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sequence libraries composed of biostable nucleic
acid analogues†

John R. D. Hervey, a Niklas Freund, b Gillian Houlihan,b Gurpreet Dhaliwal,a

Philipp Holliger *b and Alexander I. Taylor *a

Functional nucleic acids can be evolved in vitro using cycles of

selection and amplification, starting from diverse-sequence

libraries, which are typically restricted to natural or partially-

modified polymer chemistries. Here, we describe the efficient

DNA-templated synthesis and reverse transcription of libraries

entirely composed of serum nuclease resistant alternative nucleic

acid chemistries validated in nucleic acid therapeutics; locked

nucleic acid (LNA), 20-O-methyl-RNA (20OMe-RNA), or mixtures of

the two. We evaluate yield and diversity of synthesised libraries and

measure the aggregate error rate of a selection cycle. We find that

in addition to pure 20-O-methyl-RNA and LNA, several 20OMe-RNA/

LNA blends seem suitable and promising for discovery of biostable

functional nucleic acids for biomedical applications.

Introduction

Single-stranded nucleic acids can adopt sophisticated 3D struc-
tures, enabling functions as ‘‘chemical antibodies’’ (aptamers)
and catalysts (ribo-, DNA- and XNAzymes), which form the basis
of an array of biomedical technologies with potential applica-
tions in diagnosis and therapy.1–6 As design of such functional
sequences (beyond antisense reagents) ab initio is not yet
possible, they must be discovered through in vitro selection
and evolution, which typically involves cycles of synthesis,
panning and recovery of sequence-diverse libraries (containing
up to 1015 variants), formalised as ‘‘systematic evolution
ligands by exponential enrichment (SELEX)’’.7,8

For applications in vivo, or in the presence of biological
fluids, modified or non-natural nucleic acids (also known as

xeno nucleic acids, XNAs) are generally advantageous over DNA
or RNA due to improved nuclease resistance inherent in alter-
native backbone chemistries with modified sugars and
congeners.9–11 Although post-SELEX modification of functional
oligonucleotides with analogues is possible, this can reduce or
abolish function and precludes the selection of novel XNA
structures stable under physiological conditions. Instead, sub-
stitution of one or two of the four RNA or DNA nucleotides with
analogues such as 20-fluoro- and 20-aminopyrimidines has been
used to prepare partially-modified libraries for ‘‘modSELEX’’,12,13

yielding mixed-chemistry aptamers with improved biostability.
However, such mixed chemistry aptamers (although generally more
stable than DNA or RNA alone) remain vulnerable to nuclease
degradation due to the presence of unmodified segments.

By comparison, comparatively few examples of ‘‘X-SELEX’’14,15

selections involving complete substitution of all four nucleoside
triphosphates ((d)NTPs) with biostable artificial analogues (xNTPs)
have been reported.16–25 This has historically proven challenging
due to the high substrate specificity of DNA and RNA polymerases,
which – in most cases – must be evolved or engineered26–28 to
permit DNA-templated XNA polymerisation at full substitution for
library synthesis. Although elegant DNA-tagging approaches have
been devised to avoid the requirement for an XNA reverse tran-
scriptase (RT),21,29,30 where available it may be beneficial to utilise
engineered RTs31 for XNA-templated cDNA synthesis, enabling
efficient amplification and preparation of templates for subsequent
rounds of selection.

Among the different nucleic acid analogues, 20-O-methyl-
RNA (20OMe-RNA), a natural post-transcriptional modification
found in ribosomal, tRNA and mRNA, and 20-O,40-C-methylene-
b-D-ribo- or ‘locked’ nucleic acid (LNA)32,33 (Fig. 1a) are of
particular interest. Both are resistant to serum nucleases and
exhibit enhanced binding to complementary RNA and DNA, as
well as formation of highly stable secondary structures, due to
their conformationally restricted ribose ring structures (result-
ing from the 20 methoxy in 20OMe-RNA and the bridging
methylene group in LNA, positioned in the minor groove34,35),
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which reduce the entropic penalty incurred by basepairing.
Both 20OMe-RNA and LNA have been shown to improve target
strand invasion and specificity of antisense oligonucleotides,
siRNAs and CRISPR/Cas systems, as well as boosting activity of
DNAzymes and aptamers in physiological conditions, and are
generally well tolerated in vivo.11,36 Furthermore, 20OMe-RNA
and LNA phosphoramidites are commercially available,
enabling scalable chemical synthesis once functional
sequences have been identified and optimised. Systems
enabling the selection of biostable functional oligonucleotides
using such chemistries therefore continue to be key technolo-
gical goals for the field.

