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supermolecular arrays†

Erin J. Peterson, Wei Qi, Ian N. Stanton ,Peng Zhang andMichael J .Therien *

High quantum yield NIR fluorophores are rare. Factors that drive low emission quantum yields at long

wavelength include the facts that radiative rate constants increase proportional to the cube of the

emission energy, while nonradiative rate constants increase in an approximately exponentially with

decreasing S0–S1 energy gaps (in accordance with the energy gap law). This work demonstrates how the

proquinoidal BTD building blocks can be utilized to minimize the extent of excited-state structural

relaxation relative to the ground-state conformation in highly conjugated porphyrin oligomers, and

shows that 4-ethynylbenzo[c][1,2,5]thiadiazole (E-BTD) units that terminate meso-to-meso ethyne-

bridged (porphinato)zinc (PZnn) arrays, and 4,7-diethynylbenzo[c][1,2,5]thiadiazole (E-BTD-E) spacers that

are integrated into the backbone of these compositions, elucidate new classes of impressive NIR

fluorophores. We report the syntheses, electronic structural properties, and emissive characteristics of

neoteric PZn-(BTD-PZn)n, PZn2-(BTD-PZn2)n, and BTD-PZnn-BTD fluorophores. Absolute fluorescence

quantum yield (ff) measurements, acquired using a calibrated integrating-sphere-based measurement

system, demonstrate that these supermolecules display extraordinary ff values that range from 10–25%

in THF solvent, and between 28–36% in toluene solvent over the 700–900 nm window of the NIR.

These studies underscore how the regulation of proquinoidal conjugation motifs can be exploited to

drive excited-state dynamical properties important for high quantum yield long-wavelength fluorescence

emission.
Introduction

Low band gap p-conjugated molecules and oligomers are
central to function in electro-optic applications that span exci-
tonic solar cells,1–7 eld-effect transistors,8,9 optical power
limiting (OPL),10 dye-sensitized solar cells (DSSCs),11,12 photon-
upconversion (UC) technologies,13–17 long-wavelength light-
emitting diodes,18–20 nonlinear optics (NLO),21–24 and biological
imaging.25–27 Desirable low band gap materials for these appli-
cations typically feature singlet manifold transitions (S0 / S1,
S0 / Sn, and S1 / Sn) that possess large absorptive oscillator
strengths covering broad spectral domains that include the
near-infrared (NIR).

Driving high uorescence quantum yields is perhaps the
most demanding design challenge for low band gap chromo-
phores. Engineering augmented S0 / S1 transition oscillator
strength is not sufficient to realize correspondingly high S1 /
S0 uorescence quantum yields (ff values), particularly as the
ence Center, Duke University, 124 Science

, USA. E-mail: michael.therien@duke.edu
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oscopic and computational data. See

f Chemistry 2020
optical band gap is diminished: while it is oen the case that
a large S0 / S1 absorptive extinction coefficient is correlated
with a correspondingly large S1 / S0 radiative rate constant
congruent with the Strickler–Berg relationship,28 most strongly
Chart 1 Chemical structures for (A) benchmark PZnn, (B) BTD-PZnn-
BTD and (C) PZn2-(BTD-PZn2)n and PZn-(BTD-PZn)n fluorophores. R
¼ [2,6-bis(3,3-dimethyl-1-butyloxy)phenyl].
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absorbing NIR chromophores are not impressive emitters, due
to the substantial S1 state non-radiative rate constants (knr
values) that ensue from the energy gap law.29

With respect to high oscillator strength NIR absorbers,
meso-to-meso ethyne-bridged (porphinato)zinc (PZnn) arrays
(Chart 1A)17,30–46 constitute a notable exception to these
generalizations. These supermolecules – conjugated struc-
tures realized from strong coupling of simple chromophoric
building blocks – manifest such strong electronic and exci-
tonic interactions between the constituent (porphinato)zinc
oscillators that entirely unique photophysical entities are
dened. PZnn structures, for example, possess uorescence
quantum yields comparable to the most impressive NIR laser
dyes in the 750–900 nm regime,41 and rival the highest re-
ported for organic dyes in this spectral window;47–49 impor-
tantly, PZnn emitters do not suffer from the commonly cited
drawbacks of tricarbocyanine dyes that include poor photo-
stability and uorescence quantum yields that drop precipi-
tously with decreasing solvent polarity.25,50,51 PZnn

