For an ML model to be ready for production implementation,
the predictions must be compared at a higher level than
ordinary mAP, precision, and recall. This is accomplished by
hand counting droplet percentages and comparing directly to
YOLOv5 predictions. Droplet totals from a collection of 1000
images in the production set were manually counted and
stored so that proportions can be measured against the
number of droplets predicted from YOLOv5. Subsequently,
the YOLO output tensor is computed for the same set of
images in the production set, droplets are totaled from the
prediction results, and the two sets of proportions are
analyzed in Fig. 8(a and b). In this comparison the x axis
represents droplets with zero, one, two, or greater than two
cells encapsulated while the y axis represents the total
percentages of those droplets. In both batches of 500 images
the ratios determined from YOLOv5 predictions and hand
counting are in good agreement. The representation of the
number of droplets in this manner confirm that for a larger
set of images (500 in this case) the YOLO model will detect
nearly the same droplet proportions as counting them by
hand. To verify the statistics match with a reduced number
of images, a random sequential batch of 50 images
(equivalent to 0.5 seconds) from the two separate trials of 500
hand counted images is used. The random batch is chosen
by defining a random seed in python (pseudo-random pool
of numbers) and returning an integer between zero and nine.
Furthermore, the manually counted droplet proportions for
the smaller set of 100 images are compared to droplet totals
computed from YOLOv5 model in Fig. S8.† This comparison
also shows good agreement indicating the YOLO model
provides accurate droplet proportions for both small and
large number of images.

Encapsulating cells delivered to the droplet-generation
nozzle at random is a process which yields a resulting
population of droplets with Poisson distributed cell

occupancy.1,7 Cell encapsulation, and more importantly
single-cell encapsulation experiments rely on this
randomness to obtain statistical significance for rare cell
enumeration. The probabilistic nature essentially represents
a theoretical maximum for obtaining single cell
encapsulation without contamination from multiple cell
droplets.1 The Poisson distribution can be described by the
probability mass function:

Pr X ¼ kð Þ ¼ λke − λ

k!
(4)

where X is a discrete random variable, k is the number of
cells in each droplet (k = 0, 1, 2 …), and λ is the expected
value of X. Since the number of cells in each droplet can only
be a whole number, the expected value, λ, can be calculated
by multiplying the bulk concentration (in cell per mL) and
droplet volume (in mL). It is imperative that during a cell
encapsulation experiment the ratios generally follow this
distribution to achieve statistical significance with the correct
proportion of cells in droplets.10

The Poisson distribution was determined with the
expected value as the average number of cells in each droplet
(λ = c0 × v0) and the probability mass function in eqn (3) to
calculate the theoretical droplets with zero, one, two, or more
than two cells. A high cell concentration was used in our
experiments to keep the class balance for the droplet model
roughly even for healthy training. We utilized ImageJ over a
period of multiple trials to determine the droplet diameter
for the volume calculation (v0 = 212 pL), while the initial cell
concentration was counted from the hemacytometer before
droplet generation (c0 = 7 × 106 cell per mL). This resulted in
a lambda value of 0.15, typical of microfluidic droplet
experiments. Production set images and YOLOv5 weights
were used for droplet enumeration where the y axis defines
the probability mass function (percentage of droplets) and x
axis representing the number of cells in each droplet (k).
Illustrated in Fig. 9, images were collected from two separate
trials with the same microfluidic flow rate and cell
concentration for each. The videos were recorded at similar
time points between the two trials so that they could be

Fig. 8 The fraction of droplets containing zero, one, two, or greater than two cells. Droplets are counted from YOLOv5 predictions (red) and by
hand (green) for a total of 1000 images over two trials: (a) and (b). The images were preprocessed from the original video (taken at 100 FPS)
resulting in a five second time frame for each trial. The NMS for the YOLOv5 model was completed with an IOU threshold of 0.45 while the
confidence threshold was set to 0.6.
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sufficiently compared. A trial consisted of first recording a
video at the start of the experiment to know the drop
numbers with a fresh syringe of cells. Then to investigate the
droplet proportions after long operation time another video
was recorded after the cell suspension ran for an extended
period of time (after 60 minutes). For the second trial, the
syringe from the first run was replaced with cells from a new
flask to simulate an alert system for cell replacement. The
first trial in Fig. 9(a) was executed with a total of 12 800
images: 6400 from the beginning of the trial and 6400 at the
end.

The error bars were calculated by dividing the total
amount of images in a trial by three and computing the
standard deviation of the droplet proportions. This
comparison reveals that in the beginning of the trial the
proportion of droplets agree with the theoretical Poisson
distribution. However, after a longer operation time the ratio
diverges from Poisson statistics as the number of
encapsulated cells decrease. This demonstrates that as the
experiment runs the encapsulation events depreciate over
time, thus using droplet detection to predict this divergence
is beneficial. The second trial in Fig. 9(b) reveals a similar
trend with a favorable Poisson agreement in the beginning of
the experiment. Therefore, having an automated alert system
to detect this divergence, allowing for adjustments of the cell
container with a feedback loop, would be advantageous for
droplet generation experiments.

3. Conclusions

In this study we used both YOLOv3 and YOLOv5 CNN
architectures to assemble an automated detector of whole
droplets and the individual cells inside these droplets. A high
precision was obtained for both droplet and cell models,
indicating the number of false positives measured in the test
set were low. The precision on the cell class itself was found
to be approximately 11% higher as compared to previously
reported studies on cell detection. We established that, for
this dataset, the test set metrics were nearly the same while

the YOLOv5 architecture outperformed YOLOv3 in inference
time and training stability. As FPS is an important
requirement for production applications, this finding shows
that both algorithms, built as lightweight models to perform
fast calculations, can detect microfluidic droplets with fast
inference and high accuracy. More importantly, the YOLOv5
architecture has shown to be robust in microfluidic
applications as well as slightly outperforming the YOLOv3
model in speed, therefore, alleviating some of the controversy
associated with the PyTorch model.

