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Propulsion of an elastic filament in a
shear-thinning fluid

Ke Qin, a Zhiwei Peng, b Ye Chen,a Herve Nganguia, c Lailai Zhu d and
On Shun Pak *a

Some micro-organisms and artificial micro-swimmers propel at low Reynolds numbers (Re) via the interaction

of their flexible appendages with the surrounding fluid. While their locomotion has been extensively studied

with a Newtonian fluid assumption, in realistic biological environments these micro-swimmers invariably

encounter rheologically complex fluids. In particular, many biological fluids such as blood and different types

of mucus have shear-thinning viscosities. The influence of this ubiquitous non-Newtonian rheology on the

performance of flexible swimmers remains largely unknown. Here, we present a first study to examine how

shear-thinning rheology alters the fluid-structure interaction and hence the propulsion performance of elastic

swimmers at low Re. Via a simple elastic swimmer actuated magnetically, we demonstrate that shear-thinning

rheology can either enhance or hinder elastohydrodynamic propulsion, depending on the intricate interplay

between elastic and viscous forces as well as the magnetic actuation. We also use a reduced-order model

to elucidate the mechanisms underlying the enhanced and hindered propulsion observed in different physical

regimes. These results and improved understanding could guide the design of flexible micro-swimmers in

non-Newtonian fluids.

1 Introduction

Locomotion of micro-swimmers has attracted considerable atten-
tion in the past several decades.1–3 These cross-disciplinary efforts
have led to not only a better understanding of cell motility in
various biological processes4–7 but also design principles that
guide the recent development of artificial micro-swimmers.8–12

These artificial micro-swimmers demonstrate vast potential
for biomedical applications such as drug delivery and micro-
surgery.13–15 A fundamental challenge of swimming at the micro-
scopic scale is the dominance of the viscous force over the inertial
force. In this low-Reynolds number regime, the flow exhibits
kinematic reversibility, which renders the reciprocal motion
(a deformation with time-reversal symmetry) ineffective for self-
propulsion as stated by Purcell’s scallop theorem.16 For instance,
while the periodic opening and closing motion of a scallop’s shell
or the flapping motion of a rigid body are effective macroscopic
propulsion strategies, such a reciprocal motion cannot generate
any net translation in a purely viscous fluid at the microscopic

scale. To overcome the constraints by the scallop theorem, some
microorganisms exploit one or more flexible, slender appendages
(called flagella) to produce non-reciprocal deformations along
their flagella for self-propulsion.1,4 Inspired by flagellar beating,
artificial flexible swimmers consisting of magnetic particles and
DNA,17,18 nanowires,19,20 hydrogels,21 and other polymers22,23

have been developed. Propulsion of these flexible structures,
also known as elastohydrodynamic propulsion,24–34 emerges as a
result of the interplay between hydrodynamic and elastic forces.
More recent studies have examined factors such as variable
bending stiffness,18,35 intrinsic curvatures,36–38 and magnetic
particle geometries39 to enhance elastohydrodynamic propulsion.

While low-Reynolds-number locomotion is relatively well
studied with a Newtonian fluid assumption, biological and
artificial micro-swimmers invariably encounter complex (non-
Newtonian) fluids in their natural habitats and operating environ-
ments. These biological fluids often display complex rheological
properties such as viscoelasticity and shear-thinning viscosity.40

While locomotion in viscoelastic fluids has been extensively
studied,41,42 including the effect of viscoelasticity on flexible
swimmers,32,43–47 the effect of shear-thinning rheology has been
largely overlooked until more recently. A shear-thinning fluid
loses its viscosity with increased shear rates due to changes in
the fluid microstructure. Various theoretical and experimental
models, including waving sheets,48–50 squirmers,51,52 rotating
helices,53,54 and nematodes,55–57 among others,51,58–60 have
revealed scenarios where the swimming speed can increase,
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decrease, or remain unchanged in a shear-thinning fluid relative
to that in a Newtonian fluid. Although a wide variety of swimmer
models considered in previous studies demonstrate the pro-
found effects of shear-thinning rheology on locomotion, the
shape and swimming gaits of these swimmers are prescribed
and fixed. How shear-thinning rheology affects the performance
of flexible swimmers, whose shapes and gaits are not known
a priori but emerge as a result of fluid–structure interactions,
remains largely unknown. A list of questions of both funda-
mental importance and practical significance remain unan-
swered: how does shear-thinning rheology affect the shape and
gait of an elastic swimmer? Do they swim faster or slower in a
shear-thinning fluid? What are the mechanisms underlying any
enhancement or hindrance of propulsion? How should artificial
flexible propellers be designed to maximize their propulsion
performance in a shear-thinning fluid? An improved under-
standing of elastohydrodynamic propulsion in shear-thinning
fluids will not only guide the design of this major class of
artificial micro-swimmers, but also shed light on how micro-
organisms may adapt to rheologically complex fluids by better
exploiting the fluid–structure interaction for locomotion.

In this work, we present a first study on the effect of shear-
thinning rheology on elastohydrodynamic propulsion via a simple
yet representative elastic swimmer actuated by an external magnetic
field. We note that shear-thinning rheology can induce both local
and non-local effects on locomotion.61 The local effect corresponds
to the reduction of fluid viscosity due to the increased local shear
rates, whereas the non-local effect is concerned with a change in the
flow field around the swimmer.50,53,61 As a first step, we focus only
on the local effect in this work by adopting a local drag model
recently proposed by Riley and Lauga,61 which is effective in
capturing the main physical features of swimming in a shear-
thinning fluid. The local drag model is based on the Carreau
constitutive equation,40 which was shown to describe well the
rheological measurements of various biological fluids such as
blood,62,63 bile,64 and lung and cervical mucus.49 We will utilize
this framework to fill in the gap of missing knowledge on
elastohydrodynamic propulsion in a shear-thinning fluid.