chromophores feature low energy Q-state derived p–p*

excited-states that are polarized exclusively along the long
molecular axis, and lowest energy transitions that gain in
intensity and progressively red-shi with increasing numbers
of PZn units. Extended conjugation in these highly polarizable
chromophores drives red-shiing of PZnn uorescence
spectra. Because triplet excitons are more spatially conned
than singlet excitons in these systems,31,34,35,39,52,53 an unusual
dependence of ff magnitude upon increasing emission
wavelength [lmax(S1 / S0)] is manifest that confounds that
anticipated simply from the energy gap law.41 Because of this
disparity in lowest energy singlet (S1) and triplet (T1) state
delocalization, diminished S1–T1 intersystem crossing rate
constants (kisc values) track with increasing conjugation in
Scheme 1 Synthetic routes for PZn-(BTD-PZn)n compounds.

8096 | Chem. Sci., 2020, 11, 8095–8104
PZnn chromophores, and serve to partly counter-balance the
impact of augmented Franck–Condon mediated internal
conversion rate constants (kic values) that typically accompany
diminished S0–S1 energy gaps in the NIR. These impressive
PZnn photophysical properties have been exploited in a wide
range of uorescence imaging applications.54–61

The photophysical properties of PZnn chromophores may
be extensively modulated via incorporation of proquinoidal
units into these emblematic conjugated arrays. For example,
proquinoidal spacer (Sp) moieties such as 4,7-diethynylbenzo
[c][1,2,5]thiadiazole (E-BTD-E), 6,13-diethynylpentacene (E-
PC-E), 4,9-diethynyl-6,7-dimethyl[1,2,5]thiadiazolo[3,4-g]qui-
noxaline (E-TDQ-E), and 4,8-diethynylbenzo[1,2-c:4,5-c0]
bis([1,2,5]thiadiazole) (E-BBTD-E) that link bis[(porphinato)
zinc] units can be utilized to modulate the relative degrees of
quinoidal character that characterize the ground and elec-
tronically excited singlet states in these highly conjugated
supermolecules.62 Recent work highlights how electronic
modulation of proquinoidal conjugation motifs can also be
exploited as a powerful means to modulate independently the
dynamics of excited-state relaxation pathways in these
systems, enabling, for example, exceptional NIR absorbers
that possess long-lived electronically excited triplet states (sT1
> ms) that are generated at unit quantum yield.63 In this
contribution, we (i) show how proquinoidal BTD building
blocks can be utilized to minimize the extent of excited-state
structural relaxation relative to the ground-state conforma-
tion in highly conjugated porphyrin oligomers, and (ii)
demonstrate that 4-ethynylbenzo[c][1,2,5]thiadiazole (E-BTD)
units that terminate PZnn chromophores (Chart 1B), and E-
BTD-E spacers that are integrated into the backbone of these
compositions (Chart 1C), enable elucidation of new classes of
impressive NIR uorophores.
This journal is © The Royal Society of Chemistry 2020
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Scheme 2 Synthetic routes for BTD-PZnn-BTD compounds.
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Results and discussion
Synthesis

Schemes 1–3 outline the synthetic strategies for the fabrication
of BTD-PZnn-BTD, PZn-(BTD-PZn)n, and PZn2-(BTD-PZn2)n
chromophores. These structures were synthesized by palladium
(Pd)-mediated cross-coupling reactions involving appropriately
substituted (porphinato)zinc(II) (PZn) compounds, BTD spacers,
Scheme 3 Synthetic routes for PZn2-(BTD-PZn2)n compounds.

This journal is © The Royal Society of Chemistry 2020
and terminal BTD units. These structures exploit [2,6-bis(3,3-
dimethyl-1-butyloxy)phenyl] groups as 10- and 20-meso-
porphyrin substituents, which facilitate solubility and
straightforward assignment of 1H-NMR spectra.37,64 The nature
of the functionalized PZn, PZnn, and BTD moieties used in the
syntheses of these BTD-PZnn-BTD, PZn-(BTD-PZn)n, and PZn2-
(BTD-PZn2)n arrays varied with the degree of conjugation in the
precursor molecules. Synthetic details may be found in the ESI.†
Chem. Sci., 2020, 11, 8095–8104 | 8097
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Fig. 1 Electronic absorption and emission spectra (figure panel insets)
recorded for: (A) benchmark PZnn chromophores (see ref. 30 and 41),
and (B) PZn-(BTD-PZn)n, (C) PZn2-(BTD-PZn2)n, and (D) BTD-PZnn-
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Steady-state absorption and emission spectroscopy of BTD-
PZnn-BTD, PZn-(BTD-PZn)n, and PZn2-(BTD-PZn2)n
chromophores

