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Most chemical transformations (reactions or conformational changes) that are of interest to researchers have

many degrees of freedom, usually too many to visualize without reducing the dimensionality of the system to

include only the most important atomic motions. In this article, we describe a method of using Principal

Component Analysis (PCA) for analyzing a series of molecular geometries (e.g., a reaction pathway or

molecular dynamics trajectory) and determining the reduced dimensional space that captures the most

structural variance in the fewest dimensions. The software written to carry out this method is called

PathReducer, which permits (1) visualizing the geometries in a reduced dimensional space, (2) determining

the axes that make up the reduced dimensional space, and (3) projecting the series of geometries into the

low-dimensional space for visualization. We investigated two options to represent molecular structures

within PathReducer: aligned Cartesian coordinates and matrices of interatomic distances. We found that

interatomic distance matrices better captured non-linear motions in a smaller number of dimensions. To

demonstrate the utility of PathReducer, we have carried out a number of applications where we have

projected molecular dynamics trajectories into a reduced dimensional space defined by an intrinsic reaction

coordinate. The visualizations provided by this analysis show that dynamic paths can differ greatly from the

minimum energy pathway on a potential energy surface. Viewing intrinsic reaction coordinates and

trajectories in this way provides a quick way to gather qualitative information about the pathways trajectories

take relative to a minimum energy path. Given that the outputs from PCA are linear combinations of the

input molecular structure coordinates (i.e., Cartesian coordinates or interatomic distances), they can be

easily transferred to other types of calculations that require the definition of a reduced dimensional space

(e.g., biased molecular dynamics simulations).
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1. Introduction

Chemical reaction pathways and structural transformations
occurring on hyperdimensional potential energy surfaces (PESs)
can be difficult to comprehend due to the high number of degrees
of freedom available in most molecular systems. The use of
reaction coordinate diagrams and reduced dimensional potential
energy surface scans1 (RDPESs) has already demonstrated the
utility of viewing chemical reactions in a small number of
dimensions. These approximate RDPESs are oen made by
incrementally varying a small number of geometric features and
plotting the values of potential energy as a function of these
features to generate a low-dimensional surface. For example,
a recent paper by Liu et al. details a method of using RDPESs on
which to conduct ab initio molecular dynamics (MD) simulations
where the RDPESs were constructed using geometric coordinates
“chosen based on the chemical knowledge of the system.”2 In
addition to generating RDPESs, similar approaches (e.g., choosing
specic bond distances, angles, and dihedrals along the course of
trajectories as in ref. 3–8) are oen used to plot several MD
This journal is © The Royal Society of Chemistry 2019
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trajectories, and to carry out free energy sampling [e.g., using
methods like umbrella sampling,9 metadynamics,10 boxed
molecular dynamics (BXD),11,12 forward ux sampling,13 mile-
stoning,14 all of which require a well-dened reduced dimensional
space of collective variables from which to sample]. In general,
these sorts of analyses tend to rely heavily on user input, i.e., the
person making the surface uses their chemical intuition to pick
geometric criteria that will make the analysis useful. However, by
inferring the geometric changes most important to a reaction and
calculating the energy of structures along those coordinates, one
runs the risk of conrming one's own biases, and neglecting
potentially important degrees of freedom. In a variety of realms, it
is therefore useful to have an automated method for generating
low-dimensional representations to describe structural changes
along molecular pathways that is quantitatively and a priori
derived from the input data.

In this article, we outline a dimensionality reduction method
incorporating principal component analysis (PCA). PCA is an
extremely popular method in various elds: in experimental
biology, PCA is used to determine the effects of different gene
expressions.15–17 In analytical chemistry, PCA is central in the
development of quantitative structure activity relationship (QSAR)
models, of particular utility in the pharmaceutical industry.18–21

Perhaps most closely related to this study is the use of PCA in
computational biology, to capture essential motions of a protein in
MD simulations.22–24 There are, however, still some key limitations
of PCA: rst, it is assumed that the relationships between features
of the data points are linear. Second, principal components must
be orthogonal to one another, so some types of coupled motions
may not be well-described (i.e., related to the rst point, motions
that are coupled in non-linear relationships). Third, because PCA
aims to pick principal components along which the variance of the
data is maximized, some shapes of the data distribution can end
up being described poorly (e.g., two “bands” of data, or stacked
“pancakes” of data points).25–27 Despite these limitations, for the
applications described herein, PCA does an excellent job of
dening a reduced dimensional space, without losing too much
structural information along the chemical pathways examined,
and the issue of capturing non-linear motions can be mitigated by
adjusting the representations of molecular structures that are
input to PCA. Despite its utility and the fact that reaction coordi-
nates of small-molecule systems are not as susceptible as those of
larger systems to suffer from the aforementioned limitations, as
far as we know, PCA is not commonly utilized for the visualization
of small-molecule chemical change.