The paper is organized as follows. In Section 2 we introduce the
model elastic swimmer and formulate the equations governing its
elastohydrodynamics in a shear-thinning fluid. In Section 3,
we contrast the propulsion performance in a Newtonian fluid
(Section 3.1) with that in a shear-thinning fluid (Section 3.2). We
also use a reduced-order model in Section 3.3 to further elucidate
the essential physics underlying the observed propulsion character-
istics in different physical regimes. Finally, we conclude this work
with remarks on the limitations and future directions in Section 4.

2 Problem formulation
2.1 Elastic force

We consider an elastic and inextensible filament of radius a and
length L, and assume the filament to be slender, a { L. The
position vector of a material point of the filament neutral line in
the laboratory frame is denoted as x(s,t), where t represents the

time and s A [0,L] is the arclength along the filament. We consider
the motion of the filament confined in the x–y plane spanned by
the basis vectors ex and ey, with ez = ex� ey. The local unit tangent
and normal vectors along the filament are defined as t = xs =
coscex + sincey and n = ez � t, where c(s,t) is the angle between
the tangent vector t and ex (Fig. 1). The subscript s here denotes
differentiation with respect to the arclength.

We model the elastic filament as an Euler–Bernoulli beam
with an energy functional,65,66

E ¼ 1

2

ðL
0

Ak2dsþ 1

2

ðL
0

s xs � xs � 1ð Þds; (1)

where A is the bending stiffness, k = xss�n = cs is the local
curvature, and s(s,t) is the Lagrange multiplier enforcing the
local inextensibility condition, xs�xs = 1. The elastic force density
along the filament is obtained by a variational derivative,

fe = �dE/dx = �qs[Aksn � tt], (2)

where t = s + Ak2 represents the tensile force along the filament.
The elastic force density emerging in both normal and tangential
directions acts to restore the deformed filament into its unde-
formed configuration (i.e., a straight filament). We remark that
both bending and inextensibility of the filament contribute to the
normal and tensile elastic force.25,65,66 As a first step, we consider
in this work the Euler–Bernoulli beam theory, which does not
account for shear and is expected to be less accurate with a large
bending displacement. Other geometrically nonlinear rod the-
ories that allow for large displacements (e.g., Kirchhoff’s rod
theory) or other modes of deformation (e.g., Cosserat-type rod
theories)67,68 may be used to extend the present model.

2.2 Fluid force

At low Reynolds number, the hydrodynamic force density along a
slender filament fh depends only on the local velocity u in a
Newtonian fluid to leading order as described by the local resistive
force theory (RFT).69,70 Riley and Lauga61 proposed a modified
RFT for locomotion of slender bodies in a shear-thinning fluid as

fh = �RC(x>nn + x8tt)�u, (3)

Fig. 1 Schematic diagram and notation of a model swimmer consisting of
an elastic filament with a prescribed magnetic moment m at one of its
ends (s = L). Here we examine the effect of shear-thinning rheology on the
propulsion of the elastic swimmer under an external magnetic field B.
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where u = xt, and x8 = 2pZ0/[ln(L/a) � 1/2] and x> = 4pZ0/[ln(L/a)
+ 1/2] are given by classical RFT results in a Newtonian fluid
with dynamic viscosity Z0. Here RC is a correction factor
accounting for the local shear-thinning effect based on the
Carreau constitutive model40,61

RC = [1 + (lC _gavg)2](n�1)/2, (4)

where 1/lC represents a critical shear rate beyond which the
non-Newtonian behavior becomes significant, n is the shear-
thinning index, and the local average shear rate _gavg is given by

_gavg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x?2u?2 þ 2xk2uk2

q
2
ffiffiffi
2
p

apZ0
: (5)

In general, the tangential (u8 = u�t) and normal (u> = u�n)
velocity components and hence the local shear rate vary along a
deforming filament. The hydrodynamic force density fh is there-
fore modified by the spatially and temporally varying correction
factor RC. Riley and Lauga61 showed that such modifications cause
undulatory swimmers with a prescribed shape to swim slower in a
shear-thinning fluid than in a Newtonian fluid. Here we adopt the
modified RFT to examine the effect of shear-thinning rheology on
the propulsion of a flexible filament, whose shapes are not known
a priori but emerge as a result of the interaction between the
deforming filament and its surrounding fluid.

2.3 Force balance

Neglecting the inertia of the filament and its surrounding fluid,
there is a local balance between the viscous and elastic forces,
fh + fe = 0. The force balance can be inverted as xt = [nn/(RCx>) +
tt/(RCx8)]�fe, which in terms of the angle formulation is given by

xt ¼
1

RCx?
ð�Acsss þ cstÞnþ

1

RCxk
ðAcscss þ tsÞt: (6)

Differentiating eqn (6) with respect to the arc-length s,
together with the local inextensibility condition, the normal and
tangential components of the resulting equation are, respectively,
given by

ct ¼
1

x?
@s

1

RC
ð�Acsss þ cstÞ

� �
þ 1

RCxk
Acs

2css þ csts
� �

; (7)

