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Dynamical disorder and resonance energy
transfer: a novel quantum-classical approach†

F. Di Maiolo ‡ and A. Painelli *

Resonance energy transfer (RET), at the heart of photosynthesis, supports life on earth, but also

guarantees the operation of several technological devices, like organic light-emitting diodes and solar

cells. Medium properties and dynamics largely affect RET efficiency, but reliable models addressing how

molecular electron-vibration motion and solvent dynamics jointly affect RET are still missing. Here we

propose a novel quantum-classical approach to describe RET in a non-adiabatic molecular system

embedded in a dynamic polar environment. The approach, validated against optical properties of a dye

in solution, is then applied to a RET-pair, demonstrating that dynamic disorder, as induced by a liquid

polar solvent, boosts RET efficiency.

1 Introduction

RET describes the transfer of energy from an excited molecule,
the energy donor, to an acceptor molecule, in a process D*A-

DA*, where the star marks the excited molecular species. RET,
occurring via the exchange of a virtual photon,1 governs energy-
transfer processes for intermolecular distances in the 10–100 Å
range, where the orbital overlap is negligible and radiative
energy transfer can be excluded. The first RET model dates
back to 1948,2 but in spite of continued research in the field,
many issues remain unsolved: molecular vibrations,3 static4,5

and dynamic3,6–9 disorder enter the picture. Moreover RET
is a dissipative phenomenon and dynamical models for RET
require the techniques of open quantum systems. Here,
we propose an original dynamical approach to RET where the
RET-pair is described by a minimal model that accounts for non-
adiabatic electron-vibration coupling. The RET-pair dissipates
energy to a Redfield bath B1,10 that accounts for the coupling
between the system and fast environmental degrees of freedom
and hence accounts for homogeneous broadening (fast disorder).
Moreover the system is coupled to a pair of overdamped (classical)
oscillators B2,11 mimicking polar solvation, an effective source of
inhomogeneous broadening (slow disorder).12–15 A novel multi-
state Redfield–Smoluchowski equation is introduced to study the

coupled dynamics of the resulting open quantum-classical
system. The proposed approach represents a powerful strategy
to address photoexcited state dynamics in the presence of
dynamic disorder. The method is first validated addressing
the dynamics of a single molecule in solution, following
impulsive photoexcitation. Calculated absorption and time-
resolved fluorescence spectra demonstrate that the method
accounts not just for solvatochromic shifts and for their tem-
poral evolution, but also for homogeneous and inhomogeneous
broadening phenomena. In a more ambitious effort, the dynamics
of a RET pair is investigated in the same scheme, highlighting the
important role of dynamic disorder in speeding up RET processes.

2 The molecular model

The simplest accurate model for optical spectra of organic molecules
in solution applies to polar conjugated dyes, whose low-energy
physics is governed by the resonance between a neutral state |Ni,
with negligible polarity, and a charge-separated (zwitterionic) state
|Zi, with a sizable dipole moment m0, as shown in Fig. 1a, for two
representative dyes, DCM and NR. Essential state models describe
the electronic structure of the dye in terms of the corresponding two
diabatic states, separated by an energy gap 2z. Electron-vibration
coupling is described introducing a single effective coordinate Q̂ that
linearly modulates the energy gap, as to account for the different
equilibrium geometries associated with |Ni and |Zi. Introducing the
vibrational creation (annihilation) operator d̂† (d̂), the coordinate is

Q̂ ¼ d̂y þ d̂
� �. ffiffiffi

2
p

, and the molecular Hamiltonian reads:16

Ĥmol ¼ �tŝx þ 2zr̂�
ffiffiffiffiffiffiffiffiffiffiffiffi
�hovev

p
r̂ d̂y þ d̂
� �

þ �hov d̂yd̂ þ 1

2

� �
;
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where ŝx = |NihZ| + |ZihN|, r̂ = |ZihZ| and ov and ev are the
vibrational frequency and relaxation energy, respectively.
Numerically exact non-adiabatic eigenstates and eigenvalues
(|cai and Ea, respectively) for the molecular system are obtained
upon numerical diagonalization of Ĥmol (see ESI†).15,17

The model in eqn (1) accounts for the molecular polarity and
polarizability and has been successfully extended to describe
environmental and solvent effects on optical spectra of polar
dyes.12,13,17 A molecule in solution feels the electric field
(the so-called reaction field) generated by the solvent in
response to the solute polarity. The fast component of the
reaction field is associated with the electronic degrees of free-
dom of the solvent, as described by its refractive index, and can
be treated in the antiadiabatic approximation. This leads to a
renormalization of model parameters that, in view of the
marginal variability of the refractive index of common organic
solvents, are considered solvent independent.12