Steady-state electronic absorption and uorescence spectra
recorded for reference PZnn chromophores (PZn2, PZn3, and
PZn5; Fig. 1A),17,30–46,54–56,58,59,61,63,65 as well as PZn-(BTD-PZn)n
[PZn-BTD-PZn,62 PZn-(BTD-PZn)2, and PZn-(BTD-PZn)4; Fig. 1B],
PZn2-(BTD-PZn2)n [PZn2-BTD-PZn2 and PZn2-(BTD-PZn2)2;
Fig. 1C], and BTD-PZnn-BTD [BTD-PZn-BTD,66 BTD-PZn2-BTD,
BTD-PZn3-BTD, and BTD-PZn5-BTD; Fig. 1D] arrays, are shown
in Fig. 1. The overall characteristics of the electronic absorption
spectra for these PZn-(BTD-PZn)n, PZn2-(BTD-PZn2)n, and BTD-
PZnn-BTD chromophores resemble those described previously
for dimeric andmultimeric PZn compounds that feature ameso-
to-meso ethyne-linkage topology (PZnn arrays); these spectra
exhibit two distinct intense absorption manifolds that are
derived from the porphyrin B- (Soret, S0 / S2) and Q-band (S0
/ S1) transitions.30,32–34,37,38,40

The observed perturbations from these benchmark PZnn

spectra trace their origin to the proquinoidal BTD units that are
connected to the porphyrinmacrocyclemeso carbons via ethynyl
moieties. Previous investigations demonstrate that the nature
of proquinoidal unit conjugation to the PZn macrocycle exerts
a pronounced impact on the magnitude of B- and Q-state mix-
ing;62,63,66 for example, for PZn–(proquinoidal Sp)–PZn chro-
mophores, the long axis-polarized Q state (Qx) absorption
maxima can be modulated from 689 to 1006 nm, depending
upon the extent of the quinoidal resonance contribution to the
electronically excited singlet state.62 A combination of semi-
empirical electronic structure calculations and electro-
chemical data underscore the cardinal role that PZn and pro-
quinoidal fragment orbital energy differences play in xing the
radical cation and anion state energy levels in these
structures.62,63

The principles that informed design of these PZn-(BTD-
PZn)n, PZn2-(BTD-PZn2)n, and BTD-PZnn-BTD chromophores
stem from prior work that examined the photophysics of (por-
phinato)metal–(proquinoidal Sp)–(porphinato)metal super-
molecules.63 This work highlighted the central importance of
the magnitude of the energy separation between the (porphi-
nato)metal and proquinoidal Sp fragment frontier orbitals in
determining whether radiative, internal conversion, or inter-
system crossing decay channels dominated the relaxation
dynamics of the initially prepared electronically excited states of
these complexes. When the (porphinato)metal and proquinoi-
dal Sp fragment LUMO levels featured energy separations on
the order of a few tenths of an eV, as they are for the 5-ethynyl-
PZn, 4-ethynyl-BTD, and 4,7-diethynyl-BTD fragments of these
PZn-(BTD-PZn)n, PZn2-(BTD-PZn2)n, and BTD-PZnn-BTD struc-
tures, chromophores having multicongurational S1 states
characterized by a modest degree of charge transfer (CT) char-
acter are anticipated; such supermolecules were shown to
display large S1 / S0 radiative rate constants and substantial
uorescence quantum yields. Other factors that informed the
blueprint of the Fig. 1B–D supermolecules included insights
derived from monomeric PZn complexes in which ethynyl-BTD
8098 | Chem. Sci., 2020, 11, 8095–8104
units were used to expand conjugation at the macrocycle meso-
carbon position;66 these designs led to PZn chromophores
characterized by enhanced transfer of B-to-x-polarized Q-state
oscillator strength, intensied Qx absorption bands, chromo-
phore structural rigidication, spectrally narrow uorescence
emission bands, small magnitude Stokes shis, and enhanced
radiative rate constant magnitudes relative to simple bench-
mark PZn complexes.
Fluorescence emission metrics of BTD-PZnn-BTD, PZn-(BTD-
PZn)n, and PZn2-(BTD-PZn2)n chromophores

Long wavelength absorption maxima (lmax, S0 / S1), corre-
sponding extinction coefficient measurements, uorescence (S1
/ S0) emission maxima, full-width at uorescence half-
BTD compositions. Experimental conditions: T ¼ 298 K, THF solvent.