0 ¼ 1

RCx?
ðAcscsss � cs

2tÞ þ 1

xk
@s

1

RC
Acscss þ tsð Þ

� �
; (8)

which can be solved for the tangent angle c(s,t) and tensile force
t(s,t). Here the shear-thinning correction factor RC depends on the
local velocity components based on eqn (4) and (5). Since u = xt,
the local velocity components can be expressed via eqn (6) as

uk ¼
1

RCxk
ðAcscss þ tsÞ; u? ¼

1

RCx?
ð�Acsss þ cstÞ; (9)

in terms of RC(u8,u>), which depends also on the local velocity
components. The correction factor RC therefore can be determined
implicitly as part of the solution to the coupled system of equa-
tions above. In the Newtonian limit (RC = 1) the above coupled

nonlinear partial differential equations reduce to the governing
equations in the Stokesian limit.18

2.4 Magnetic actuation

To actuate the swimmer magnetically, we impose a typical
external magnetic field B = Bxex + Bysinotey = bex + blsinotey

employed in previous studies.17,71–73 The magnetic field consists
of a homogeneous static field of strength b in the x-direction and
a sinusoidal field of amplitude bl and frequency o in the y-direc-
tion; here l = By/Bx compares the magnitude of the sinusoidal field
to that of the homogeneous static field. The resulting uniform
magnetic field B therefore oscillates around the x-axis. We con-
sider a simple model swimmer consisting of an elastic filament
with a magnetic moment m = mt(s = L,t) of strength m prescribed
at the right end of the filament in the tangential direction (see
Fig. 1 for the setup), where t(s = L,t) = cosc(s = L,t)ex + sinc(s =
L,t)ey. The uniform external magnetic field thus exerts no net force
but a magnetic torque Tm = m� B = Tmez = mb[lcosc(s = L,t)sinot�
sinc(s = L,t)]ez at the right end (s = L) of the filament, whose
boundary conditions are given by

Fext(L,t) = t(L,t)t � Acss(L,t)n = 0, (10)

Text(L,t) = Acs(L,t) = Tm. (11)

At the other end (s = 0), the filament is free of force and
torque:

Fext(0,t) = �t(0,t)t + Acss(0,t)n = 0, Text(0,t) = �Acs(0,t) = 0.
(12)

2.5 Non-dimensionalization

We non-dimensionalize lengths by L, time by 1/o, and forces by
L2x>o. We use the same notations for the corresponding dimen-
sionless variables but with tildes (B). The governing equations,
eqn (7) and (8), in dimensionless forms are given by

Sp4c~t ¼ @~s
1

RC
ð�c~s~s~s þ Sp4c~s~tÞ

� �
þ g
RC
ðc~s

2c~s~s þ Sp4c~s~t~sÞ;

(13)

0 ¼ 1

RC
ðc~sc~s~s~s � Sp4c~s

2~tÞ þ g@~s
1

RC
ðc~sc~s~s þ Sp4~t~sÞ

� �
; (14)

where

RC ¼ 1þ Cu2e_gavg2� �ðn�1Þ=2
: (15)

Here Sp = L(x>o/A)1/4 is the sperm number comparing the
magnitude of the viscous to elastic forces, Cu = olC is the Carreau
number comparing the actuation rate o with the critical shear
rate 1/lC, and g = x>/x8 is the drag anisotropy ratio. As a remark,
the modified RFT in a shear-thinning fluid is valid for fluids with
sufficiently large critical shear rates (1/lC) in order to be consistent
with the local nature of the model. We therefore confine our
studies only to the dynamics in the low Carreau number regime
(Cu r 0.1) in this work. Considering an artificial flexible swimmer
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with an actuation frequency of O(1 Hz),43 a Cu of 0.1 limits the
shear-thinning time scale lC to be O(0.01 s). In practice, we expect
Cu to be O(1) or higher, given larger actuation frequency and lC

(e.g., lC can range from a tenth of a second to seconds for
blood62,63 or larger for other biological fluids49,64). Nevertheless,
in the same spirit of other low Cu analyses,49,61,74,75 results in the
low Cu regime will reveal the first effects of shear-thinning
rheology assuming small departures from the Newtonian limit.
The physical insights and qualitative features obtained may be
useful in interpreting results at higher Cu as suggested by recent
studies.50,52,54

At the actuated end (s̃ = 1), the dimensionless boundary
conditions for c and ~t are given by

cs̃(1,t̃) = MSp4[lcosc(1,t̃)sin t̃ � sinc(1,t̃)], cs̃s̃(1,t̃) = 0, ~t(1,t̃) = 0,
(16)

where M = mb/(L3x>o) compares the magnetic to viscous
torques. For instance, a typical magnetic torque in previous
experiments with magnetic nanowire swimmers19,20 is given by
mb = Msam

2pLmb, where Ms = 485 � 103 A m�1 is the sponta-
neous magnetization of Ni, am = 100 nm and Lm = 2 mm are,
respectively, the radius and length of the Ni segment, and
b = O(1 mT) is the magnetic field strength. The characteristic
viscous torque acting on the elastic filament is given by L3x>o,
where Z0 = 10�3 Pa s, a = 50 nm and L = 4 mm. With an actuation
frequency f of O(1 Hz)–O(10 Hz), M is typically of O(1) or higher.
The value of M can vary substantially depending on the applied
magnetic field strength b, but a relatively strong magnetic field
(M Z 1) is typically applied such that the magnetic segment can
follow the magnetic field synchronously [see also Fig. 3(b) in
later discussion].

The dimensionless boundary conditions at the free end (s̃ = 0)
are given by

cs̃(0,t̃) = 0, cs̃s̃(0,t̃) = 0, ~t(0,t̃) = 0. (17)

Hereafter we drop the tildes for simplicity and only work with
dimensionless variables unless otherwise stated.