For computational studies of large biomolecular systems
occurring over long timescales, a suitable choice of collective
variables is necessary for modelling dynamics, and thus many
dimensionality reduction techniques in addition to PCA have
been explored in the eld. For example, in the realm of Markov
state models, many in the computational community have chosen
to employ time-lagged (or time-structure based) independent
component analysis (TICA)28 rather than PCA. TICA aims to
maximize the autocorrelation for a given lag time, rather than the
variance, and so is better able to resolve slow timescale events,
which is better for capturing the slow dynamics of largemolecules
like enzymes.26,29 Diffusion maps constitute a dimensionality
This journal is © The Royal Society of Chemistry 2019
reduction technique that does not assume the data points to be
related linearly, but instead seeks to determine the manifold in
which the data live.30–32 For the small-molecule applications dis-
cussed below, where we are not considering very large systems
occurring over large timescales and particularly because we are
focusing on intrinsic reaction coordinates (IRCs) rather than MD
trajectories to dene a reduced dimensional space, we chose to
use PCA in order to determine the optimal reduced dimensional
space for these example systems. The methods described herein
are provided in an open-source soware package named PathRe-
ducer, which allows the user to decide whether their system is best
described by linear combinations of Cartesian coordinates or
squared interatomic distances, and also whether they would like
these inputs to be mass-weighted prior to processing. The merits
of all options as applied to several example systems are discussed
in the results section, below.

In this paper, we have three principal goals. The rst is to
introduce the application of PCA into the eld of small-
molecule computational chemistry, where its value may not
have been as widely recognized as it has been in computational
biology. The second is to show the utility of using PCA to analyze
and characterize chemical pathway data. In particular, we show
that a variant of PCA in which the input data are squared
internal distances can have advantages over the version in
which Cartesian coordinates are used. Additionally, by using
a reduced dimensional space dened by an IRC and projecting
MD trajectory data into this space, one can quickly classify the
routes taken by trajectories compared to the minimum energy
path. The third objective is to provide our code, PathReducer: an
easy-to-use code for computational chemists to reduce the
dimensionality of their molecular systems.
2. PathReducer: dimensionality
reduction software

The methods described below are freely available in an open
source Python package named PathReducer, with further details
in the ESI.† While there are many dimensionality reduction
packages already available in the scikit-learn33,34 library in
Python, the present soware is specically designed to process
trajectories of small molecules and generate visualizations
thereof. The RMSD Python package, which calculates the RMSD
between structures and does alignments using a variety of
possible methods, was also utilized in the making of this code
for structural alignments using the Kabsch algorithm.35 A
owchart illustrating how PathReducer works is shown in Fig. 1.
2.1 Input

PathReducer takes as input the following:
(a) A series of molecular geometries (e.g., an IRC, a trajectory,

a relaxed potential energy surface scan) in xyz le format;
(b) ndim, the number of dimensions for the low-dimensional

space (oen two or three dimensions would be most useful for
visualization);

(c) Whether the user wants PCA analysis to be carried out on
mass weighted input coordinates;
Chem. Sci., 2019, 10, 9954–9968 | 9955
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(d) Optional labels of four atoms surrounding a stereogenic
center of the molecule in order to dene chirality (this is only
necessary when dening the molecular structures as squared
interatomic distance matrices, discussed in more detail below);

(e) The representation of the IRC/trajectory upon which the
user wants to perform PCA. The user can specify that PCA be
performed on the aligned Cartesian coordinates of the struc-
tures (keyword “Cartesians”) or on the upper triangle of the
squared interatomic distance matrices of the structures
(keyword “Distances”).

The full distance matrix representation is less suitable for
very large systems as the size of the representations scales as
OðN2Þ, with N being the number atoms, whereas the aligned
Cartesian coordinate representation scales with OðNÞ. Using
internal distances, however, provides a more accurate reduced
dimensional representation in fewer dimensions when non-
linear motions (e.g. torsions) are involved in the reaction
pathway. Additionally, the output from using interatomic
distancematrices as input to PCA is more suitable for use in free
energy sampling methods since the representation is rotation-
ally and translationally invariant.
2.2 Pre-processing

Both methods have the option to mass-weight the Cartesian
coordinates prior to processing by PCA, but mass-weighting
must occur aer structural alignment. If the specied input is
“Cartesians”, the Cartesian coordinates of the structures are
represented as 3N-dimensional vectors and aligned using the
Kabsch algorithm (step 1C in Fig. 1).36 If the user chooses to
mass-weight, the Cartesian coordinates are at this point trans-
formed according to the following equation:

x ¼ ð ffiffiffiffiffiffi
m1

p
x1;

ffiffiffiffiffiffi
m1

p
y1; .;

ffiffiffiffiffiffiffi
mN

p
zNÞ; (1)