In polar solvents, a slow component of the reaction field For

appears due to the orientational motion of polar solvent
molecules around the solute. For enters the Hamiltonian with
a term �r̂For, where the prefactor m0, in the definition of the
dipole moment operator m̂ = m0r̂, is included into For that then
acquires energy dimension. If the solvent is treated as an elastic
medium, the potential energy is For

2/4eor, where eor is the solvent

relaxation energy, a quantity that measures the solvent polarity.12

The For-dependent molecular Hamiltonian can be diagonalized for
different For values and linear and non-linear optical spectra of polar
dyes have been successfully calculated13–15,17 (see ESI†) in an
approach that however does not account for relaxation phenomena.

3 The multistate Redfield–
Smoluchowski quantum-classical
equation

To set up a dissipative model, we follow ref. 18 and couple our
system S, described by Ĥmol, to a Redfield bath B1, accounting for
fast environmental degrees of freedom. B1 is modeled as a collec-

tion of quantum harmonic oscillators ĤB1
¼
P
i

�hoi b̂
y
i b̂i þ 1=2

� �
,

where oi is the frequency of the i-th oscillator, b̂i b̂
y
i

� �
annihilates

(creates) the corresponding quantum. The system-bath coupling is
bilinear

ĤSB1
¼
X
i

gi b̂
y
i d̂ þ b̂id̂

y
� �

(2)

Fig. 1 (a) The chemical structure of two polar dyes: (4-(dicyanomethylene)-2-methyl-6-(4-dimethylamino-styryl)-4H-pyran) (DCM) and 9-
diethylamino-5-benzo[a]phenoxazinone (Nile-Red, NR). For both dyes the neutral (N) and zwitterionic (Z) resonance structures are shown. (b) Pictorial
representation of the different terms entering the multistate Redfield–Smoluchowski equation (cf. eqn (3)).
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and describes the exchange of energy quanta between S and B1.
In line with the fast nature of B1, the bath spectral density is set
equal to the constant term h�2g/p, where g has the dimension of
frequency.18,19 The full expression for the Redfield tensor is
reported in the ESI.†

The orientational reaction field For represents a slow variable and
is treated as a classical bath, B2. A hybrid quantum-classical density
operator ŝ(For;t) is therefore introduced, corresponding to the usual
reduced density matrix of the system, written on the basis of |cai
states, i.e. on the basis of the non-adiabatic eigenstates of Ĥmol in
eqn (1). However, to account for polar solvation, the matrix elements
of the density matrix acquire a dependence on For.

20,21 The density
matrix is normalized, TrS

Ð
dForŝ For; tð Þ

� �
¼ 1, and the expectation

value of a generic operator Ô is hÔðtÞi ¼ TrS
Ð
dForÔŝ For; tð Þ

� �
,

where TrS[�] is the trace over the system degrees of freedom.22

The dynamical equation for the hybrid density operator
reads (full derivation in ESI†):

@

@t
sab For; tð Þ ¼ � ioabsab For; tð Þþ

X
c;d

Rab;cdscd For; tð Þ

þ�For

i�h

X
c

racscb For; tð Þ�sac For; tð Þrcbð Þ

� 2eor
tl

r̂ For; tð Þh i@sab For; tð Þ
@For

þ 1

tl

@

@For
Forsab For; tð Þþ kBT2eor

@

@For
sab For; tð Þ

� �
;

(3)

where sab(For;t) = hca|ŝ(For;t)|cbi, 8a, b = 1,. . .,N, and the sums
run on Ĥmol non-adiabatic eigenstates. The first term in the

above equation describes the Liouvillian dynamics, with
oab = (Ea � Eb)/h�. The second term accounts for the dissipation
towards B1, with Rab,cd representing an element of the Redfield
tensor (see ESI†). The third and fourth terms describe the effect of
B2 on the S dynamics and the S to B2 backreaction, respectively
(see Fig. 1b). Finally, the last term describes the solvent drift-
diffusion Smoluchowski dynamics,11,15,23 tl being the longitudinal
relaxation time of the solvent,24 T the temperature and kB the
Boltzmann constant. The expectation value at the fourth term in
eqn (3) is calculated as hr̂(For;t)i = TrS[r̂ŝ(For;t)].