An early example of selections for aptamers composed of
20OMe-RNA37 where libraries were synthesised using a mutant
T7 RNA polymerase (T7: Y639F, H784A)38 required inclusion of
unmodified GTP as well as ‘forcing’ conditions (high xNTP
concentrations and Mn2+) in order to achieve synthesis of N30

libraries. Furthermore, selection seemingly required this chi-
meric library to be supplemented with chemically-synthesised
20OMe-RNA.37 Reverse transcription of 20OMe-RNA was possi-
ble with Thermoscript (an MMLV RT variant), although ineffi-
cient (B10% cDNA yields on 20OMe-RNA templates), and the
system had a high overall SELEX cycle error rate (51% of
amplified cDNAs carried an error).37 Subsequently, improve-
ments in 20OMe-RNA synthesis and RT were achieved using
laboratory-evolved mutants of T7,39–41 the Stoffel fragment of

Taq DNA polymerase20 and KOD polymerase,25 although these,
too, required Mn2+ and extended incubation times. Most
recently, engineering a two-residue ‘steric gate’ in the Tgo
DNA polymerase in order to reduce predicted clashes with
bulky 20-modified nucleotides yielded an efficient 20OMe-RNA
synthetase, ‘‘pol2M’’ and its variant ‘‘pol3M’’.42 Likewise, an
efficient 20OMe-RNA reverse transcriptase was engineered
using Tgo by directed evolution, ‘‘RT-C8’’.31 In the case of
LNA, a variety of polymerases have been explored for synthesis
and RT,43 including engineered variants of the polymerases Tgo
(‘‘polC7’’ and ‘‘RT521K’’, respectively)17 and KOD,25,44 although
LNA in selections has thus far been limited to primer
regions45–47 or one LNA nucleotide.25

Combinations of different XNAs in fully synthetic genetic
systems (as demonstrated in ref. 19, 21, 25 and 48) offer a
means to navigate a greater variety of chemical and structural
space, potentially enabling discovery and evolution of more
diverse functional 3D motifs and properties made possible by
interactions between alternative polymer chemistries.49 Here,
we expand the range of mixed-chemistry synthetic genetic
systems using two XNA polymerase blends to efficiently synthe-
sise and reverse transcribe mixtures of LNA and/or 20OMe-RNA.

Beyond sugar modifications, the addition of a variety of side
chains to nucleobases, and the creation of alternative base-
pairs, has proven to be a successful strategy for the expansion
of chemical diversity and function of aptamer and DNAzyme
reagents.50–54 However, their incorporation into selections has
thus far been limited to DNA or RNA backbones. Combining
base and sugar modifications55–57 could conceivably offer a
route to synthetic ligands and catalysts with improved function
in biological contexts. We therefore also sought to explore the
synthesis and reverse transcription of 20OMe-RNA libraries also
bearing a nucleobase modification, 20-O-methyl-N6-methyl-A
aka N6,20-O-dimethyladenosine (m6Am), a natural terminal
modification of eukaryotic mRNA involved in the regulation
of transcript stability.58 m6Am provides a methyl side-chain that
could contribute to formation of hydrophobic paratopes in
aptamers evolved to target proteins of interest by analogy to
nature’s use of m6A RNA modifications as sites for recognition
by epitranscriptome regulatory proteins.59

Typically, synthesis and reverse transcription of XNAs is
assayed by primer extension reactions with short, defined
DNA templates and incorporation of a limited number of
nucleotide analogues. However, to thoroughly evaluate the
suitability of our systems for X-SELEX – in particular for more
sophisticated directed evolution experiments such as aptamer
selections against challenging targets – we examine synthesis
and replication (via cDNA) of longer, diverse-sequence (N40)
XNA libraries and assess yields, library diversity and replication
fidelity following a complete X-SELEX cycle.