where x is the 3N-dimensional vector containing the mass-
weighted coordinates for a single structure along the IRC/
trajectory, mN is the mass of atom N, and N is the number of
atoms in the system (MW step in Fig. 1). If the specied input is
“Distances”, rather than using the 3N-dimensional aligned
Cartesian coordinate vectors to represent each structure along
the IRC, each structure is represented as a squared internal
distance matrix with each element representing the squared
Euclidean distance between an atom pair of the molecule,
generating an (N � N)-dimensional distance matrix for each
input structure (step 1D in Fig. 1). Because each interatomic
distance matrix is symmetric with its diagonal elements being
zero, the upper triangle of eachmatrix can be attened to a vector

of length
NðN � 1Þ

2
containing all of the pairwise distances.
2.3 Processing

The data processing step (step 2 in Fig. 1) involves performing

PCA on the [n � 3N] or
�
n� NðN � 1Þ

2

�
-dimensional matrix of

structures, n being the number of structures from the input xyz
le. Because PCA is well-described in the literature,25,27 we will
only give a brief summary of the method here. PCA takes a set of
9956 | Chem. Sci., 2019, 10, 9954–9968
n observations with p variables (in our case, n structures along

an IRC/trajectory with 3N Cartesian coordinates or
NðN � 1Þ

2
interatomic distances) and returns an orthogonal basis that
maximizes the variance captured by the minimum number of
principal components. This transformation is accomplished by
a diagonalization of the mean-centered covariance matrix C to
generate a new orthogonal coordinate system as follows:

LC ¼ UCCU
T
C, (2)

where UC is the matrix of eigenvectors, each of which represents
a new coordinate that corresponds to a linear combination of
the original variables, and LC is the diagonal matrix of the
corresponding eigenvalues (lC) of C. In this case, the principal
components are linear combinations of Cartesian coordinates
or squared interatomic distances. The corresponding eigen-
values correspond to the proportion of the total variance of the
system that is captured by each eigenvector. The amount of
variance captured by each eigenvector is contained in the
eigenvector's corresponding eigenvalue, lC. What is oen
referred to as the “goodness of t” (G.o.F.) or the “variance
explained” by the reduced dimensional model corresponds to
the sum of the eigenvalues of the number of eigenvectors used
in the reduced dimensional space (that is, the fraction of vari-
ance captured by the ndim principal components chosen):37

G:o:F: ¼

Xndim
k¼1

lC;k

Xn

i¼1

lC;i

(3)

2.4 Reconstruction

The reduced-dimensional IRC/trajectory can then be trans-
formed back into the original, full-dimensional space to
reconstruct the effect of individual principal components on the
molecular geometries using the following expression (step 3 in
Fig. 1):

~X ¼ Ti$Wi + �X , (4)

where ~X is the [n � 3N] or
�
n� NðN � 1Þ

2

�
-dimensional matrix

of reduced dimensional structures transformed into the orig-
inal, full-dimensional space, Ti is the [n � 1]-dimensional
matrix of structures represented by the ith principal compo-

nent, Wi is the [1 � 3N] or
�
1� NðN � 1Þ

2

�
-dimensional matrix

corresponding to weights of the ith principal component, and �X
is the mean structure of the original dataset. Similarly, the
following expression is used to reconstruct the combined effect
of the ndim principal components:

~X ¼ Ti:ndim
$Wi:ndim

+ �X , (5)

where Ti:ndim is the [n � ndim]-dimensional matrix of structures
represented by all ndim principal components and Wi:ndim is the
This journal is © The Royal Society of Chemistry 2019
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Fig. 1 A flowchart indicating how PathReducer works. The blue arrows/boxes represent the procedure used if the user specifies a “Cartesians”
input to PCA and the red arrows/boxes represent the path taken with a “Distances” input specified. Black arrows/boxes are parts of the method
shared by both input types.
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[ndim � 3N] or
�
ndim � NðN � 1Þ

2

�
-dimensional matrix contain-

ing the weights of the ndim principal components.
If using a “Cartesians” input to PCA, this is the last step prior

to generating output because the reconstructed structures are in
Cartesian space. In the case of using the “Distances” input, the
This journal is © The Royal Society of Chemistry 2019
structures that have been transformed into reduced dimen-
sional space at this point are still vectors representing the upper
triangle of interatomic distance matrices, and so each row then
needs to be converted from squared distances to Cartesian
coordinates.38 These steps represent the most computationally
expensive part of the procedure, as a matrix diagonalization
Chem. Sci., 2019, 10, 9954–9968 | 9957
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Fig. 2 The IRC of the malonaldehyde system. Structures A, B, and C represent reactant, transition state, and product structures, respectively. In
this and all similar plots below, purple represents the beginning of an IRC/trajectory and yellow represents the end.
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must be done for each molecular structure (step 7D in Fig. 1).
The reconstruction of Cartesian coordinates from the attened,
reduced dimensional distance matrices requires the following:
each vector is converted back into a square, symmetric matrix
with zeroes along the diagonal (step 4D in Fig. 1). The Gram
matrix, G, for each internal distance matrix is then calculated
by:

G ¼ �1

2

�
D� 1dT

1 � d11
T
�
; (6)

where D represents the interatomic distancematrix and d1 is the
rst column of D (step 5D in Fig. 1). An eigenvalue decompo-
sition (EVD) is then conducted on G (step 6D in Fig. 1) as
follows:

LG ¼ UGGU
T
G (7)

The approximate reconstruction of the Cartesian coordi-
nates is given by the rst three columns of the matrix generated
by taking dot product of the eigenvectors and the square root of
Fig. 3 Plots illustrating a projection of the malonaldehyde IRC structure
two and (b) top three principal components of the malonaldehyde sy
proportion of the variance in the IRC data for each individual principal co
the total variance in the data.