4 Dynamics and optical spectra of a
solvated organic dye

We are now in the position to calculate the dynamics of a
photoexcited molecule in solution starting from an initial (t = 0)
state with disentangled S and B2, i.e. ŝ(For;t = 0) = ŝ # w(For).
A coherent (ultrafast) vertical excitation is considered, with

ŝ(t = 0) = |C*ihC*|, where C�j i ¼
PN
a¼2

caj i cah jm̂ c1j i. In line with

the hypothesis of an ultrafast excitation, the initial solvent
distribution is set to the ground state equilibrium w(For;t = 0) =
exp[�E1(For)/kBT], where E1(For) is the For-dependent ground state
energy (see ESI†).

Fig. 2 summarizes results obtained for the DCM dye (mole-
cular parameters in Table 1) dissolved in CHCl3 (eor = 0.32 eV,15

tl = 2.8 ps24). Computational details can be found in the ESI.†
The trajectory in panel (a) shows the evolution of the system
energy hĤmoli vs. the expectation values of For and Q̂, while the
color maps show (for reference purposes) the adiabatic Potential

Fig. 2 Room temperature dynamics of coherently excited DCM dye (molecular parameters in Table 1, g = 5 ps�1) in liquid CHCl3 (eor = 0.32 eV, tl = 2.8 ps).
(a) Evolution of the hHmoli energy vs. the expectation values of the vibrational coordinate and of the solvation field. The blue dot represents the starting point of
the dynamics. The adiabatic PES are shown for reference. Panels (b), (c) and (d) show the time-dependence of hHmoli, of the vibrational coordinate, and of the
solvation field, respectively. Insets zoom on the early dynamics. An additional inset in panel (c) shows the hQ̂(t)i Fourier transform.
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Energy Surfaces (PES) relevant to the ground and excited states.
After the initial ultrafast excitation, the system undergoes coherent
oscillations before equilibrating towards the minimum of the
excited state PES, from where it finally slowly reaches the
ground state equilibrium. Fig. 2 also shows the time-
evolution of the system energy, and of the expectation values
of Q̂ and For. The initial coherent oscillations, observed at
frequency slightly larger than ov, due to hardening effects in
the excited state, extinguish within the first B500 fs, and in
about 10 ps the solvent equilibrates towards the minimum of

the excited state PES. Subsequent relaxation towards the
ground state is completed in about 0.5 ns (see ESI† for more
details).

Absorption spectra of the solvated dye are calculated as the
real part of the Fourier transform of the dipole–dipole correla-

tion function Ca
mmðtÞ ¼ hm̂ðtÞm̂i ¼ TrS

Ð
dForm̂Ôa For; tð Þ

h i
, where

Oa(For;t) is the spectral generating function.27 At the initial

time, the generating function is set to Ôa For; 0ð Þ ¼
m̂ c1j i c1h j � exp �E1 Forð Þ=kBT½ �, where |c1i is the lowest eigen-
state of Ĥmol. Its subsequent dynamics is governed by the
same equation governing the density matrix dynamics,
eqn (3).27 Results in Fig. 3 reproduce the inhomogeneous
broadening due to polar solvation as well as the progressive
red-shift of the absorption band with increasing solvent
polarity. On the other hand, accounting for a single effective
coupled mode, the proposed model gives rise to a single

Table 1 Model parameters for DCM15 and NR25 dyes. All the quantities are
in eV

2z �t ev h�ov

DCM 2.28 0.88 0.456 0.172
NR 1.76 0.95 0.33 0.14

Fig. 3 Calculation of absorption and time-resolved fluorescence spectra of DCM. (a) Time-dependence of Ca
mm (black curve) and Cf

mm (green curve)
calculated in a non-polar solvent (cyclohexane, eor = 0).15 The inset zooms on the early time; (b) real part of the Fourier transforms of the signals in panel (a).
(c) Time-dependence of Ca

mm in CHCl3 (blue curve, same parameters as in Fig. 2) and DMSO (eor = 0.75 eV,15 tl = 2 ps,26 red curve); (d) real part of the Fourier
transforms of the signals in panel (c). (e, g and i) Time-dependence of Cf

mm in CHCl3 (blue curve) and DMSO (red curve) calculated for different t0; (f, h and j)
real part of the Fourier transforms of the signals in panels (e), (g), (i), respectively.
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vibronic progression that, in experimental systems, is blurred
due to the presence of several coupled modes.

To address time-resolved fluorescence spectra, we coherently
excite the ground state and calculate the dynamics of the
photoexcited system as described in the previous section.
After a time interval t0, we define the fluorescence generating

function Ôf For; t� t 0; t 0ð Þ whose dynamics again obeys eqn (3).
For each t0, the initial (t = t0) generating function is set as
m̂ŝ(For;t0) and the fluorescence spectrum is calculated as the real
part of the Fourier transform of the time correlation function

Cf
mmðt� t 0; t 0Þ ¼ hm̂ðt� t 0Þm̂ðt 0Þi ¼ TrS

Ð
dForm̂Ôf For; t� t 0; t 0ð Þ

h i
.