We solve the coupled system of nonlinear partial differential
equations, eqn (13)–(15), subject to the boundary conditions,
eqn (16) and (17) numerically. The numerical simulations are
conducted by a finite element method (FEM) based on COMSOL
Multiphysics. A backward differentiation formulation is used
for time marching the equations. We use 50 to 100 seventh-order
Hermite elements to discretize the filament depending on the value
of Sp, and a direct solver for solving the linear systems. The
computational model is cross-validated against results in the New-
tonian limit (Cu = 0) based on a multi-link framework (see Section
3.1 and Appendix for details).

3 Results and discussion

In this section, we will first discuss the propulsion characteristics of
the magnetically actuated flexible filament in a Newtonian fluid
(Section 3.1). In Section 3.2, we examine how shear-thinning
rheology affects the propulsion performance depending on relevant

dimensionless groups. Finally, we use a reduced-order model to
further elucidate the mechanism underlying the observed pro-
pulsion behaviors in Section 3.3.

3.1 Elastohydrodynamic propulsion in a Newtonian fluid

The displacement and shape of the filament xðs; tÞ ¼ xð0; tÞ þÐ s
0 coscðs0; tÞ; sincðs0; tÞ½ �ds0 can be obtained from the solution

for c(s,t) determined in Section 2. We characterize the propul-
sion performance of the filament by an average swimming
speed hVi = |Dx|/(2p), defined as the magnitude of the fila-
ment’s mid-point (s = 1/2) displacement Dx = x(1/2,t0 + 2p) �
x(1/2,t0) in a period of actuation (2p) divided by the period,
where t0 is a sufficiently large time chosen in each simulation
such that the displacement per period Dx has approached a
steady state. First, we examine the elastohydrodynamic propul-
sion performance of the filament in a Newtonian fluid (Cu = 0)
at different regimes of Sp in Fig. 2. The numerical results based
on FEM (black triangles) are compared against the results
based on a multi-link model (gray inverted triangles; see
Appendix); the results by these two different approaches display
excellent agreement.

The dynamics of a flexible filament in a Newtonian fluid in
different regimes of Sp has been characterized in previous
studies.17,19,24,29,76 Despite differences in various configura-
tions, the elastohydrodynamic propulsion mechanisms display
similar general characteristics as a function of Sp. We illustrate
these characteristics with our model swimmer: at low Sp
(e.g., Sp = 0.5), the filament is relatively too stiff to undergo
significant deformation along the filament; the filament thus
behaves largely like a rigid rod performing reciprocal motion
[inset, Fig. 2(a)], which leads to ineffective propulsion as con-
strained by the scallop theorem. As Sp increases, the deformation
of the filament enhances its propulsion speed, which reaches a
maximum at Sp E 2.4 [see the corresponding filament deforma-
tions in Fig. 2(a) inset]. At exceedingly large Sp (e.g., Sp = 10),
the filament becomes too soft and hence the deformation is
largely localized around the actuated end, as shown in the inset
[Fig. 2(a)]; here a large portion of the filament remains horizontal
throughout the actuation, which leads to minimal propulsion.
A typical swimming trajectory of the filament at Sp = 2 is shown in
Fig. 2(c) for the Newtonian case (Cu = 0, black solid line). The
filament follows an oscillatory trajectory with net translation in
the x-direction.

It is noteworthy that the filament becomes effectively more
flexible as Sp increases, which could lead to large deformations
that may not be captured quantitatively by the Euler–Bernoulli
beam model. Although previous predictions based on the beam
model show quantitative agreement with experimental measure-
ments over the experimentally relevant range of Sp,17,19,76 future
investigations based on geometrically nonlinear rod theories can
be considered to address these limitations.67,68

3.2 Elastohydrodynamic propulsion in a shear-thinning fluid

We next examine how shear-thinning rheology affects the pro-
pulsion of the same elastic filament. When the fluid becomes
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shear-thinning, the local shear-thinning effect can impact the
propulsion performance via two different mechanisms. First,
given the same shapes and gaits of a swimmer, the local viscosity
reduction can still modify the drag and thrust by different
amounts, resulting in different propulsion speeds. Such an effect
was shown to cause undulatory swimmers with prescribed
shapes and gaits to swim slower in a shear-thinning fluid than
in a Newtonian fluid.61 The second mechanism, specific to
deformable swimmers, is the modification of the shape and gait
of the swimmer induced by shear-thinning rheology. Unlike
swimmers with prescribed shapes and gaits, the shape and gait
of a flexible swimmer are not known a priori but emerge from the
interaction between the elastic structure and its surrounding
fluid. The shear-thinning viscosity modifies the fluid–structure
interaction along the elastic structure (in a non-uniform manner
generally) and hence the propulsion performance of the swimmer.
In Fig. 2, we depart from the Newtonian limit (Cu = 0) by
increasing the value of Cu to probe the effect of shear-thinning
rheology on the propulsion speed of the magnetically actuated
filament. The propulsion speed as a function of Sp at varying

values of Cu is shown in Fig. 2(a) and (d) under, respectively,
relatively strong and weak magnetic torques, M.

Under a relatively strong magnetic torque (e.g., M = 1), the
propulsion speed generally decreases as the fluid becomes
shear-thinning (increasing value of Cu) at most Sp, as shown in
Fig. 2(a). This reduction is more substantial at lower Sp (e.g., Sp = 2).
Although shear-thinning rheology was shown to reduce the swim-
ming speed for undulatory swimmers of prescribed shapes
previously,61 the mechanism underlying the observed reduction
here is more complex, because shear-thinning rheology also alters
the shape and gait of the swimmer. We visualize the shape of the
filament at different time instances in Fig. 2(b), contrasting the
deformation in a Newtonian fluid (Cu = 0) with that in a shear-
thinning fluid (Cu = 0.1). At Sp = 2, it is apparent that the filament
displays less deformation in a shear-thinning fluid than in a New-
tonian fluid. In Fig. 2(c), we also compare the swimming trajectories
of the filament in a Newtonian (solid black line) and shear-thinning
(solid green line) fluids at Sp = 2. While the oscillatory trajectories
display similar amplitudes in the y-direction, the net translation in
the x-direction is substantially reduced at this Sp.