9958 | Chem. Sci., 2019, 10, 9954–9968
their corresponding eigenvalues, L1/2
G UT

G. It should be noted that
because the reduced dimensional distance matrix, D, is not
a true distance matrix, but rather what is referred to as a “pre-
distance matrix”,39 there will be trailing values in the recon-
struction matrix L1/2

G UT
G beyond the rst three columns that are

a result of the fact that some structural information is lost by
reducing the dimensionality of the system. If D was a true
distance matrix, only the rst three columns of L1/2

G UT
G would be

nonzero. Additionally, because information about the absolute
rotational/reective conguration is also lost in representing
each of the structures as internal distance matrices, these
structures will be in an arbitrary rotational/reective congu-
ration. For the sake of visualization, the Kabsch algorithm,36

which determines the optimal rotation matrix to minimize
RMSD between pairs of points, is used to align structures along
the IRC.

Structures along the reconstructed pathway are reected if
the chirality of the structure at a particular point is not
consistent with the analogous structure in the original le (step
s in reduced dimensional space. (a) A two-dimensional plot of the top
stem using squared interatomic distances as input to PCA. (c) The
mponent. In this case, two principal components describe over 99% of

This journal is © The Royal Society of Chemistry 2019
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Fig. 4 The top two principal components transformed onto the original malonaldehyde IRC. Vectors superimposed on the structures corre-
spond to deformation vectors in going to the next structure along that PC (e.g., the vectors shown on the reactant structure shows the atomic
movements necessary to go to the TSS, while the vectors on the TSS are themovements to get to product). Vector magnitudes were adjusted for
clarity. These vectors are for illustrative purposes only, as they would change depending on the alignment of the structures along the PC. For
videos of these PCs, see https://vimeo.com/335614575 for PC1 and https://vimeo.com/335614565 for PC2.
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7D in Fig. 1). The optional input of four atoms surrounding the
stereogenic center are used to determine the chirality of the
structure at each point by the method in ref. 40. The sign of the
following fourth-grade determinant is used to assign the
chirality of the structure:

|

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

x4 y4 z4 1

| (8)

where xi, yi, and zi represent the Cartesian coordinates of the
four atoms surrounding the stereogenic center. This determi-
nant will only be equal to zero when the four atoms used to
assign the molecule's chirality are in the same plane.

If coordinates were mass-weighted, mass-weighting of the
coordinates is removed according to the following equation
(step UMW in Fig. 1):
Fig. 5 The IRC for the SN2 system. Structures A, B, and D represent the
orbits the system to hydrogen bond with the hydroxyl group), respectiv
(Fig. 6), which can be thought of as the structure of the system when th
come back to hydrogen bond with the hydroxyl group.

This journal is © The Royal Society of Chemistry 2019
vPCi
¼

�
x1ffiffiffiffiffiffi
m1

p ;
x2ffiffiffiffiffiffi
m1

p ;.;
x3Nffiffiffiffiffiffiffi
mN

p
�
; (9)

where vPCi
is the 3N-dimensional vector containing the Carte-

sian coordinates for a structure along the reaction pathway in
PCi, xj is the jth component of the 3N-dimensional vector con-
taining the mass-weighted coordinates for a single structure
along the IRC/trajectory, mN is the mass of atom N, and N is the
number of atoms in the system. Finally, structures along the
reconstructed pathway are aligned using the Kabsch algorithm
(step 8D in Fig. 1).
2.5 Output

PathReducer generates a total of (ndim + 1) xyz les from the
Cartesian coordinates of the principal components (PCs): the
ndim PCs individually transformed into the full-dimensional
space, as well as the combination of all ndim PCs transformed
reactant, transition state, and product structures (after the fluoride ion
ely. Structure C represents the structure where PC2 is at a minimum
e fluoride ion has fully dissociated from the methanol, but has not yet

Chem. Sci., 2019, 10, 9954–9968 | 9959
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Fig. 6 Structures from the SN2 IRC shown in Fig. 5 projected into the (a) top two and (b) top three principal components of the SN2 systemwhen
using squared interatomic distances as the representations of structures that are input to PCA. The locations of structures A, B, C, and D from
Fig. 5 with respect to these principal components are labelled. (c) The proportion of variance described by each principal component.
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back into the full-dimensional space. These les show the effect
of each principal component on the geometries along the
trajectory. A plot of the IRC/trajectory in the reduced dimen-
sional space dened by the top two and three PCs is also
generated (see below for examples).
3. Applications to chemical systems