Results and discussion

We reasoned that although reactions containing mixtures of
20OMe-RNA and LNA nucleotides would in principle require

Fig. 1 Efficient templated synthesis of pure and mixed-chemistry diverse-
sequence 20OMe-RNA and LNA oligonucleotides. (a) Chemical structures
and (b) nucleoside triphosphate (xNTP) combinations of 20OMe-RNA and
LNA used in the study. (c) Diagram and (d) denaturing acrylamide (PAGE)
and (e) agarose (AAGE) gels showing DNA-templated synthesis of N40 XNA
libraries using the chemistries shown in (b), catalysed by a blend of
engineered XNA polymerases ‘‘pol3M’’ and ‘‘pol6G12[I521L]’’. Primer
extensions were visualised by FITC fluorescence; unlabelled molecular
weight standards (Mwt) were run on the same gels and revealed by staining
with Sybr Gold. Gels are representative of at least three replicate reactions
per chemistry.
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polymerase phenotypes capable of synthesis using both che-
mistries, a polymerase capable of efficiently incorporating one
set of xNTPs could not necessarily be assumed to be capable of
using the other with equal efficiency. Although it has been
possible to identify a set of mutations that enable efficient
synthesis of both chemistries in a single polymerase
scaffold,25,42 there are always trade-offs in efficiency and fidelity
to be considered. Here, we have sought to explore a complementary
approach to optimise synthesis using blends of XNA polymerases
engineered in our labs. Blending polymerases is a well-established
strategy for improving amplification of long or otherwise challen-
ging DNA templates or in problematic reaction conditions.60–62

Screening different combinations of XNA polymerases, we identified
a two-polymerase blend that enabled efficient synthesis of mixtures
of 20OMe-RNA and LNA: pol3M42 and another Tgo variant,
‘‘pol6G12[I521L]’’,18 previously developed for efficient synthesis of
hexitol nucleic acid (HNA) in the absence of Mn2+ (Tgo: V93Q,
D141A, E143A, A485L, I521L, V589A, E609K, I610M, K659Q, E664Q,
Q665P, R668K, D669Q, K671H, K674R, T676R, A681S, L704P,
E730G). We initially screened all single- (each LNA-NTP into
20OMe-NTP mixes) and double-nucleotide combinations (ESI,†
Fig. S1), and identified a set of six xNTP mixes (Fig. 1b) that allowed
efficient DNA-templated full-length synthesis of diverse-sequence
(N40) polymers from 20OMe-RNA primers (Fig. 1c–e) with good
yields (expressed as % of yield with dNTPs (ESI,† Fig. S1)): all-
20OMe (75%); 20OMe-m6A, 20OMe-C, -G, -U (59%); 20OMe-A, -C, -G,
LNA-T (78%); 20OMe-A, -G, LNA-5mC, -T (80%); LNA-A, -T, 20OMe-C,
-G (81%) and all-LNA (94%). Of the combinations explored, only an
LNA purine/20OMe-RNA pyrimidine mix was inefficiently synthe-
sised (ESI,† Fig. S1).

As we and others have previously observed,17 LNA � DNA
template (as well as LNA � LNA inter- and intra-molecular)
hybridisation can be only incompletely denatured by 8 M urea
(and boiling in formamide loading buffer) during polyacryla-
mide gel electrophoresis (Urea-PAGE), resulting in low mobility
species (Fig. 1d). We therefore also analysed samples by alka-
line agarose gel electrophoresis (AAGE) and verified that
synthesised libraries resolved into bands that were indeed bona
fide full-length products (Fig. 1e) (subsequently confirmed by
sequencing). As expected, all libraries were found to be highly
biostable, with minimal degradation observed even after 5 days
at 37 1C in 90% human serum (ESI,† Fig. S2), confirming the
protection against enzymatic degradation afforded by 20OMe-
RNA and LNA is retained in the chimeric polymers.

To benchmark the pol3M/pol6G12[I521L] polymerase blend
against alternative approaches for templated LNA and 20OMe-
RNA synthesis, we compared activity with the recently-
described KOD polymerase variant ‘‘KOD DGLNK’’ specifically
engineered for 20OMe-RNA and LNA synthesis25 (ESI,† Fig. S3).
The blend consistently produced higher yields of pure and
mixed-chemistry LNA and/or 20OMe-RNA N40 libraries than
KOD DGLNK, in particular in the absence of Mn2+ (ESI,†
Fig. S3). We note that it remains possible that this performance
advantage is at least partly due to our use of 20OMe-RNA
primers, which may be disfavoured by the KOD DGLNK
variant.25