Fig. 2 Propulsion of a magnetically driven elastic filament in a shear-thinning fluid under a relatively strong [M = 1, panels (a)–(c)] and weak [M = 0.02,
panels (d)–(f)] magnetic torques with l = 1. (a) and (d) Average propulsion speed hVi of the filament as a function of the sperm number (Sp) for varying
Carreau number (Cu). The numerical results based on finite element method (FEM) simulations are compared against the results based on the multi-link
model (see Appendix) with 100 links in the Newtonian limit (gray inverted triangles). Insets in (a) display filament deformations over one actuation period
T = 2p at equal time intervals (T/4) in the Newtonian limit at various Sp. While the filament generally propels slower in a shear-thinning fluid at most Sp
under a strong magnetic torque [M = 1, panel (a)], a small enhancement in the propulsion speed can also occur under a relatively weak magnetic torque
[M = 0.02, panel (d)]. (b) and (e) Filament deformations over one actuation period T = 2p at equal time intervals (T/4) in Newtonian and shear-thinning
fluids at different Sp; the intensity of color increases as time advances. (c) and (f) The trajectory of the filament’s actuated end in Newtonian (solid black,
Cu = 0) and shear-thinning (solid green, Cu = 0.1) fluids at Sp = 2 in the first six periods. We set a/L = 1/1000 and a shear-thinning index n = 0.25 in all
simulations in this work.
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Although the elastic filament generally propels slower in a
shear-thinning fluid under a relatively strong magnetic torque
in Fig. 2(a)–(c), we demonstrate in Fig. 2(d)–(f) that shear-
thinning rheology can also enhance propulsion under weaker
magnetic torques (e.g., M = 0.02). As shown in Fig. 2(d), whether
shear-thinning rheology enhances or hinders propulsion also
depends on the value of Sp. At lower Sp (e.g., Sp t 3), enhanced
propulsion in a shear-thinning fluid is observed, whereas
hindered propulsion occurs at higher Sp. Similar to the results
in Fig. 2(b), we visualize the shape of the filament at different
time instants in a Newtonian and shear-thinning fluids in
Fig. 2(e). At Sp = 2, it is apparent that the filament displays a
greater range of angular movements in a shear-thinning fluid
than in a Newtonian fluid. We also contrast the swimming
trajectory at Sp = 2 in a Newtonian fluid (solid black line) with
that in a shear-thinning fluid (solid green line) in Fig. 2(f).
Unlike the trajectories under a relatively strong magnetic
torque shown in in Fig. 2(c), which display similar oscillatory
amplitudes, the trajectory of the filament in a shear-thinning
fluid has a substantially larger amplitude compared with that

in a Newtonian fluid under a relatively weak magnetic torque as
shown in in Fig. 2(f).

Taken together, shear-thinning rheology can either increase
or decrease the propulsion speed of a flexible swimmer, depending
on the specific values of M and Sp. This is unlike the case of
undulatory swimmers with prescribed gaits in a shear-thinning
fluid,61 where the swimming speeds are systematically lowered.
Our observations here thus highlight the effect of gait changes of
a flexible swimmer in a shear-thinning fluid (i.e., the second
mechanism referred to above) on the propulsion performance.
We will further elucidate these results with the use of a reduced-
order model in Section 3.3.

3.3 Reduced-order modeling: a two-link model

To better unravel the essential physics underlying elastohydro-
dynamic propulsion in a shear-thinning fluid, we seek a minimal
model reproducing the enhanced and hindered propulsion
performance observed in Section 3.2. Specifically, we replace the
elastic filament by two rigid links (each of length L/2) connected by
a torsional spring with an elastic spring constant k [see Fig. 3(a) for

Fig. 3 Reduced-order modeling of elastohydrodynamic propulsion. (a) The elastic filament in Fig. 1 is represented by a minimal model consisting of two
rigid links connected by a torsional spring. (b) The amplitude of the angle of the actuated link (link 2), ŷ2, as a function of the relative strength of the
magnetic torque, M, at different values of l = By/Bx in a Newtonian fluid with K = 0.1. The amplitude ŷ2 increases with M before leveling off to the
maximum value tan�1l set by the external magnetic field at larger values of M. (c) and (d) The shape of the two-link swimmer over one actuation period
T = 2p at equal time intervals (T/4) in a Newtonian fluid; the intensity of color increases as time advances. The dotted lines in (c) and (d) represent the
external magnetic field B and the angle spanned by its oscillation for l = 1. At low M [e.g., M = 0.02 in (c)], the actuated link spans an angle smaller than
that spanned by the external magnetic field, ŷ2 o tan�1l = p/4. At a large M [e.g., M = 1 in (d)], the actuated link follows closely the external magnetic field
and attains the same angle spanned by the external magnetic field, ŷ2 o tan�1l = p/4.
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the setup].73,77 We specify the position of the i-th link (i = 1, 2) by
the position vector of its left end xi = xiex + yiey and its orientation
by the angle yi made between its tangent ti = cosyiex + sinyiey and
ex. The position of any point on the i-th link can then be simply
given by Xi(s,t) = xi + sti, where s A [0,L/2] is the length along each
link. Similar to the original setup (Fig. 1), the same magnetic
moment m is prescribed at the right end of link 2 and the left end
of link 1 is free of force and torque. Under the same external
magnetic field B, we probe the propulsion characteristic of this
minimal elastic swimmer in a shear-thinning fluid in this section.