To illustrate the output of PathReducer, we show four examples
of systems on which we conduct dimensionality reduction. The
rst two, “malonaldehyde” and “SN2”, are prototypical test
systems that have been previously used by Tsutsumi et al. to
illustrate their dimensionality reduction approach.41,42 The
third is a simple torsional rotation of N2O-appended acryloni-
trile. The last example is the opening of substituted cyclo-
propylidene to generate chiral allenes.43 The results discussed
below utilize coordinates that were not mass-weighted. The
mass-weighting option is included in case the user wants to
Fig. 7 Deformation vectors and geometries of structures A–D repres
correspond to the atomic motions necessary for the current structure's
going to structure B, structure B going to C, etc.). Relative vector magni
frames (i.e., the magnitude of all vectors in a frame were adjusted by the s
purposes only, as these vectors are dependent on the final alignment
vimeo.com/335614633 for PC1 and https://vimeo.com/335614625 for P

9960 | Chem. Sci., 2019, 10, 9954–9968
dene a reduced dimensional space for which the calculated
kinetic energy is not dependent on mass. As we were not
interested in calculating kinetic energy in our reduced dimen-
sional space, and because some of the systems below include
hydrogen movements along the reaction coordinate that we did
not want to be dwarfed by the movements of heavy atoms, we
chose not to mass-weight the coordinates prior to PCA. Mass-
weighting does change the results of the dimensionality reduc-
tion, as scaling the data on which PCA is conducted changes the
reduced dimensional space. In terms of visualization of the
pathway in the reduced dimensional space, mass-weighting will
give precedence to the movement of heavier atoms; that is,
heavier atoms will contribute more to the structural variance
along the chemical pathway, which will be reected in the PCs.
For this reason, care should be taken when deciding whether or
not it is appropriate to mass-weight the coordinates prior to
PCA. Mass-weighting would not be appropriate, for example,
when hydrogen movements play a large role in the chemical
ented by PC1 and PC2 along the SN2 IRC. The deformation vectors
geometry to form the following structure's geometry (i.e., structure A
tudes within a frame are quantitative, but are only qualitative between
ame factor in order to increase clarity) and should be used as illustrative
of the structures along the PC. For videos of these PCs, see https://
C2.

This journal is © The Royal Society of Chemistry 2019
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Fig. 8 MD trajectory for fluoride dissociation projected into the reduced dimensional space defined by the IRC for the SN2 systemwith respect to
(a) the top two principal components and (b) the top three principal components. The IRC, as in previous plots, is shown by the purple to yellow
color-mapped line and the trajectory is shown with the same color-mapping, but a black outline. The equivalent plots for PCA on the aligned
Cartesian coordinates can be found in the ESI.†
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pathway. See the ESI† for mass-weighted results for all of the
example systems below.
3.1 Quantum mechanical methods for generating IRCs and
trajectories

Gaussian 09 (ref. 44) was used to generate the example IRCs
shown below. The malonaldehyde, SN2, and cyclopropylidene
IRCs were calculated using the MP2 method45 with the 6-
31+G(d,p) basis set. The MD trajectory for the SN2 and cyclo-
propylidene bifurcation systems were calculated using the
Born–Oppenheimer Molecular Dynamics (BOMD) functionality
in Gaussian 09 at the same level of theory as their IRCs. It should
be noted that while ab initio quantum chemistry methods were
used to generate IRCs and MD trajectories in this case, this
analysis is not specic to a particular type of calculation or level
of theory. All that is needed as input to the method is one or
more les containing molecular structures in xyz le format
illustrating the transformation(s) of interest.
3.2 Malonaldehyde

Intramolecular hydrogen transfer between the two oxygens of
malonaldehyde is one of the most studied systems in reaction
Fig. 9 The two possible pathways of N2O reacting with acrylonitrile. The
acrylonitrile complex that appears to be the primary geometric coord
competing pathways.

This journal is © The Royal Society of Chemistry 2019
dynamics, owing to the fact that the reaction coordinate is
symmetric about the transition state structure, generating
indistinguishable molecules. The IRC for this reaction, as well
as reactant, transition state, and product structures, can be seen
in Fig. 2.

Fig. 3a and b show the results obtained when PathReducer is
used to represent the structures along the malonaldehyde IRC
as squared internal distance matrices that are input to PCA.
Fig. 3c shows that the rst principal component (PC1) describes
87.0% of the variance, while PC2 accounts for 12.8%. As these
components capture more than 99% of the total variance in the
geometrical changes along the IRC, we conclude that the
important molecular motions are captured by this two-
dimensional space. Performing PCA on the aligned Cartesian
coordinates gives very similar results, which are shown in the
ESI.†

