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Maximum likelihood estimations of force and
mobility from single short Brownian trajectories†

Raphael Sarfati,a Jerzy Bławzdziewiczb and Eric R. Dufresne*c

We describe a method to extract force and diffusion parameters from single trajectories of Brownian

particles. The analysis, based on the principle of maximum likelihood, is well-suited for out-of-

equilibrium trajectories, even when a limited amount of data is available and the dynamical parameters

vary spatially. We substantiate this method with experimental and simulated data, and discuss its

practical implementation, strengths, and limitations.

1 Introduction

Brownian particles are ubiquitous in soft matter and biological
sciences, from colloidal particles to fluorescently-tagged molecules.
The trajectories of these particles contain precious information
about their structure and interactions. For example, particle sizes
are routinely quantified by measuring diffusion coefficients of a
dilute suspension in a well-characterized fluid.1,2 Alternatively,
when the particles are well-characterized, the trajectory of a
Brownian particle can probe the solvent’s rheological properties.3

Analysis of Brownian trajectories can also reveal the conservative
and dissipative forces acting on particles due to external fields4 or
interactions with other particles.5

Since Brownian trajectories are stochastic, their analysis
is necessarily statistical. The physical theory describing the
statistics of Brownian particles is well-established.6 When
particles fluctuate near an equilibrium position, conservative
forces acting on them are readily extracted using Boltzmann
statistics.7 In the absence of external forces, the dissipative
forces acting on particles can be calculated from their diffusion
coefficient using the Stokes–Einstein relation. More generally,
the Smoluchowski equation describes the trajectory of Brownian
particles when conservative forces and diffusion coefficients vary
over space.8 In this case, conservative and dissipative forces can
simultaneously be determined from the distribution of displace-
ments at each configuration.

Importantly, this requires the measurement of many trajec-
tories through the same system configuration. This approach
has been successfully implemented for micron-sized colloidal
particles, which can be repeatedly trapped in the desired con-
figuration and released using optical traps.5,9–11 However, in
some cases Brownian particles cannot be manipulated with
optical traps, and in others the laser will perturb the rest of the
system. In such situations, one requires a method to determine
the forces with less data, typically a single trajectory.

Maximum likelihood estimators have recently been shown
to be powerful tools for measuring the diffusion coefficient
of Brownian particles.12–14 They are more efficient and more
accurate than the conventional approach, where one determines a
diffusion coefficient by calculating a mean-squared displacement
and fitting. Given a discretely sampled trajectory, maximum like-
lihood estimators provide an explicit analytical expression for the
best estimate of the diffusion coefficient. This approach explicitly
accounts for common experimental artifacts such as localization
error from exposure time-induced blurring,12 finite trajectory
length,13 or limited photon statistics.14

We recently introduced a method, based on the same principle,
to estimate force and diffusion parameters from single Brownian
trajectories.15 Our numerical approach allows one to efficiently
estimate spatially varying dynamical parameters. It can provide
useful results for even short trajectories, because it assumes
a specific functional form for the spatial dependence of the
dynamical parameters. One can readily characterize the statis-
tical error and bias in these estimates through the analysis
of ensembles of simulated data. Here, we provide a detailed
description of our numerical maximum likelihood analysis
(MLA) of Brownian trajectories. First, we provide a simple
review of the principles of Brownian motion and maximum
likelihood. Second, we demonstrate the method based on
simulations and experimental data, including the analysis of
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strong interactions between pairs of paramagnetic particles.
Finally, we discuss the practical implementation of the method,
and provide the corresponding MATLAB code in the ESI.†

2 Theoretical background

In this section, we briefly review the solution to the Smoluchowski
equation and the principle of maximum likelihood. We illustrate
how to combine these two concepts with a simple example.

Let us consider the one-dimensional position x of a particle
over time, and call F the applied force and D the diffusion
coefficient. In general, F and D may depend on x. However,
on sufficiently short time intervals Dt the particle samples a
region where F and D are uniform. In this case, the solution
of the Smoluchowski equation states that the displacements
dx = x(t + Dt) � x(t) over Dt follow a Gaussian distribution

pðdxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2ps2
p exp �ðdx� mÞ2

2s2

� �
(1)

of mean m and variance s2 given by

m = %vDt, (2)

s2 = 2DDt, (3)

where %v is the drift velocity:

%v = bF + rD. (4)

Here, b is the mobility and is related to D by the Stokes–Einstein
relation:

D = bkBT, (5)

with kB the Boltzmann constant and T the absolute temperature.
The time evolution of the probability distribution for a

constant force and diffusion coefficient is illustrated in Fig. 1a.
From an experimental trajectory X = {x1,. . .,xN+1} with time
interval Dt, F and D can be directly calculated from the mean
and variance of the displacements, dxi = xi+1 � xi, according to
eqn (2) and (3).