We consistently use the same non-dimensionalizations
described in Section 2.5 to scale lengths, time, and forces in
this reduced-order model. Hereafter we shall work with dimen-
sionless variables only while adopting the same notations for
their dimensionless counterparts for convenience. Instead of
Sp for a continuous elastic filament, a dimensionless spring
constant K = k/(L3x>o), which compares the elastic to viscous
torques, emerges in this two-link model. Here we note that the
dimensionless spring constant K plays a physically similar
(but inverse) role to Sp in a continuous filament as shown in
Fig. 2. The dynamics of the two-link swimmer is governed by
the balance of forces,

Fh
1 + Fh

2 = 0, (18)

and torques (only non-zero in the z-direction),

Th
1,1 + Th

2,1 + Tm = 0, (19)

of the overall swimmer, together with the torque balance on the
actuated link (link 2),

Th
2,2 + Te + Tm = 0. (20)

Here Tm = M(lcos y2sin t � sin y2)ez is the external magnetic
torque, Fh

i ¼
Ð 1=2
0

fhðXiÞds is the hydrodynamic force acting on

the i-th link, Th
i;j ¼

Ð 1=2
0 ðXi � xjÞ � fhðXiÞds is the hydrodynamic

torque generated by the i-th link about the left end of the j-th
link (xj), and Te =�KDyez is the elastic torque from the torsional
spring. With the kinematic constraints x2 = x1 + (cos y1)/2 and
y2 = y1 + (sin y1)/2, the system of four scalar first-order differ-
ential equations [eqn (18)–(20)] are solved numerically for four
unknowns x1(t), y1(t), y1(t), and y2(t), which completely describe
the position and shape of the two-link swimmer with time.

The distinct effects of shear-thinning rheology on the pro-
pulsion performance under strong and weak magnetic torques
revealed in Fig. 2 can be better understood by examining the
response of the two-link swimmer to the magnetic actuation. In
this two-link model [Fig. 3(a)], the actuation comes from link 2
attempting to follow the external magnetic field (characterized
by the angle y2), whereas link 1 responds elastically to the
actuation via the torsional spring (characterized by the relative
angle Dy = y2 � y1). The propulsion behavior of the two-link
swimmer can be described in terms of the amplitude of the

angles ŷ2 = max(y2) and cDy ¼ maxðDyÞ. Therefore, understanding
the effect of shear-thinning rheology on elastohydrodynamic

propulsion can be reduced to elucidating how ŷ2 and cDy are
modified in a shear-thinning fluid in various scenarios.

The maximum angle ŷ2 spanned by the actuated link (link 2)
under the oscillating magnetic field largely depends on the
relative strength of the magnetic torque, M. We first examine
this dependence in a Newtonian fluid in Fig. 3(b). At low M, the

amplitude ŷ2 increases with M before leveling off to the maximum
angle (tan�1l) set by the external magnetic field (l = By/Bx) at large
M Z 1. For instance, Fig. 3(c) displays the time evolution of a two-
link swimmer under a weak magnetic torque (M = 0.02 and l = 1),
where the actuated link spans an angle much smaller than tan�1l =
p/4; essentially, the magnetic torque is relatively too weak to
actuate the link fast enough to follow closely the oscillatory
magnetic field. On the other hand, when the magnetic torque is
relatively strong (e.g., M Z 1), the actuated link follows the
magnetic field almost synchronously, spanning the maximum

angle ŷ2 E tan�1l = p/4 as shown in Fig. 3(d); in this synchro-
nous regime, a further increase in the strength of the magnetic
torque M has little effect on the dynamics of the actuated link
and hence that of the swimmer. The difference in the dynamics
of the actuated link under relatively weak and strong magnetic
torques is crucial in understanding the hindered and enhanced
propulsion observed in a shear-thinning fluid. We next discuss
how shear-thinning rheology modifies the propulsion of the two-
link swimmer under relatively weak and strong magnetic torques

in terms of ŷ2 and cDy and compare the results with that for a
continuous filament in Fig. 2.

3.3.1 Propulsion at large M. Under a relatively strong
magnetic torque (e.g., M = 1), shear-thinning rheology generally
reduces the propulsion speed of the two-link swimmer at most
K as shown in Fig. 4(a), similar to the results for a continuous
filament in Fig. 2(a). First, we examine how shear-thinning

rheology alters the gaits (characterized by ŷ2 and cDy) and hence
the propulsion speed of a two-link swimmer. At large M, due to
the dominance of the magnetic actuation on the dynamics of
the actuated link, reduced viscous torques in a shear-thinning

fluid has little influence on the actuation angle ŷ2 [Fig. 4(b)].
The actuated link spans approximately the same maximum

angle ŷ2 = tan�1l = p/4 dictated by the external magnetic field
(l = By/Bx = 1) at different values of Cu. Modifications on the
swimming gait in this large-M regime therefore stem only from

changes in the relative angle cDy in a shear-thinning fluid [inset,
Fig. 4(b)]. As Cu increases, the shear-thinning viscosity reduces
the viscous torque; a smaller elastic torque is thus required to
balance the viscous torque, leading to a reduced amplitude of