Fig. 4 shows that the most signicant principal component
(PC1) corresponds to motion of the hydrogen atom between the
two carbonyl oxygens and alternating single and double bond
character of the two C–C bonds. The second most signicant
principal component (PC2) corresponds predominantly to
inward motion of the carbonyl oxygens, where the oxygens are
farthest apart in the reactant and product structures and closest
ball-and-stick inset illustrates the dihedral angle rotation of the N2O–
inate that differentiates the two transition state structures along the
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together at the transition state structure. For videos of these
PCs, see https://vimeo.com/335614575 for PC1 and https://
vimeo.com/335614565 for PC2. See the ESI† for corresponding
xyz les of these PCs.
3.3 SN2 reaction between OH� and CH3F

Our second example is the SN2 reaction between hydroxide ion
and uoromethane, where hydroxide ion attacks the backside
of uoromethane and releases a uoride ion (Fig. 5). Modelled
in the gas phase, along the IRC, the uoride ion does not
dissociate completely, but rather orbits the newly generated
methanol until it nds a suitable location to hydrogen bond
with the hydroxyl group. This is not, however, the most
common scenario in MD trajectories. Only 10% of MD trajec-
tories conducted by Tsutsumi et al. showed the uoride ion
hydrogen bonding with the resultant methanol, while the other
90% had the uoride dissociating from the system completely.42

In this system, with squared interatomic distances as input
to PCA, PC1 accounted for 78.7% of the variance, PC2 for 14.5%,
and PC3 for 4.9% (Fig. 6c, below).
Fig. 10 (a) Dihedral scan geometries from Fig. 9 projected into the top t
component of the N2O–acrylonitrile complex system using aligned Car
Fig. 9 projected into the top two PCs and (d) the proportion of variance ex
system using squared interatomic distances as input to PCA.

9962 | Chem. Sci., 2019, 10, 9954–9968
Visualizations of the geometric changes along the top two
principal components can be found in Fig. 7. PC1 represents
a pathway that looks quite similar to the original IRC, where the
uoride ion dissociates from methanol and then orbits around
the molecule to interact with the hydroxyl group. For a video of
PC1, see https://vimeo.com/335614633. PC2 represents an
almost periodic motion (as can be seen in Fig. 6a, where PC2
starts at a maximum, reaches a minimum, and then returns
near to the same maximum) of methyl group pyramidalization
and O–H bond stretching. For a video of PC2, see https://
vimeo.com/335614625. Corresponding xyz les for these PCs
can be found in the ESI.†

New data for a system can also be projected into a dened
reduced dimensional space. To illustrate this, a MD trajectory
was initiated from the SN2 system's transition state structure
(structure B, Fig. 5–7) for 500 steps of 1 fs and propagated in the
product direction. As was observed in most of the trajectories
calculated by Tsutsumi et al.,42 aer dissociating, the uoride
ion did not orbit the resultant methanol and hydrogen bond
with the hydroxide group, but rather dissociated completely and
did not re-associate for the duration of the trajectory (500 fs). As
wo PCs and (b) the proportion of variance explained by each principal
tesian coordinates as input to PCA. (c) Dihedral scan geometries from
plained by each principal component of the N2O–acrylonitrile complex

This journal is © The Royal Society of Chemistry 2019
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Fig. 11 Structural changes along the acrylonitrile IRC transformed into PC1 using (a) aligned Cartesian coordinates and (b) squared interatomic
distances as inputs to PCA. (c) The absolute deviation of the N2O bond distances in the reconstructed scans compared to the original scan,
comparing these bonds using aligned Cartesian coordinates (“Cartesians”) input to PCA (blue) and squared interatomic distances (“Distances”)
input (red). For videos of these PCs, see https://vimeo.com/336110236 for PC1: “Cartesians” input and https://vimeo.com/335614657 for PC1:
“Distances” input.
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can be seen in Fig. 8, there is oscillatory movement with the
amplitude in the direction of PC1 and almost linear movement
in the direction of PC2. This oscillation reects the excess
energy in the forming C–O bond vibration (reected in PC1) and
progression along PC2 is consistent with the C–F distance
increasing. Though this reduced dimensional space was
dened only by the structures along the SN2 IRC, it can be
quickly seen from the projection of an MD trajectory in the
reduced dimensional space that the dynamical path is very
different than the IRC path. In addition to showing that MD
trajectory paths can be very different from IRC paths, this
example illustrates that PathReducer can be used as a straight-
forward way to classify reaction pathways generated by different
types of molecular simulations. Plots of the results when using
aligned Cartesian coordinates to represent the molecular
structures can be found in the ESI† and look similar to those
generated when using squared interatomic distances as input to
PCA.
Fig. 12 A comparison of the bifurcating reactions in (a) the previous
study by Carpenter et al.43 looking at the effects of chiral solvent on
enantiomeric induction and (b) the current study. Both reactions
involve the ring-opening of cyclopropylidene to generate enantio-
meric allenes, but N2 (in blue) was included as a leaving group in the
previous study.
3.4 Torsions in the N2O–acrylonitrile complex

One of the biggest issues that was found in this study with using
aligned Cartesian coordinates as input to PCA rather than
interatomic distances is how poorly non-linear motions (e.g.,
torsions) are represented in individual principal components.
To illustrate this point, we looked at the dihedral rotation
around the C–O bond of a N2O–acrylonitrile complex. We chose
this system as one that could be interesting to view in reduced
dimensions because we posit that this rotation would be
a geometric feature that could, in principle, discriminate
between two possible reactive pathways: epoxidation or 1,3-
dipolar cycloaddition (Fig. 9).