Next, we sought to explore reverse transcription of the
20OMe-RNA/LNA libraries. A screen of XNA reverse transcrip-
tases revealed that again a blend of two previously described
RTs, RT-C831 and RT521L17 (Tgo: V93Q, D141A, E143A, A385V,
E429G, F445L, A485L, I521L, K726R), was capable of efficient
synthesis of cDNA templated by N40 libraries composed of all
six 20OMe-RNA and/or LNA combinations (Fig. 2), confirmed by
both directly imaging cDNA (Fig. 2b) and a two-step semi-
nested RT-PCR (Fig. 2a and c), the same amplification strategy
used to generate templates for subsequent X-SELEX cycles.14,15

In contrast to efficient synthesis, reverse transcription from
pure LNA N40 templates (Fig. 2b) was clearly more challenging
(19% cDNA yield) than pure 20OMe-RNA (36% cDNA yield). This
is not unexpected given that RT-C8 was specifically evolved for
20OMe-RNA reverse transcription31 and neither RT-C8 nor
RT521L (identified by screening for activity on templates
composed of HNA),17 had been optimised for LNA RT. How-
ever, the mixed-chemistry libraries prepared using one or two
LNA nucleoside triphosphates (with others 20OMe-NTPs) were
well tolerated (34%, 31% and 30% cDNA yield for the [LNA-T],
[LNA-5mC, -T] and [LNA-A, -T] mixes, respectively) (Fig. 2b), as
was the base-modified 20OMe-N6A-containing mix (25% cDNA
yield) (Fig. 2b). Specific amplicons could be easily obtained in
PCRs templated by cDNA derived from all RT template chemis-
tries (Fig. 2c). Although these yields suggest that XNA RT is the
weakest link in the X-SELEX cycle, all systems nonetheless
compare favourably with yields obtained with DNA-templated
DNA synthesis assessed using Urea-PAGE (64%; ESI,† Fig. S1),
and, as we have explored previously for the full 20OMe-RNA
system,31 outperform previously engineered XNA RTs as well as
commercially available polymerases.

Finally, we sought to confirm whether synthesis and reverse
transcription reactions were indeed occurring in a templated
manner with sufficient fidelity, and to assess whether sequence
diversity (i.e. X-SELEX library quality) is maintained by the
mixed-chemistry synthetic genetic systems. For these experi-
ments, we chose to examine the complete replication cycle – i.e.
the sum of synthesis, reverse transcription and cDNA amplifi-
cation – rather than deconvolute the contributions of the
individual polymerases as this aggregate measurement is a
closer proxy of a full round of X-SELEX, and the performance
of each polymerase has been described elsewhere.17,18,31,42 An
unbiased defined sequence (‘‘Temp25’’) (ESI,† Fig. S4), in
addition to N40 library sequences (Fig. 1 and 2), were therefore
synthesised in each of the six 20OMe-RNA and/or LNA systems,
purified and reversed transcribed, and cDNA amplified to
generate barcoded sequencing libraries for multiplexed deep
sequencing (Fig. 3). RT reactions were primed using a DNA
oligo with a single mismatch design (‘‘XSELEX_RT’’; Fig. 2a and
ESI,† Table S1, Fig. S4a), which ensured sequences analysed
were derived from first-strand cDNA (excluding the possibility
of contaminating DNA template from the XNA synthesis step).

Broadly, library diversity derived from the chemically-
synthesised DNA template oligonucleotide (ESI,† Fig. S5) was
efficiently maintained in all XNA systems (Fig. 3a), indicating a
lack of any major biases in synthesis and reverse transcription.
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In all systems, slight (B5%) overrepresentation of A was
observed (although note that the template DNA N40 oligo was
found to have slightly higher A content as well (ESI,† Fig. S5)),
except when the base-modified 20OMe-N6A was used (Fig. 3a); a
spike in As at the 40th nucleotide derives from single nucleo-
tide deletions in either the template oligo (ESI,† Fig. S5) or
during XNA synthesis, resulting in the 40th position being the
first base of the conserved RT priming site (ESI,† Fig. S4).
Conversely, in the pure LNA system, slight (5–10%) under-
representation of G was observed. It is unclear if these var-
iances are the result of differences in nucleotide analogue
incorporation efficiency during synthesis, or are due to errors
during reverse transcription, although the observation that
nucleotide mixes in which 20OMe-A was substituted for LNA-
A, and/or 20OMe-G for LNA-G were found to show generally
lower synthesis yields than when 20OMe-A and/or 20OMe-G were
used (ESI,† Fig. S1) would suggest that synthesis is the less
efficient step, at least for LNA-G. If so, this may be compensated
for by adjustment of the relative nucleotide analogue concen-
trations, although we did not explore this.