the relative angle cDy. The effect is analogous to a further
increase in the spring constant K. The two-link swimmer hence
behaves increasingly more like a rigid rod in a shear-thinning
fluid as Cu increases [Fig. 4(c), K = 0.1], which acts to hinder
propulsion. The same mechanism contributes to the decrease
in propulsion speed for a continuous filament at high M
[Fig. 2(a)], where shear-thinning rheology reduces the deforma-
tion along the filament owing to the reduced viscous forces [see
Fig. 2(a) and (b)]. As a remark, even without any shape changes,
an undulatory swimmer with the same gaits can swim slower in
a shear-thinning fluid, because thrust is reduced to a larger
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extent than drag for undulatory swimmers.61 This latter effect
combines with the effect due to gait changes to significantly
reduce the propulsion performance at larger values of K in
Fig. 4(a) [or smaller values of Sp in Fig. 2(a)]. On the other hand,
at smaller values of K (e.g., K = 0.01), propulsion is relatively
ineffective in the Newtonian limit due to the dominance of the
viscous effect over the elastic effect on the dynamics of link 1.
In this regime, the reduction in the viscous effect caused by
shear-thinning rheology indeed allows more effective swimming
gaits to emerge (the effect is analogous to an increased K). The
two mechanisms, which act in tandem to hinder propulsion at
large K, now counter-act and lead to less significant changes in
the overall propulsion performance in the small K (or large Sp)
regime.

3.3.2 Propulsion at small M. The propulsion performance
of the two-link swimmer is modified by shear-thinning rheology
in a qualitatively different manner at small M [Fig. 4(d)], where
enhanced propulsion can occur. We attribute the difference to
the distinct ways shear-thinning rheology alters the swimming
gaits at small and large M [compare Fig. 4(b) and (e)]. While ŷ2 at
large M always attains the maximum angle tan�1l = p/4 allowed

by the external magnetic field, the actuated link spans angles
that are considerably smaller (ŷ2 { p/4) under a relatively weak
magnetic torque (e.g., M = 0.02). The viscous effect dominates the
dynamics of the actuated link in this regime and limits the
amplitude of its angular movements, ŷ2. When the fluid becomes
shear-thinning, the reduced viscous effect on the actuated link
allows the link to span larger angles ŷ2 as Cu increases [Fig. 4(e)].
We argue that this increased angle of actuation [apparent in the
visualizations shown in Fig. 4(f) at K = 0.1], induced by shear-
thinning rheology at small M, is responsible for the enhanced
propulsion observed in Fig. 4(d). A similar effect is at play for a
continuous filament actuated with a small M [Fig. 2(e), Sp = 2],
where the filament’s actuated (right) end displays an increased
amplitude and hence the propulsion speed in a shear-thinning
fluid [Fig. 2(d)]. It is noteworthy that the increase in the actuation
amplitude becomes less significant at lower values of K (or higher
Sp); in this regime, the other shear-thinning effect unrelated to gait
changes but a greater reduction in thrust than drag for undulatory
swimmers,61 which acts to hinder propulsion, may become more
important. A reduction in the propulsion speed is apparent for a
continuous filament at high Sp as shown in Fig. 2(d).

Fig. 4 Propulsion of a magnetically-driven two-link swimmer in a shear-thinning fluid under relatively strong [M = 1, panels (a)–(c)] and weak [M = 0.02,
panels (d)–(f)] magnetic torques with l = 1. (a) and (d) Average propulsion speed hVi of the swimmer as a function of the dimensionless spring constant
(K) for varying Carreau number (Cu). Insets in (a) display the shape of the swimmer over one actuation period T = 2p at equal time intervals (T/4) in the
Newtonian limit at various K. We note that K of a two-link swimmer plays a physically similar (but inverse) role to Sp of a continuous filament as shown in
Fig. 2. Similar to the results for a continuous filament, while the two-link swimmer generally propels slower in a shear-thinning fluid under a relatively
strong magnetic torque [M = 1, panel (a)], enhanced propulsion can also occur under a relatively weak magnetic torque [M = 0.02, panel (d)]. (b) and
(e) The amplitude of the actuated link’s angle (ŷ2) and that of the relative angle (cDy insets) as a function of K at varying Cu. (c) and (f) The shape of the
swimmer over one actuation period T = 2p at equal time intervals (T/4) in Newtonian and shear-thinning fluids at different K; the intensity of the color
increases as time advances.
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We summarize the essential physical pictures at large
(Section 3.3.1) and small (Section 3.3.2) M as follows. Via the two-
link model, we reduce the description of a flexible swimmer into
two portions: the portion responsible for actuation (link 2) and the
portion responsible for the elastic response (link 1). Under a
relatively small magnetic torque (M { 1), the amplitude of
actuation is suppressed by excessively large viscous effects on the
actuated portion. Here shear-thinning rheology enables a larger

amplitude of actuation (ŷ2) by reducing the viscous effect, which
leads to enhanced propulsion in this regime. In contrast, under a
relatively strong magnetic torque (M Z 1), the actuated portion
already maximizes the amplitude of actuation allowed by the
magnetic field; shear-thinning rheology hence alters the swimming

gait only via changes in the relative angle cDy� �
. Shear-thinning

rheology generally reduces cDy because a smaller elastic torque is
required to balance the reduced viscous torque in a shear-thinning

fluid. At higher values of K, a reduced cDy makes the two-link
swimmer behave more like a rigid rod with hindered propulsion
performance. On the other hand, at smaller values of K, a reducedcDy could act to enhance propulsion by allowing the two-link
swimmer to deviate from relatively ineffective gaits in a Newtonian
fluid in this regime. Overall, while these gait changes induced by
shear-thinning rheology affect propulsion, we also note that, even
without inducing any gait changes, shear-thinning rheology can
also hinder the propulsion of undulatory swimmers by reducing
the thrust more than drag.61 This later effect can act in tandem or
counter-act with the effect due to gait changes to enhance or
hinder propulsion by varying extents in different physical regimes.
Taken together, the physical picture presented here captures
qualitatively the behaviors observed for a continuous filament.