This journal is © The Royal Society of Chemistry 2020
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Table 1 Electronic absorption and emission data in THF solvent for BTD-PZnn-BTD, PZn-(BTD-PZn)n, and PZn2-(BTD-PZn2)n chromophores
relative to corresponding PZnn benchmarks

lmax

(S0 / S1)
a [nm]

3g@lmax

(S0 / S1)
[M�1 cm �1]

lmax

(S1 / S0) [nm]

FWHM
(S1 / S0)
[cm�1]

Stokes
shib (cm�1) ff

c,d sF
e [ns]

kr
f

[�108 s�1]
knr

f

[�108 s�1]

PZn-BTD-PZn 689 (1194) 64 600 741 1605 1018 0.25 (0.31) 1.6 1.6 4.7
PZn-(BTD-PZn)2 745 (1178) 132 700 784 977 543 0.22 (0.36) 1.1 2.0 7.1
PZn-(BTD-PZn)4 777 (1558) 184 000 811 846 490 0.16 (0.29) 0.8 2.0 11
BTD-PZn-BTD 674 (672) 84 000 687 727 281 0.13 (0.13) 1.3 1.0 6.7
BTD-PZn2-BTD 765 (1243) 101 600 787 802 365 0.23 (0.30) 1.4 1.6 5.5
BTD-PZn3-BTD 809 (1663) 157 500 846 872 510 0.16 (0.29) 0.8 2.0 11
BTD-PZn5-BTD 847 (1675) 238 300 888 1008 587 0.10 (0.28) 0.6 1.7 15
PZn2-BTD-PZn2 780 (1822) 145 400 822 926 688 0.14 (0.34) 0.6 2.3 14
PZn2-(BTD-PZn2)2 816 (1582) 340 000 857 1154 586 0.12 (0.36) 0.5 2.4 18
PZn2 695 (1082) 51 400 711 810 324 0.14 (0.16) 1.09 1.3 7.9
PZn3 770 (1386) 116 000 806 875 580 0.19 (0.27) 1.13 1.7 7.1
PZn5 842 (1562) 230 000 883 955 551 0.09 (0.11) 0.45 2.0 20

a Numbers in parentheses are spectral breadths (full-widths at half-maximum, FWHM) of the respective transitions in units of cm�1. b Stokes shis
values correspond to the difference in energy between the low energy (Qx) absorption (S0 / S1) and uorescence (S1 / S0) band maxima.
c Fluorescence quantum yields (ff values) were determined using an integrating sphere-based absolute emission quantum yield measurement
system (see ESI). d Values in parentheses represent those determined in toluene solvent. e These values were determined using S0 / S2
excitation (483 nm). Fluorescence lifetimes were measured via time-correlated single-photon-counting using a picosecond uorescence lifetime
measurement system. f Excited-state relaxation constants were calculated based on the following equations: sS1 ¼ 1/(kr + knr), ff ¼ kr � sS1.
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maximum (FWHM), Stokes shis, uorescence lifetimes (sF),
radiative rate constant (kr), non-radiative rate constant (knr), and
uorescence quantum yield (ff) data, are tabulated in Table 1
for the PZnn, PZn-(BTD-PZn)n, PZn2-(BTD-PZn2)n, and BTD-
PZnn-BTD supermolecules.

These uorescence quantum yield data correspond to abso-
lute measurements, acquired using a calibrated integrating-
sphere-based measurement system, which collects photons
emitted from the sample following excitation through NIR
Table 2 Comparative integrated oscillator strengths of the B- and Q-b
(BTD-PZn2)n chromophores relative to corresponding PZnn benchmarks