The fidelity of a complete cycle of synthesis and replication
using the pol3M/pol6G12[I521L] and RT-C8/RT521L blends

(and a blend of Taq and the proof-reading polymerase Deep
Vent for DNA amplification) was found to be similar between
the pure 2-OMe-RNA (21.7 � 10�3) and the mixed-chemistry
systems (16.1–26.6 � 10�3) (Fig. 3b and ESI,† Table S2), and
generally comparable to (total X-SELEX cycle) error rates
reported for analogous systems using KOD variants DGLNK
and DLK25 (15.6 � 10�3 for pure 20OMe-RNA, 28.2 � 10�3 for a
mixed [2-OMe-A, -C, -G, LNA-T] system).

Interestingly, the mix containing both LNA-A and LNA-T,
and the pure LNA system were found to have the lowest total
error (16.1 � 10�3 and 7.05 � 10�3, respectively) (Fig. 3b and
ESI,† Table S2). As this seemed remarkably low (comparable to
a Tgo DNA-only system17 (5.74 � 10�3), and lower than the
analogous KOD variant system25 (14.0 � 10�3)), we also verified
the fidelity of the pure LNA system by cloning and Sanger
sequencing amplicons from the first step ‘out-nest’ PCR (rather
than generating Illumina sequencing libraries) and obtained a
similar total error (B7.5 � 10�3) (ESI,† Fig. S6).

The error profiles per base (Fig. 3c) suggest that, in the
mixed-chemistry systems, misincorporation of As or Ts, and in
particular A - T transversions, appear to be the dominant
source of error. This is somewhat puzzling given the apparent

Fig. 2 Efficient reverse transcription of pure and mixed-chemistry diverse-sequence 20OMe-RNA and LNA oligonucleotides. (a) Diagram showing
strategies for assessment of XNA RT reactions. (b) Urea-PAGE gel showing XNA-templated (FITC, green) cDNA synthesis (Cy5, red). (c) Agarose gels
showing amplification of cDNA by RT-PCR. Gels are representative of at least three replicate reactions per chemistry. RTs were catalysed by a blend of
engineered XNA polymerases ‘‘RT-C8’’ and ‘‘RT521L’’ primed either by (a)(1a) a Cy5 fluorophore-labelled DNA primer (‘Test’ RT) in order to directly
visualise cDNA synthesis (b), or alternatively RTs were primed by (a)(1b) a biotinylated DNA primer (‘X-SELEX’ RT) enabling purification of cDNA and
amplification (c) via a two-step PCR strategy: firstly (a)(2) an ‘out-nested’ PCR dependent on a reverse primer site derived from the X-SELEX_RT primer
generates templates for, secondly, either (a)(3a) a PCR to generate sequencing libraries preserving a diagnostic mismatched base derived from the RT
primer, or instead (a)(3b) an ‘in-nested’ PCR that regenerates the XNA synthesis template (although here is used only as a proof-of-concept
demonstration).
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overrepresentation of As observed in the N40 sequences (Fig. 3a)
and the apparent efficiency of synthesis of mixes containing
20OMe-A (ESI,† Fig. S1). However, a possible explanation could
be the prevalence of AA dinucleotides (6 instances) and one AAA
trinucleotide in the defined Temp25 sequence used for error
analysis, which may be more challenging for 20OMe-RNA
systems than single incorporations. As these mixes also contain
LNA-T, which appears to be easily incorporated (enabling the
highest yields in single-LNA-nucleotide 20OMe-RNA mixes
(ESI,† Fig. S1)), presumably pausing at the di- and trinucleotide
positions then raises the incidence of LNA-T � dT mismatches
(which appears not to be the case if 20OMe-U is used instead,
except in the system using 20OMe-N6-Me-A, which is presum-
ably more challenging than 20OMe-A). Indeed, we find that the
highest incidences of errors occur at AA(A) positions in the
20OMe-RNA/LNA mixes (ESI,† Table S3). Replacement of 20OMe-
A with LNA-A, as in the [LNA-A,-T, 20OMe-C-G] mix, obviates this
source of error and produces the highest fidelity mixed-
chemistry system (Fig. 3b, c and ESI,† Tables S2, S3).