Fig. 10 shows the IRC projected onto the reduced dimensional
space. In this case, two principal components are enough to
describe over 99% of the variance in the system. However, using
This journal is © The Royal Society of Chemistry 2019
interatomic distances to represent the structures as input to PCA
resulted in the rst principal component accounting for 93.3% of
the variance in the system, whereas an aligned Cartesian coor-
dinates representation of the structures meant the rst principal
component only accounted for 82.0% of the variance. This result
implies that interatomic distance matrices as input to PCA are
better for handling torsions in a smaller number of principal
components. Thus, if torsions are suspected to be one of the
major types of geometric changes along the course of an IRC or
trajectory, using the “Distances” input option is likely a better
choice (though, if possible, both methods should be screened).

This point can be illustrated by examining the effects of the
top principal components on the geometries along the
Chem. Sci., 2019, 10, 9954–9968 | 9963
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Fig. 13 A visual representation of why the structures in the bifurcation IRC following the point where the paths split have distinguishable
interatomic distance matrices. In this IRC, enantiomers 1 and 2 are related by a 180� torsion about the C1–C3 axis. Though enantiomers 1 and 2
would be considered enantiomers based on atom identities, they are not enantiomers when atom numbering is taken into account due to the
numbering of the atoms on the methyl groups.
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acrylonitrile scan. When performing PCA on the aligned
Cartesian coordinates, PC1 signicantly compresses the N2O
moiety during the torsion in order to emulate the effect of
a dihedral rotation, while this is not the case when using
squared interatomic distances. This is particularly evident in
the middle frames shown in Fig. 11a and b. Similarly, a squared
interatomic distances representation more accurately preserves
the bond distances of the N2O moiety (Fig. 11c). See https://
vimeo.com/336110236 for a video of PC1 using aligned Carte-
sian coordinates as input to PCA and https://vimeo.com/
335614657 for PC1 using interatomic distances as input to PCA.
3.5 Post-transition state bifurcation in cyclopropylidene
ring-opening

The nal example to illustrate the utility of this method is
a system that exhibits a post-transition state bifurcation.46,47

This particular system is the ring-opening of cyclopropylidene
to generate chiral allenes, which follows up on a reaction
previously studied by two of us, investigating the effects of
explicit solvent on enantiomeric induction. In the previous
study, the concerted, asynchronous transition state structure
for the ring-opening event was preceded by N2 departure from
the carbene carbon, as depicted in Fig. 12.43 The system sans N2
Fig. 14 A projection of the structures along the bifurcation IRC into the (a
on the IRC structures represented as squared interatomic distances. (c) Th
cyclopropylidene ring-opening bifurcation system.

9964 | Chem. Sci., 2019, 10, 9954–9968
was chosen to focus on the structural changes along the reac-
tion coordinate of the carbon skeleton (including uorines).

Systems with post-transition state bifurcations occur in cases
where a single transition state structure connects a reactant to
two separate products, without any intermediate minima or
secondary barriers along the downhill path to either product. If
one were to take the upper saddle point structure on the PES as
the transition state structure and follow the steepest descent
path in the reactant and product directions, where two products
are related by symmetry (e.g., enantiomers) the steepest descent
path on the product side would pass by a valley-ridge inection
(VRI) point before reaching a minimum. In the case of unsym-
metrical bifurcations, there would not be a VRI, but still an
additional exit channel with no intervening minima or barriers
to overcome. In either case, the IRC would not illustrate the
connection between the saddle point and the second possible
minimum, as, mathematically, there can only be one steepest
descent path. We chose this system to test as input to PathRe-
ducer because bifurcating reactions represent a class of chem-
ical change whose dynamics are oen important, but which
have very rarely been visualized using actual structural data and
are more oen illustrated on qualitative surfaces that illustrate
the location of a VRI.46,48–54

While an IRC calculation necessarily picks a single pathway
as the minimum energy path, a “bifurcating” IRC could in this
) top two and (b) top three principal components when performing PCA
e proportion of variance described by each principal component in the

This journal is © The Royal Society of Chemistry 2019
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Fig. 15 Four 500 fs trajectories projected into the reduced dimensional space defined by the top two (left plots) and three (right plots) PCs of the
cyclopropylidene bifurcation IRC, which is represented as a line plot for clarity. Videos of the original MD trajectories being projected here can be
found at (a) https://vimeo.com/336131095, (b) https://vimeo.com/336131066, (c) https://vimeo.com/336131042, and (d) https://vimeo.com/
336131137.