In contrast, the principle of MLA is to identify the set of
dynamical parameters, a, that are most likely to describe an
observed set of displacements, d = {dxi}i=1. . .N. The likelihood
PðajdÞ that a describes the observed displacements d can be
expanded as

PðajdÞ ¼
YN
i¼1

p ajdxið Þ: (6)

Here, p(a|dxi) is the probability that a underlies the particle
dynamics given a single observed displacement dxi. Eqn (6)
assumes the displacements are independent. This is true in the
non-inertial regime, where the displacements are measured
over a time Dt c m/g, with m the particle mass and g its drag
coefficient. The inertial relaxation time scales with the square
of the particle diameter. For micrometric particles in water,
m/g B 10�6 s.

Smoluchowski’s theory provides the probability of observing
a specific displacement given a set of parameters, p(dxi|a).

Using Bayes’ theorem, we can determine p(a|dxi):

p ajdxið Þ ¼ p dxið Þ
pðaÞ p dxijað Þ: (7)

Assuming the priors p(a) and p(dxi) to be uniform on some
reasonable intervals, the likelihood that a set of parameters a

describes an observed set of displacements d reads

PðajdÞ ¼ o
YN
i¼1

p dxijað Þ; (8)

where o is a constant.
For numerical stability, it is more convenient to work with

log-likelihood functions. For an observed trajectory X of corres-
ponding set of displacements d, we define the log-likelihood
function of argument a as

LdðaÞ ¼ ln o�1PðajdÞ
� �

¼
XN
i¼1

ln p dxijað Þ: (9)

It is important to note that Ld(a) depends on d, that is, on the
trajectory considered.

The determination of a = (F,D) from a single Brownian
trajectory is illustrated in Fig. 1. A simulated trajectory for a
room-temperature Brownian particle with D = 10�13 m2 s�1 and
F = 50 fN is super-imposed over the probability distribution as
the black curve in Fig. 1a. The log-likelihood landscape

Fig. 1 Brownian basics. (a) Probability density (normalized at each time
point for visibility) of observing a room temperature Brownian particle with
D = 10�13 m2 s�1 and F = 50 fN at position x at time t, starting from x(0) = 0,
and simulated random trajectory (black line). Darker colors indicate higher
probability. (b) Log-likelihood landscape in the (D,F) plane associated with
the trajectory in (a). For better visibility, the log-likelihood is renormalized
by the maximum value on the grid. Darker colors indicate higher
log-likelihood values.

Paper Soft Matter

Pu
bl

is
he

d 
on

 2
0 

 2
01

7.
 D

ow
nl

oa
de

d 
on

 3
1.

01
.2

6 
4:

02
:4

4.
 

View Article Online

https://doi.org/10.1039/c7sm00174f


2176 | Soft Matter, 2017, 13, 2174--2180 This journal is©The Royal Society of Chemistry 2017

associated to this trajectory in the a = (F,D) phase space is
plotted in Fig. 1b. The log-likelihood function is maximized at
the appropriate values of F and D, as visible in Fig. 1b and
mathematically supported in the ESI.†

The utility and limitations of this approach are made
apparent in the following sections.

3 Illustrative examples
3.1 Experimental trajectory of a single particle with constant
F and D

We compare measurements of the force and diffusion coeffi-
cient of a single Brownian particle using two different methods:
(1) direct calculation of the time-dependent mean and variance
of the trajectory,9 and (2) MLA. Paramagnetic spheres (2.8 mm
diameter) are suspended in water and sediment against a glass
coverslip. A permanent magnet is positioned next to the sample
to create a locally uniform gradient of the magnetic field B
along the x-direction. The field gradient drives the paramagnetic
particle with constant external force. Further experimental details
are provided in the ESI.† A representative trajectory, x(t), of the
particle is shown in Fig. 2a. Here, the frame-to-frame time interval
is Dt = 2 ms, and the exposure time is tex = 0.5 ms.

From this trajectory, we calculate %v (Fig. 2b) and D (Fig. 2c) from
(respectively) the mean and variance of the displacements at differ-
ent lag times dx = xi+n� xi = x(ti + nDt)� x(ti). We obtain the following
estimations: F = 58 � 3 fN and D = 6.16 � 0.14 � 10�14 m2 s�1.

Alternatively, we can apply MLA to the distribution of the frame-
to-frame displacements {dxi = xi+1 � xi}, using parametrization
a = (F,D). The results for the MLA fits of the mean and standard
deviation are presented in Fig. 2d. The log-likelihood landscape for
this trajectory in the (F,D) plane is represented in Fig. 2e. It shows a
maximum at (F,D) = (59� 2 fN, 6.28� 0.15� 10�14 m2 s�1), which
corresponds to the values obtained from the conventional statis-
tical analysis. This demonstrates that MLA is reliable in this
simple case of constant F and D.