Oscillator strength B-band regionb

PZn-BTD-PZn 2.11
PZn-(BTD-PZn)2 4.65
PZn-(BTD-PZn)4 5.98
BTD-PZn-BTD 2.24
BTD-PZn2-BTD 3.54
BTD-PZn3-BTD 5.23
BTD-PZn5-BTD 7.64
PZn2-BTD-PZn2 6.04
PZn2-(BTD-PZn2)2 10.49
PZn2

d 2.134
PZn3

d 3.240
PZn5

d 5.986

a Integrated oscillator strengths (f) were calculated based on the following
coefficient, and n is the energy (in wave numbers) of the absorption. Values
b Oscillator strengths calculated over the following wavelength domains: P
(BTD-PZn)4 (�360 to 605 nm); BTD-PZn-BTD (�360 to 560 nm); BTD-PZn2-
(�360 to 560 nm); PZn2-BTD-PZn2 (�360 to 610 nm); PZn2-(BTD-PZn2)2
wavelength domains: PZn-BTD-PZn (�600 to 760 nm); PZn-(BTD-PZn)2
(�560 to 720 nm); BTD-PZn2-BTD (�560 to 850 nm); BTD-PZn3-BTD (�
(�610 to 860 nm); PZn2-(BTD-PZn2)2 (�610 to 920 nm). d Ref. 41.

This journal is © The Royal Society of Chemistry 2020
wavelengths that range up to 1100 nm (see ESI† for a complete
system description). Note in this regard that minor differences
between the Table 1 ff data acquired for PZnn chromophores
and those reported originally41 stem from the fact that these
earlier ff values were determined via the reference method.
Table 2 displays comparative integrated oscillator strengths of
the B- and Q-band spectral regions of BTD-PZnn-BTD, PZn-
(BTD-PZn)n, and PZn2-(BTD-PZn2)n chromophores relative to
corresponding PZnn benchmarks.
and spectral regions of BTD-PZnn-BTD, PZn-(BTD-PZn)n, and PZn2-
a

Oscillator strength Q-band regionc Total oscillator strength

0.72 3.52
1.03 5.67
1.58 7.57
0.37 2.63
0.89 4.42
1.53 6.76
2.10 9.74
1.30 7.35
2.84 13.32
0.303 2.438
0.716 3.956
1.622 7.608

expression: f ¼ 4:3� 10�9
Ð
3dV , where 3 is the experimental extinction

noted derive from electronic absorption spectra recorded in THF solvent.
Zn-BTD-PZn (�360 to 600 nm); PZn-(BTD-PZn)2 (�360 to 600 nm); PZn-
BTD (�360 to 560 nm); BTD-PZn3-BTD (�360 to 560 nm); BTD-PZn5-BTD
(�360 to 610 nm). c Oscillator strengths calculated over the following
(�600 to 820 nm); PZn-(BTD-PZn)4 (�600 to 900 nm); BTD-PZn-BTD
560 to 910 nm); BTD-PZn5-BTD (�560 to 1050 nm); PZn2-BTD-PZn2

Chem. Sci., 2020, 11, 8095–8104 | 8099
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Fig. 2 Calculated frontier molecular orbitals, energy levels, and rela-
tive one-electron configurations that contribute to the lowest energy
(Qx) transition for the PZn3 benchmark. Calculations were performed
at the M11/6-311g(d) theory level.
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Table 1 highlights that E-BTD units that terminate PZnn

chromophores (Fig. 1A) give rise to BTD-PZnn-BTD super-
molecules (Fig. 1D) in which lmax(S1 / S0) for BTD-PZn2-BTD,
BTD-PZn3-BTD, and BTD-PZn5-BTD redshi by 1358, 587, and
64 cm�1, respectively, relative to their PZn2, PZn3, and PZn5

benchmarks. Note that as a function of the number of PZn units
in these arrays, BTD-PZnn-BTD and PZnn supermolecules
display similarly narrow uorescence FWHM values as well as
modest Stokes shis; these energy differences between the low
energy (Qx) absorption (S0 / S1) and uorescence (S1 / S0)
band maxima of these chromophores range from 325–
585 cm�1. A key spectroscopic ramication of terminal ethynyl-
BTD conjugation to these PZnn frameworks is highlighted in the
data chronicled in Table 2, which contrasts the integrated
oscillator strengths of the B- and Q-band regions of the elec-
tronic absorption spectra of these chromophores. Note that the
integrated Q-state oscillator strengths of these BTD-PZnn-BTD
chromophores are augmented by more than 50% relative their
corresponding PZnn benchmark. These factors, coupled with
a diminished nonradiative rate constant, play important roles
in driving the substantial, long-wavelength emission quantum
yield manifest by BTD-PZn5-BTD (ff ¼ 0.28) relative to that for
the parent PZn5 chromophore (ff ¼ 0.11) in low dielectric
toluene solvent (Table 1).