After providing the relevant test set metrics for both
models we manually counted droplet ratios for two sets of 50
sequential images and plotted them against the ratios
determined from the YOLOv3 model. At small and large
number of images our object detection droplet proportions
were nearly identical to manually counting the droplets by
hand, confirming operation close to human level
performance. To illustrate that the trained model can be used
for process control inspection we used the YOLOv3 model to
compare with the theoretical Poisson distribution. We
employed a total of 25 600 images from the production set
and found that the ratio of droplets agree with Poisson
statistics at first, but after running the suspension for long
operation time the ratio of encapsulated cells dramatically
decreases. This decay in cell encapsulation can be caused by
several different factors, e.g., cell sedimentation or
aggregation in the syringe, and illustrates the requirement
for an automated detector with a real time comparison to the
Poisson distribution. In the future we intend to optimize our
droplet detector, explore more applications with droplet
generation, and look for ways it can be seamlessly
implemented in a production platform.

4. Experimental
A. Materials

Polydimethylsiloxane (PDMS) (Sylgard 184) for device
fabrication was purchased from Dow Corning Corporation.
Silicon wafers were purchased from University Wafers while

Fig. 9 The fraction of droplets containing zero, one, two, or greater than two cells in the first (a) and second (b) trials. For each trial a total of
12 800 images are used in combination with YOLOv5 model weights split between the beginning (red) and long operation time (maroon). The
droplet proportions are compared with the theoretical Poisson distribution for each value of k (blue). The images were preprocessed from the
original video (taken at 100 FPS) resulting in two 64 second time frames for each trial. The NMS for the YOLOv5 model was ran with an IOU
threshold of 0.45 while the confidence threshold was set to 0.6.
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the SU-8 50 negative photoresist and SU-8 developer were
purchased from Kayaku. The alginic acid used for the
discrete phase solution was purchased from Sigma-Aldrich.
For the continuous phase the 008-FlouroSurfactant was
purchased from RAN Biotechnologies, Inc, and the HFE 7500
fluorinated oil from 3M Novec.

B. Cell culture

Human prostate cancer cell line PC-3 (ATCC CRL-1435™ VA)
was cultured at 37 °C in F-12K growth medium containing
10% FBS and 1% penicillin/streptomycin with media changes
every two days (Thermo Fisher). After cells reached around
80% confluency, they were released from culture flasks by a
0.05% trypsin–ethylenediaminetetraacetic acid (EDTA)
(Invitrogen, CA) solution at 37 °C. Since the Poisson
distribution requires an accurate analysis of the cell
suspension concentration, the cells were carefully counted by
a hemacytometer. A large cell concentration of approximately
7 × 106 cells per mL was used to increase the number of
droplets with 3 or more cells, thus decreasing the class
imbalance for training. After uncovering the concentration
from the cell counting plate, cells were centrifuged and
suspended in 1 wt% alginate solution before adding to pump
syringe.

C. Microfluidic device fabrication

The flow-focusing microfluidic device was fabricated by
standard soft lithography method.46 Specifically, the desired
features were drawn by AutoCAD and printed on a
transparent film as a mask for UV light. Then, SU-8-2050 was
spin-coated on a silicon wafer. After soft-baking, exposure to
light, and post-baking, the unexposed photoresist was
dissolved by SU-8 developer to obtain the final master.47,48

The height of the master is approximately 90 microns. To
fabricate the PDMS replica, PDMS with 10 : 1 ratio of
monomer to curing agent was thoroughly mixed and de-
gassed for 30 minutes. After pouring on the SU-8 master and
heating at 65 °C for two hours, the PDMS layer was detached
from the SU-8 master. The droplet generator was formed by
plasma treating the PDMS replica and flat PDMS slab, then
bonding the two pieces together. The device surface was
allowed to recover to a hydrophobic state after 3 days in an
oven at 70 °C.

D. Experimental setup

To gather images for model training and production testing,
a proper experimental setup was necessary to collect
sufficient data. Specifically, two microfluidic pumps (PHD
2000, Harvard Apparatus, Massachusetts, USA), a microscope
stage system (Nikon Eclipse TiU), a high-powered camera
(Phantom v710 12-bit, Vision Research) and a desktop
computer were used to capture high quality images from the
experiment (Fig. S1†). There are two syringe pumps for both
the dispersed and continuous phase with cell suspension
and fluorinated oil, respectively. The microscope stage holds

the droplet generator while the digital camera is connected
to the computer and microscope optical lens. This setup
allows for the generated droplets in the expansion chamber
to be effortlessly visualized for subsequent analysis and
evaluation.

Data availability

We believe that open-source code allows for greater
innovation and cutting-edge research due to the ability of
others incorporating additional features and testing.
Scientific knowledge should not be contained, rather
accessible for others to use freely in their own experiments.
Furthermore, we would like to be transparent with this
analysis and assist other researchers with more AI inspired
microfluidic projects. For this reason, our adoption of
YOLOv3 and YOLOv5 models along with the production set
images can be found at https://github.com/karl-gardner/
droplet_detection. Here, you can access the data associated
with training, testing, and comparisons, for both droplet and
cell models in a Google Colaboratory notebook and a shared
Google Drive folder. We encourage others to contribute or
use our trained model for testing or production purposes.
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