3.2 Simulated trajectories of pair interactions

We focus now on the more complex case of pair interactions.
We assume that both the interparticle force, F, and the relative
diffusion coefficient, D, depend on the center-to-center distance
r (Fig. 3a-inset). We perform simulations corresponding to pairs
of micron-sized particles interacting through capillary inter-
action with a rough contact-line. The force profile is given by

F(r) = �f(x/a)�b, (10)

with b = 5, following well-known theories,16 and a = 1 m a
scaling factor (necessary for dimensional consistency). We
choose a diffusion coefficient dependence corresponding to
two particles in an isotropic fluid17

DðrÞ ¼ D0 �
12 r=R0 � 2ð Þ2þ8 r=R0 � 2ð Þ

6 r=R0 � 2ð Þ2þ13ðr=R0 � 2Þ þ 2
; (11)

which works well for a capillary interaction when the two fluids
meeting at the interface have the same viscosity. Here, D0 is the

one-particle diffusion coefficient at infinite separation, and R0

is the hydrodynamic radius of the particle.
We perform Ns = 1000 simulations with timestep of Dts = 0.1

ms. These trajectories depend on 4 parameters a = {f, b, D0, R0}.
The input values are {1.2 � 10�40 N, 5, 5.5 � 10�14 m2 s�1,
1 � 10�6 m}. A single simulated trajectory is shown in Fig. 3a,
along with its corresponding MLA fit. It is important to note
that due to the stochastic nature of Brownian motion, each
trajectory is different. We plot a superposition of all trajectories
in Fig. 3b to show this variability.

We estimate the underlying physical parameters for each
trajectory using MLA. Details on the numerical optimization
are given in the ESI.† As shown in Fig. 3c–f, MLA estimates
(red histograms) agree very well with the input parameters

Fig. 2 Comparison of MLA and conventional analysis with an experi-
mental trajectory (a) of a paramagnetic particle in a constant magnetic
field gradient (inset). Mean (b) and variance (c) of the displacements dx at
different lag times nDt (blue dots), and corresponding linear fits (red lines).
The slopes are equal to %v and 2D, respectively. (d) Frame-to-frame
displacements dxi as a function of position xi. Red line indicates MLA fit
to the mean (1.78 nm), and red dashed lines MLA fit to the standard
deviation (�15.8 nm). (e) Log-likelihood landscape (renormalized) of the
trajectory in (a). Red circle indicates results from statistical analysis.
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(vertical black line). The spatial dependence of the particle
displacements and the force are also accurately captured by
MLA, as shown in Fig. 3g and h. The red bands are a super-
position of all the fitted profiles, and the black lines show the
input to the simulation. The estimated profiles match very well
the input profiles, with most of the deviations not exceeding
about 10% of the actual profiles. We discuss the effect of
trajectory blurring, present in video microscopy experiments,
on the accuracy of MLA estimates in Section 4.1.

These results show that MLA gives a very good estimation of
the actual force profile and dynamic parameters for simulated
trajectories.

3.3 Experimental trajectory of magnetic dipole–dipole pair
interactions

We now investigate the reliability of MLA on experimental
trajectories of isolated pairs of paramagnetic spheres in a

magnetic field B. The magnetic field induces a magnetic dipole
in both spheres, causing them to attract each other. Neglecting
the mutual induced dipoles effect occurring at short distances,
the interaction is well described by a power-law force (eqn (10))
with exponent18 b = 4. Because the beads are heavy and
sedimented, their hydrodynamic coupling should also include
a contribution from the bottom surface of the observation
chamber. For the diffusion coefficient of the separation, we
use a three-parameter functional form:

D(r) = (Dr
�1(r, D0, R0) + (Dh

�1 � D0
�1)/2)�1 (12)

where Dr(r, D0, R0) is given by eqn (11), D0 and R0 are defined as
before, and Dh is the diffusion coefficient of an isolated,
sedimented bead at a small distance h from the bottom
surface.19 As we will see later, this simple three-parameter form
matches the exact numerical solution of the Stokes equations20

Fig. 3 Testing MLA for spatially varying force and diffusion coefficients with simulated trajectories. (a) Sample trajectory (green line), and corresponding
MLA fit (black line) from a simulation of colloidal spheres interacting via (inset) force F(r) and diffusion D(r) as described in eqn (10) and (11). (b) All
simulated trajectories. Darker shades signify a higher density of curves. (c–f) Probability density function (PDF) of the fit parameters obtained from MLA.
Red curves correspond to trajectories with Dt = 0.1 ms and tex = 0 ms. Blue curves correspond to trajectories with Dt = 4 ms and tex = 1 ms. (g and h)
Fitted displacement (g) and force (h) profiles obtained from MLA for all trajectories. Black curves correspond to input profiles.
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well in the range of moderate interparticle distances considered
in this paper.