PZn-(BTD-PZn)n chromophores (Fig. 1B) contrast the elec-
tronic spectral properties of BTD-PZnn-BTD supermolecules;
PZn-BTD-PZn, PZn-(BTD-PZn)2, and PZn-(BTD-PZn)4 display Qx

state absorption maxima that are blue-shied 126, 436, and
994 cm�1 with respect to the lmax(S0 / S1) transitions of their
respective PZn2, PZn3, and PZn5 benchmarks (Table 1, Fig. 1);
this effect derives from the fact that 4,7-diethynylbenzo[c][1,2,5]
thiadiazole provides diminished PZn–PZn electronic coupling
relative to the ethynyl linker. While PZn-BTD-PZn displays an
augmented Stokes shi (1018 cm�1) relative to PZn2 (324 cm�1)
due to the greater cumulenic character in its relaxed electroni-
cally excited S1 state,62 the Stokes shis manifest for PZn-(BTD-
PZn)2, PZn-(BTD-PZn)4, PZn3, and PZn5 are similar in magni-
tude (�560 cm�1), congruent with more modest structural
differences between the relaxed S0 and S1 states for these
supermolecules (vide infra).

PZn-BTD-PZn, PZn-(BTD-PZn)2, and PZn-(BTD-PZn)4 display
uorescence emission maxima centered at 741, 784, and
811 nm, respectively, and substantial uorescence quantum
yields in THF solvent [ff(PZn-BTD-PZn) ¼ 0.25; ff(PZn-(BTD-
PZn)2) ¼ 0.22; ff(PZn-(BTD-PZn)4) ¼ 0.16]. Similar to that
observed for BTD-PZnn-BTD chromophores, uorescence
quantum yields are signicantly enhanced in nonpolar solvent;
note in this regard that ff(PZn-(BTD-PZn)4) is amplied to 29%
in toluene (Table 1).

Fig. 1C highlights the absorptive and emissive spectral
properties that ensue when PZn2 chromophores are linked by
4,7-diethynylbenzo[c][1,2,5]thiadiazole units. These PZn2-(BTD-
PZn2)n chromophores display dramatic Qx absorption band
intensication with increasing conjugation (Tables 1 and 2);
note in this regard that PZn2-(BTD-PZn2)n is an exceptional
long-wavelength absorber (3(816 nm) ¼ 340 000 M�1 cm�1;
Table 1). PZn2-BTD-PZn2 and PZn2-(BTD-PZn2)2 emit
8100 | Chem. Sci., 2020, 11, 8095–8104
respectively at 822 and 857 nm in THF solvent, with corre-
sponding quantum yields of 14 and 12%. As demonstrated for
both PZn-(BTD-PZn)n and BTD-PZnn-BTD chromophores, these
uorescence quantum yields are dramatically enhanced in
toluene solvent [ff(PZn2-BTD-PZn2) ¼ 0.34; ff(PZn2-(BTD-
PZn2)2) ¼ 0.36]. These data acquired for PZn2-(BTD-PZn2)n
designs suggest additional approaches to realize related
frameworks that make possible high quantum yield NIR emis-
sion that include electronic modulation of the proquinoidal
units that both terminate supermolecules that utilize PZnn

building blocks, as well as those that are integrated into the
conjugated backbones of these compositions.
Computed electronic structures of BTD-PZnn-BTD, PZn-(BTD-
PZn)n, and PZn2-(BTD-PZn2)n chromophores

The natures of the low energy S1 states of BTD-PZnn-BTD, PZn-
(BTD-PZn)n, and PZn2-(BTD-PZn2)n chromophores were probed
through frontier orbital (FO) population and transition matrix
This journal is © The Royal Society of Chemistry 2020
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eigenvector analyses derived using TD-DFT methods. Fig. 2–4
show FO diagrams for BTD-PZn3-BTDand PZn-(BTD-PZn)2,
along with those for the PZn3 benchmark, and highlight the
prominent one-electron congurations that contribute to their
respective lowest energy Qx transitions; related data for the
PZn2-(BTD-PZn2)2 chromophore is presented in the ESI.†

The natures and energy separations between the PZn3, BTD-
PZn3-BTD, and PZn-(BTD-PZn)2 FOs underscore the x-polarized
nature of the lowest energy excited state for these super-
molecules, and the globally delocalized character of their
respective S1 excited states. The low-lying excited states of these
supermolecules are described by extensive conguration inter-
action (CI). The S0 / S1 transitions of PZn3, BTD-PZn3-BTD,
and PZn-(BTD-PZn)2 have large contributions (�55%) from the
one electron HOMO / LUMO (H / L) conguration, and
highlight the importance of quinoidal resonance contributions
to this low-lying excited state; this resonance contribution plays
Fig. 3 Calculated frontier molecular orbitals, energy levels, and rela-
tive one-electron configurations that contribute to the lowest energy
(Qx) transition for BTD-PZn3-BTD. Calculations were performed at the
M11/6-311g(d) theory level.