This journal is © The Royal Society of Chemistry 2019 Chem. Sci., 2019, 10, 9954–9968 | 9965
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case be constructed by a 180� torsion about the C1–C3 axis (see
Fig. 13) for each structure following the branching point. Note
that reecting each point along the IRC aer the point where
the paths split would articially change the atom labels and
would cause the distance matrices for the pathway to each
product to be identical, and thus would not be able to show the
paths splitting. To avoid this, we keep the atom labels consis-
tent with those that would be obtained by a torsional rotation.

Fig. 14 illustrates that representing structures along
symmetric bifurcating reaction paths using interatomic
distance matrices does a good job of illustrating the path
“splitting” before leading to the two possible products, whose
locations are shown by the yellow ends of the paths. The top
three principal components account for 77.6%, 11.8%, and
10.0% of the variance in the IRC, respectively. The equivalent
plot using the “Cartesians” input to PCA can be found in the
ESI.†

As with the SN2 system, MD trajectories for the cyclo-
propylidene bifurcation were initiated from the transition state
structure and propagated in the product direction. Fig. 15 shows
these trajectories projected into the reduced dimensional space
dened by the bifurcating IRC. The MD trajectories do not follow
the IRC path very closely, indicating that dynamic properties of
molecules should not be deduced from IRCs alone. Assigning the
product made in each case (if a product is even made) is not
entirely straightforward, as illustrated in the original trajectory
videos (found at https://vimeo.com/336131095 for trajectory A,
https://vimeo.com/336131066 for trajectory B, https://vimeo.com/
336131042 for trajectory C, and https://vimeo.com/336131137 for
trajectory D. See the ESI† for corresponding xyz les). However,
projecting these trajectories into the reduced dimensional space
dened by the IRC enables rapid qualitative insights into the
routes taken by any particular trajectory. Fig. 15a shows a trajec-
tory in which the cyclopropyl ring opens but lingers in the
bifurcation region without committing to a clear product
pathway. Fig. 15b and c show trajectories which are heading
toward generating a single product (enantiomer 2). Fig. 15d is
rather different: it goes along the pathway toward enantiomer 1
before traversing the region between the two possible products,
a consequence of the fact that the trajectories illustrated in
Fig. 15 are run in the gas phase at a constant total energy (NVE
ensemble). Therefore, once the molecule goes down the potential
energy “hill” aer the transition state structure, the molecule has
signicant excess energy with nowhere to dissipate, which
enables interconversion between different product states
through high energy geometries.

Seeing MD trajectories projected into a reduced dimensional
space dened by an IRC in this way offers a unique perspective
on the utility of IRCs compared to MD simulations. While MD
trajectories arguably model real, room temperature reactions
more accurately by including the effects of nite energy and
temperature, this kinetic energy adds noise to the pathway from
reactant to product(s). An IRC, however, shows the minimum
energy pathway from reactant to product(s); viewed another
way, the IRC is the minimum atomic motion necessary for
a transformation. In this sense, the IRC provides a sort of
“skeleton” characterizing the transformation of interest, which
9966 | Chem. Sci., 2019, 10, 9954–9968
is very useful to aid in product classication of MD trajectories.
Dening a reduced dimensional space based on an IRC and
projecting MD trajectories into this space offers a simple and
efficient way to characterize the pathways of MD trajectories in
a quantitative comparison to the IRC.

4. Conclusions and future work

In conclusion, we have generated a procedure and written
soware for dimensionality reduction of reaction pathways that
is generalizable and can handle specic chemical problems
(e.g., torsions and bifurcations). For several examples, we were
able to show that this method can reduce the dimensionality of
a complex chemical system to a much smaller number of
dimensions. For all of the applications outlined herein, two or
three dimensions was sufficient to reconstruct the reaction
pathway without losing too much information about the
structural variance. The principal components generated as
a result of this dimensionality reduction method are linear
combinations of (potentially mass-weighted) aligned Cartesian
coordinates or interatomic distances. For the example systems
described, the interatomic distances representation of struc-
tures was better than aligned Cartesian coordinates to describe
non-linear structural movements, such as torsions. In the
future, we plan to use this methodology to choose collective
variables to be used in free energy sampling workows such as
metadynamics or boxed molecular dynamics (BXD).12 We will
also analyze various different types of trajectories [e.g., MD
trajectories incorporating explicit solvent, non-adiabatic MD
trajectories, gas-surface scattering MD trajectories, user-
generated pathways from interactive molecular dynamics in
virtual reality (iMD-VR)]. Finally, we would also like to make the
code for this method more efficient in order to be better able to
analyze enzyme–substrate systems, as similar methods of
describing proteins as internal distance matrices have already
been utilized.23,55 Our hope is that PathReducer will prove useful
for mapping out reaction pathways, as an alternative to relying
on chemical intuition to determine geometric changes that are
most important along an IRC or trajectory. While improvements
are ongoing, we are condent in the broad utility of dimen-
sionality reduction of chemical systems and believe it has the
potential to form a useful tool for molecular analysis within the
whole of the molecular simulation community.
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