Results for different solvents are reported in Fig. 3. The time-
evolution of the Stokes shift and of the bandshapes compares
favourably with experimental results14,28,29 and is in line with
steady state fluorescence spectra, calculated based on the equili-
brated Boltzmann distribution (see ESI†).30

5 RET in polar solvent: the role of
dynamical disorder

Having validated the proposed approach on optical spectra of a
solvated dye, we can now move to RET. Our RET-pair is formed
by the two polar molecules shown in Fig. 1a, where DCM acts as
the energy donor D, and NR as the energy acceptor A. Both
dyes are described by the molecular Hamiltonian in eqn (1) and
the RET-pair Hamiltonian reads:

ĤRET ¼ � tDŝD � tAŝA þ 2zDr̂D þ 2zAr̂A þ V r̂Dr̂D

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hoD

v 2eD
q

r̂DQ̂D �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hoA

v 2eA
q

r̂AQ̂A

þ �hoD
v

2
Q̂D

2 þ P̂D
2

	 

þ �hoA

v

2
Q̂A

2 þ P̂A
2

	 

;

(4)

where D and A labels specify parameters and operators relevant
to the two molecular species. The V-term in the first line of the
above equation accounts for the intermolecular electrostatic
interaction between the two dyes in the zwitterionic state. As
discussed in ref. 18 and 31, this intermolecular interaction drives
RET and indeed the above Hamiltonian collapses in the standard
Förster model, with interacting transition dipole moments, if the
basis is rotated from the diabatic N and Z states to the adiabatic
ground and excited states for each molecule.

Following ref. 18, to account for fast environmental degrees
of freedom, D and A are coupled to a Redfield bath B1 with
constant spectral density J = h�2g/p (see ESI†). For polar solva-
tion we must account for the two reaction fields, For

D and For
A,

generated by the solvent in response to the D and A dipoles,
respectively. The hybrid quantum-classical density operator
ŝ(For

D,For
A;t) is therefore defined on a two-dimensional grid and

the expectation value of a generic operator Ô is calculated as

hÔðtÞi ¼ TrS
Ð
dFor

D

Ð
dFor

AÔŝ For
D ;F

or
A ; t

	 
� �
.

The dynamics starts upon impulsive excitation of the
D molecule with ŝ(For

D ,For
A;t = 0) = ŝ # w(For

D,For
A), where

ŝ(t = 0) = |C*ihC*|, and C�j i ¼
PN
a¼2

caj i cah jm̂D c1j i.18 The

magenta contour plot in Fig. 4a shows the starting solvent
distribution, w(For

D,For
A;t = 0) = exp[�E1(For

D,For
A)/kBT], where

E1(For
D,For

A) is the (For
D,For

A)-dependent ground state potential
energy (see ESI†). The equation of motion for the RET density
matrix is the two-molecules analogue of eqn (3) and is reported
in the ESI.†

Fig. 4 summarizes the calculated dynamics for the RET-pair
in chloroform. Panels (a) and (b) show the system energy
hĤRETi vs. the expectation values of the solvent reaction
fields and of the vibrational coordinates, respectively. These
quantities are shown as a function of time in panels (c–g).
Coherent oscillations of D are observed with frequency
B0.18 eV (panel h). The corresponding solvent coordinate
For
D is too slow to follow vibrational oscillations: the black trace

in Fig. 4a and hFor
Di in Fig. 4d do not show any remnant

oscillation. Coherent oscillations disappear in B500 fs, when
the energy starts flowing to A, well before the system reaches
the equilibrium in the D*A PES. The expectation value of the
coordinate Q̂A, after showing very weak initial oscillations
(peaking at B0.13 eV, panel i), slowly moves towards its
equilibrium geometry together with the relevant solvent coor-
dinate, For