This journal is © The Royal Society of Chemistry 2020
a key role in the solvent-dielectric dependent uorescence
quantum yields evidenced in THF and toluene solvent.

For PZn3 (Fig. 2), seven single excitation congurations
describe the transition matrix eigenvector; in contrast, nine and
six single excitation congurations describe respectively the
transition matrix eigenvectors for BTD-PZn3-BTD and PZn-
(BTD-PZn)2. For PZn3, the transition eigenvector is dominated
by congurations (representing an �82% weighting in the CI
expansion) that do not redistribute to a signicant degree
electron density. For BTD-PZn3-BTD and PZn-(BTD-PZn)2, the
relative importance of such single excitation congurations that
do not redistribute signicantly electron density drops respec-
tively to 74 and 22%, highlighting the increased importance of
single-excitation congurations that redistribute electron
density in the CI expansions that describe the S0 / S1 transi-
tion eigenvectors for these supermolecules. While the bandgap
represented by DEHOMO–LUMO varies to a minor degree and
spans �4.5 to 4.8 eV, note that the FO bandwidth in these
Fig. 2–4 uorophores varies signicantly: DH�5–L+5 for PZn3 is
9.77 eV but only 7.76 eV for PZn-(BTD-PZn)2, a decrease of
2.01 eV.
Fig. 4 Calculated frontier molecular orbitals, energy levels, and rela-
tive one-electron configurations that contribute to the lowest energy
(Qx) transition for PZn-(BTD-PZn)2. Calculations were performed at
the M11/6-311g(d) theory level.

Chem. Sci., 2020, 11, 8095–8104 | 8101
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Note that as supermolecular conjugation evolves from PZn3

to BTD-PZn3-BTD and PZn-(BTD-PZn)2, an increased degen-
eracy of energy eigenvalues is manifest in the Fig. 2–4 FOs. This
increased density of states (DOS) evident in BTD-PZn3-BTD and
PZn-(BTD-PZn)2 derives from the mixing of BTD and PZn
frontier orbitals. Congruent with Fermi's Golden Rule, transi-
tion probability correlates with increased DOS. This larger DOS
near the HOMO and LUMO levels serve to increase the multi-
reference nature of the S1 state wave function; S1 congura-
tions that involve these delocalized and mixed frontier orbitals
will thus exhibit enhanced S1 state wave function spatial delo-
calization. This computational trend is in line with the experi-
mentally determined transition moments, wherein Qx-
transition oscillator strengths for BTD-PZn3-BTD and PZn-(BTD-
PZn)2 exceed that of PZn3. Note also that this dispersion of FO
energies, which decreases progressively from PZn3 to BTD-PZn3-
BTD to PZn-(BTD-PZn)2 (Fig. 2–4), is correlated with increased p

conjugation which is reected in the computed electronic
delocalization range function for these uorophores (ESI†); due
to the nature of these orbitals and their diminished energy gaps
within the lled and empty regimes of the FO manifold,
a greater weighted fraction of single excitation congurations
having charge resonance character is manifest, congruent with
the augmented Qx absorption oscillator strengths observed for
BTD-PZnn-BTD and PZn-(BTD-PZn)n relative to PZnn (Fig. 1,
Tables 1 and 2).