In the pure LNA system, by contrast, A and T misincorpora-
tions are not a major source of errors (Fig. 3c). Likewise, we find
no evidence of common (A - G/C - T) errors, which occur
with the KOD variant LNA system presumably due to the
increased stability of LNA x DNA wobble pairs (dT � LNA-G
and/or dG � LNA-T)25 (although we cannot rule out that these
may be responsible for reduced efficiency of LNA-G incorpora-
tion during synthesis, resulting in the underrepresentation of G
observed in the all-LNA library (Fig. 3a)). However, a commonly

overlooked caveat with such error analyses is the exclusion of
early-terminated cDNA. Stalling during reverse transcription
appears to occur more frequently with pure LNA templates
than the mixed-chemistry or 20OMe-RNA templates (Fig. 2b and
ESI,† Fig. S4c), resulting in cDNA that lacks the forward prim-
ing site and therefore fails to be amplified, sequenced and
included in the analysis. It cannot therefore be ruled out that
such errors do occur in our system, but do not propagate
through the replication cycle. The error rates as measured
nonetheless bode well for allowing enrichment of functional
sequences in X-SELEX experiments, provided selection steps
yield sufficient XNA templates to overcome the reduced reverse
transcription efficiency; indeed, as we report elsewhere, func-
tional biostable oligonucleotides (‘20OMezyme’ catalysts) could
be readily evolved from an all-20OMe-RNA system (using pol3M
or a functionally similar variant pol2M for synthesis, and RT-C8
for reverse transcription).42

Conclusions

Using blends of previously engineered XNA polymerases, we
have established a series of synthetic genetic systems based on
mixtures of 20OMe-RNA and LNA. We report the efficient
synthesis and (indirect) replication of diverse-sequence oligo-
nucleotide analogue libraries without major biases in incor-
poration or reverse transcription. All systems show similar
efficiency and fidelity as an all-20OMe-RNA system, which we

Fig. 3 Pure and mixed-chemistry 20OMe-RNA and LNA synthetic genetic systems enable synthesis and replication of biostable oligonucleotide libraries
without substantial biases or loss of library diversity. Graphs show (a) diversity of N40 libraries (DNA shown in ESI† Fig. S5), and (b) aggregate error and
(c) errors per base following a full cycle of synthesis of pure and mixed-chemistry 20OMe-RNA and LNA oligonucleotides, reverse transcription and cDNA
amplification (DNA - XNA - DNA - DNA sequenced). See also ESI† Tables S2 and S3 for further breakdown of errors and numbers of sequences
analysed.
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have already successfully used to select 20OMezymes,42 and our data
suggest that systems in which 20OMe-NTPs are substituted by one
(LNA-T), two (LNA-A,-T) or all four LNA-NTPs offer further improve-
ments. We provide a key proof-of-concept of a system bearing both
sugar and nucleobase modifications, suggesting that selections for
biostable functional oligos with expanded base chemistry are
feasible using commercially available nucleotides (20OMe-N6-
methyl-ATP, 20OMe-CTP, -GTP and -UTP), paving the way for
development of XNA selection systems with more elaborate side
chains.

The establishment of a variety of XNA systems based on
highly biostable chemistries offers promising platform tech-
nologies for the development of a wide range of biostable
functional oligonucleotides for diagnostic and therapeutic
applications in vivo.63,64 The use of oligo libraries fully resistant
to serum nucleases minimises or abolishes the need to apply
extensive post-selection modifications to prepare resulting
functional oligonucleotides for in vivo applications (which can
negatively affect activity), and enhances the prospects for
selections in more realistic biological settings: in live cell or
organoid culture or even in whole animals.65 Excitingly, such
approaches may offer the prospect of selections for aptamers
capable of cell- or organ-specific delivery, and could enable
direct screening for modulators of biological phenotype, a
crucial approach in the immunoglobulin antibody discovery
pipeline,66 but which has yet to be implemented for oligo-
nucleotide aptamers and catalysts.
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