A (see Fig. 4e).
To address the role of solvent dynamics in RET, we select the

longest living eigenstates of ĤRET as representative of states
D*A (eigenstate number 94) and DA* (eigenstate 92). In
Fig. 5, we show the corresponding populations calculated at
t = 4.5 ps in liquid CHCl3 (tl = 2.8 ps, panel (a)) and in the same
solvent, but setting tl - N (panel (b)), as relevant to a glassy
solvent or to a solid matrix with the same dielectric properties
as CHCl3. In liquid solvent, after 4.5 ps only a residual D*A
population is observed, the energy being almost completely
transferred to DA*. In glassy CHCl3, instead, at the same
delay time the D*A population is only depleted along special
directions in the solvent distribution, corresponding to those
solvent configurations for which the vibronic states associated
with D*A and DA* are almost degenerate. Accordingly, the
DA* population only builds up along the same special direc-
tions and the overall RET process dramatically slows down, as
it can also be appreciated in the videos available in the ESI.†
In either liquid or glassy matrices, RET occurs first along the
fastest channels where good alignment of the involved energy
levels is achieved. In frozen matrices, once the population
of these fastest channels is depleted, RET can only proceed
along slower channels. On the opposite, in the liquid solvent
the population in the fastest channels is continuously
replenished by the solvent rearrangement, leading to an
overall faster RET, as confirmed by the t-dependence of the
(For

D ,For
A)-integrated populations of D*A and DA* in Fig. 5c.

To further confirm the picture, Fig. 5d shows the time

evolution of the expectation value of the operator ŜA� that
measures the global A* population (defined in the ESI†)
calculated in liquid CHCl3 and in its glassy counterpart (solid
and dashed lines, respectively): in the early time (o500 fs),
RET velocity is similar in the two systems, but as soon as the
liquid solvent diffusion enters into play, RET is much favored
in the liquid solvent.
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6 Outlook

The proposed quantum-classical hybrid approach addresses the
dynamics of a quantum system dissolved in a liquid polar solvent,
accounting for the intertwined effects of non-adiabatic molecular
vibrations and of solvent fluctuations. Fast processes, driven by
the electronic polarization of the solvent, and slow processes,
driven by polar solvation, are accounted for combining the Red-
field theory with a multistate Smoluchowski equation. After
validating the approach on steady-state and time-resolved spectra
of a polar dye in solution, the fundamental problem of RET in a
dynamically disordered medium is attacked, demonstrating that
polar solvation dynamics, typically in the picoseconds time
regime, boosts RET efficiency.

The molecular Hamiltonian in eqn (1) only describes a
single effective molecular vibration that accounts for the
overall electron-vibration coupling, in a similar spirit as the
hierarchical representation in ref. 32 and 33. Of course
more than a single mode must be accounted for if a precise
description of vibrational spectra is needed,34,35 with effects
that are however marginal on electronic spectra. The presence
of more than a single molecular mode would for sure open
additional fast channels for RET in Fig. 5. However, since the
electron-vibration coupling strength would be distributed
among the modes, the overall RET velocity should only be
marginally affected. For sure additional calculations on models
with at least two explicit vibrations per molecule are in order to
safely address this issue.

Fig. 4 Room temperature dynamics calculated for the DCM–NR pair (molecular parameters in Table 1, V = 0.01 eV, g = 5 ps�1) dissolved in liquid CHCl3
(tl = 2.8 ps, eor

D = 0.32 eV, eor
A = 0.47 eV25). (a) The black trace shows the RET-pair energy vs. the expectation values of the polar solvation coordinates. The

solvent distributions calculated at t = 0 and t = 2.7 ps are shown as three-dimensional contours in magenta and red, respectively. The adiabatic PES
calculated for QD = 1.4, QA = 1.3 are shown for reference. (b) The black trace shows the RET-pair energy vs. the expectation values of the vibrational
coordinates. The adiabatic PES calculated for For

D = 0.023 eV, For
A = 0.027 eV are shown for reference. In panels (a) and (b) a blue dot marks the trajectory

starting point. (c) Time-evolution of the RET-pair energy. (d and e) Time-evolution of the solvation coordinates relevant to D and A, respectively. (f and g)
Time-evolution of D and A vibrational coordinates. (h) and (i) Fourier transforms of the signals in panels (f) and (g), respectively. Insets in panels (c), (f) and
(g) zoom on the early-time dynamics.
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The novel Redfield–Smoluchowski equation (eqn (3)) offers
a powerful strategy to address the effects of dynamical disorder
on the dynamics of a photoexcited molecular system. It has
been applied here to describe the effects of polar solvation on
optical spectra of a polar dye as well as on RET dynamics. The
same approach however can be adopted to describe other slow
degrees of freedom affecting molecular properties, including
e.g. conformational modes. The Redfield–Smoluchowski
equation lends itself quite naturally to model symmetry-breaking
in multipolar dyes,36,37 the intertwined role of conformational
motion and environmental degrees of freedom in thermally
activated delayed fluorescence,38 as well as the effect of
dynamical disorder in exciton transport in molecular aggregates.5
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