Conclusions

We describe a design strategy for (porphinato)zinc-based
supermolecules that possess large NIR uorescence quantum
yields. These PZn-(BTD-PZn)n, PZn2-(BTD-PZn2)n, and BTD-
PZnn-BTD uorophores feature either 4-ethynylbenzo[c][1,2,5]
thiadiazole (E-BTD) units that terminate meso-to-meso ethyne-
bridged (porphinato)zinc (PZnn) arrays, or 4,7-diethynylbenzo
[c][1,2,5]thiadiazole (E-BTD-E) spacers that are integrated into
the backbone of these compositions. PZn-(BTD-PZn)n, PZn2-
(BTD-PZn2)n, and BTD-PZnn-BTD chromophores are character-
ized by enhanced transfer of B-to-x-polarized Q-state oscillator
strength relative to their corresponding PZnn benchmarks,
intensied Qx absorption bands, supermolecule structural
rigidication, spectrally narrow uorescence emission bands,
small magnitude Stokes shis, and large radiative rate constant
magnitudes. TD-DFT calculations point to the importance of
a greater weighted fraction of single excitation congurations
having charge resonance character that describe the S0 / S1
transition matrix eigenvector in PZn-(BTD-PZn)n, PZn2-(BTD-
PZn2)n, and BTD-PZnn-BTD emitters relative to PZnn oscillators
in driving these spectroscopic and dynamical properties.
Collectively, these systems dene an unusual family of intensely
absorbing vis-NIR absorbers that display strikingly high uo-
rescence quantum yields (ff values) over the 700–900 nm
regime of the NIR. These THF ff values for PZn-(BTD-PZn)n,
PZn2-(BTD-PZn2)n, and BTD-PZnn-BTD supermolecules,
perhaps without peer in a solvent of this dielectric strength over
this spectral window, range from 10–25%; notably these ff

values are dramatically amplied in hydrophobic media and
8102 | Chem. Sci., 2020, 11, 8095–8104
thus contrast the behavior of classic tricarbocyanine NIR dyes,
displaying uorescence quantum yields ranging from 28–36%
in toluene solvent. Because these BTD-PZnn-BTD, PZn-(BTD-
PZn)n, and PZn2-(BTD-PZn2)n supermolecules display extraor-
dinarily large NIR uorescence quantum yields in hydrophobic
solvent, these designs underscore new opportunities to evolve
NIR-emissive nano- and mesoscale vesicles for uorescence
imaging applications in which the emissive irradiance exceeds
the impressive metrics already established for such structures
that membrane-disperse PZnn uorophores.54–61,65

Experimental section
Synthesis and characterization

The synthetic procedures and corresponding characterization
data of all new compounds, complete with the reaction
schemes, are given in the ESI.†

Instrumentation

Electronic absorption spectra were recorded on a Shimadzu UV-
1700 spectrophotometer. Steady-state emission spectra were
recorded on a FLS920 spectrometer that utilized a xenon lamp
(Xe900) as the excitation light source and an extended red
sensitive PMT (Hamamatsu R2658P side window photo-
multiplier, spectral range: 200–1010 nm) for detection. Emis-
sion spectra were corrected using a calibration curve supplied
with the instrument.

Fluorescence lifetime measurements

Time-resolved emission spectra were recorded using a Hama-
matsu C4780 picosecond uorescence lifetime measurement
system. This system employs a Hamamatsu Streakscope C4334
as its photon-counting detector; a Hamamatsu C4792-01
synchronous delay generator electronically generated all time
delays. The excitation light source chosen was a Hamamatsu
405 nm diode laser. Fluorescence lifetimes were acquired in
single-photon-counting mode using Hamamatsu HPD-TA so-
ware and analyzed using the Hamamatsu tting module.

Quantum yield measurements

A Hamamatsu C9920-03 Absolute Quantum Yield Measurement
System was employed to make the quantum yield measure-
ments. Excitation initiates from a Xe-lamp, where the wave-
length is selected by a monochromator, and passed through
a 1 mm optical excitation ber. The inside of the sphere is
coated with Spectralon (Labsphere, Inc.) that has at least 99%
reectance over the 350–1650 nm spectral window. Added detail
regarding these measurements is provided in the ESI.†

Time-dependent density functional theory calculations

All electronic structure calculations were performed upon
model compounds in which aliphatic chains were truncated to
methyl groups (ESI†). Structure optimization and linear
response calculations were performed with density functional
theory (DFT) using Gaussian 16, revision C.01.67 The M11 68
This journal is © The Royal Society of Chemistry 2020
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functional was employed for all calculations. Optimizations
were performed with minimal symmetry constraints using tight
optimization criteria with the 6-311g(d) basis set implemented.
Selected frontier orbital wave functions were plotted as iso-
surfaces (iso ¼ 0.02) using Avogadro.69 TD-DFT result les were
post-processed using the GaussSum package;70 this soware
partitions the wave function amplitudes onto atomic compo-
nents using Mulliken population analysis,71 and parses the
electronic congurations contributing to each excitation.
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