4 Concluding remarks

Unlike previous studies on locomotion in shear-thinning fluids with
prescribed swimming gaits, here the shapes of an elastic swimmer
are not known a priori but emerge due to the interplay of the
deforming body and its surrounding fluid. In this work, we present a
first study to elucidate how shear-thinning rheology affects elastohy-
drodynamic propulsion at low Reynolds numbers. Via a simple
model consisting of an elastic filament actuated by an external
magnetic field, we demonstrated that such an elastohydrodynamic
swimmer can propel either faster or slower in a shear-thinning fluid
than in a Newtonian fluid in different physical regimes characterized
by M and Sp. To complement the results for a continuous filament,
we also used a two-link model to reproduce and interpret the
observed hindered (enhanced) propulsion under relatively strong
(weak) magnetic torques. Our results also show that when a relatively
strong magnetic torque is used in practice, the optimal Sp
maximizing the propulsion performance increased with Cu. These
findings call for future experimental investigations of magnetic
flexible propellers in shear-thinning fluids. In addition, future works
incorporating various motor coordination schemes78,79 into the
current elastohydrodynamic framework may also shed light on cell
motility in biological fluids displaying shear-thinning viscosity.

We discussed several limitations in this work, which provide
directions for subsequent studies. First, as a first step we
considered a local drag model here and therefore only
accounted for the local shear-thinning effect. This also confines
the validity of our results to the small Carreau number regime
to be consistent with the local nature of the model.61 The
change in the flow field due to non-local shear-thinning effects
and non-local hydrodynamic interactions remains to be investi-
gated. Second, for simplicity we prescribed a magnetic moment at
one of the filament’s end as a minimal model of a magnetic
swimmer in this work. We have therefore ignored the hydrodynamic
effect of the magnetic head geometry, which is another design
parameter for optimizing the propulsion performance of magnetic
swimmers.39 Finally, we note that magnetic actuation is considered
here for its common use as an actuation mechanism for artificial
micro-swimmers.80,81 The same framework can be employed to
consider other types of boundary or distributed actuation mechan-
isms that are more relevant to biological swimmers.25,82–84 We
believe that the essential physical pictures discussed in this work
could still be generally useful in interpreting the effect of shear-
thinning rheology in other swimmer configurations.
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Appendix: multi-link model

In this appendix, we consider a framework based on a multi-link
discretization85–87 of an elastic filament. We use the results from
this multi-link model to cross-validate the numerical solutions
obtained by the FEM described in Section 2.5 in the Newtonian
limit [gray inverted triangles in Fig. 2(a) and (d)]. The multi-link
model may also be considered as a logical extension of the two-
link model considered in Section 3.3. In this multi-link model,
an elastic filament of length L is discretized by a chain of N rigid
links of equal length c = L/N (Fig. 5). These links are serially
connected together by N � 1 torsional springs with the same
spring constant k. Similar to the two-link model in Section 3.3,
the position of the i-th link (i = 1,2,. . .,N) is specified by the
position vector of its left end xi = xiex + yiey, and its orientation is

Fig. 5 Schematic diagram illustrating a multi-link discretization of an elastic
filament and notations.
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specified by the angle yi made between its unit tangent ti =
cos yiex + sinyiey and ex. The position vector along the i-th link is
therefore given by Xi = xi + sti, where the archlength s A [0,c].
Similar to the continuous case, the unit normal is given by ni =
ez � ti. The discretization follows kinematic constraints given by
xi+1 = xi + [ccos yi,csinyi] between successive links. The descrip-
tion of hydrodynamic force on the i-th link follows the same
form in the two-link swimmer as

Fh
i ¼

ð‘
0

fhðXiÞds; (21)

where fh is the hydrodynamic force density given by the resistive
force theory [eqn (3)]. Similarly, the hydrodynamic torque on the
i-th link about xj follows the same form in the two-link swimmer
as

Th
i;j ¼

ð‘
0

ðXi � xjÞ � fhðXiÞds: (22)

The dynamics of the multi-link model is governed by the
overall balance of force

XN
i¼1

Fh
i ¼ 0; (23)

and torque

XN
i¼1

Th
i;1 þ Tm ¼ 0; (24)

of the N-link assembly, as well as the torque balances on the
assembly minus the n-th link (n = 1,. . .,N� 1)

XN
i¼nþ1

Th
i;nþ1 þ Te

n þ Tm ¼ 0: (25)

Here the elastic torque by the torsional spring Te
n = �k(yn+1 �

yn)ez and the magnetic torque Tm = mb[lcos yNsinot � sinyN]ez

act on the right end of the N-link. These force and torque
balances together with the kinematic constraints between succes-
sive links form a system of first-order ordinary differential equa-
tions that can be solved numerically to determine the unknowns,
xi and yi. The spring constant in the multi-link model k = A/(L/N)
can be adjusted to represent an elastic filament with bending
stiffness A.86,87 For a sufficiently large number of links [e.g., N =
100 in Fig. 2(a) and (d)], results from the N-link model display
excellent agreement with results from FEM simulations. As a
remark, the multi-link model may also be relevant to modeling
the dynamics of a single polymer/DNA when intrachain hydro-
dynamic interactions are weak.88–90
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eLife, 2016, 5, e13258.
80 K. Ishiyama, M. Sendoh and K. Arai, J. Magn. Magn. Mater.,

2002, 242-245, 41–46.
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