We apply MLA to a pair trajectory using functional forms
described in eqn (10) and (12), hence a = {f, b, D0, R0, Dh}. The
raw trajectory and displacement profile are shown in Fig. 4a
and b. The fitted trajectory, diffusion profile and force profile
are shown in Fig. 4a, c and d.

We investigate the reliability of the fits in two ways. First,
we compare the diffusion profile obtained from this single
trajectory to an independent measurement. Second, we look at
how the MLA fit is modified when a few points of the trajectory
are artificially removed: a robust fit ought to be resilient to
small changes in the trajectory.

3.3.1 Diffusion profile. To independently measure the
diffusion profile, we tracked the displacements of the same
particles in the absence of a magnetic field. Here, there is no
long-range conservative interaction between the particles. We
record the positions of the particles at over 3 � 105 timepoints,
which allows us to thoroughly sample the variance of the
displacements at randomly-sampled separations from near
contact to a few radii17. The diffusion profile obtained from
the binning of this large dataset is presented in Fig. 4c as the
grey dots. In addition, we calculated the height- and separation-
dependent mutual diffusion coefficient with an exact numerical
approach.20,21 By fitting this calculation to the data, we determined

the height above the wall to be 65 nm, and obtained the profile
shown as the green curve. The experimental and theoretical
diffusion profiles are in good agreement with the MLA estimate
of the diffusion profile measured for the strongly-interacting
particles in a magnetic field, shown in red. Notably, the MLA
estimate required only 1400 timepoints, about 200 times less
data than the direct measurement of the displacement var-
iance. In the presence of the magnetic field, the trajectory
length was limited by the strong attraction between the beads
and there was not enough data to accurately sample the
variance in each spatial bin.

3.3.2 Fit resilience to trajectory sampling. We assess the
robustness of MLA by investigating how the estimated force
profile is modified when a few points are removed from the
trajectory.

The displacements dri as a function of separation r for the
part of the trajectory before contact (Fig. 4a, t r 2.8 s) are
presented in Fig. 4b. The large displacements at small separa-
tions (colored points in Fig. 4b) may be expected to dominate
the force profile. To test this hypothesis, we manually removed
some of these (ri, dri) points, and performed MLA of the
truncated trajectories. The resulting force profiles are com-
pared in Fig. 4d, where the full trajectory is dark red and the
line colors approach yellow as the trajectory is more strongly
truncated (the colors correspond to the last points included

Fig. 4 Experimental test of MLA for spatially varying force and diffusion coefficient. (a) Trajectory of the separation between two paramagnetic beads in
a magnetic field (inset). (b) Corresponding displacements as a function of separation for the part of the trajectory before contact. (c) Grey dots: diffusion
coefficients obtained from the variance of the displacements (3 � 105 time points). Red curve: diffusion profile obtained from MLA of the trajectory
shown in (b), (1400 time points). Green curve: computational solution for two particles near a wall. (d) Force profiles obtained from MLA of the trajectory
shown in (b) with some of the colored points removed. The color and spatial extent of the curve indicate the range of separations considered. For
example, the orange curve is the force fit to the trajectory including the black, light yellow and yellow (ri, dri) points, but excluding the dark orange, red
and dark red points in (b).
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in Fig. 4b). Truncation of the data at small separations does
change the estimated force profile, but the effects are very small
(of the order of a few percents), even for the shortest trajectory
(light yellow), where most of data points close to contact have
been removed. This shows that MLA provides a robust fit, in the
sense that small changes in a trajectory have only small effects
on the results from the fit.

4 Practical considerations

In this section, we present some general guidelines regarding
the practical implementation of MLA.

4.1 Data acquisition

Experimental trajectories of Brownian particles are typically
acquired using video microscopy, which involves two key
temporal parameters: the frame-to-frame time interval Dt, and
the exposure time tex. Finite exposure times are well known to
cause systematic errors in the observed variance of displacements
at short time intervals.22,23 To mimic realistic experimental con-
ditions, we undersample and blur the simulated trajectories of
Section 3.2. We use a readily accessible time interval Dt = 4 ms and
an exposure time tex = 1 ms. (To emulate finite exposure times, we
simply average the simulated positions over a 1 ms interval.) The
results of MLA estimates of the parameters from these trajectories
are shown as blue histograms in Fig. 3c–f. They agree reasonably
well with the input parameters, with small but significant
systematic errors. Similarly, blurring causes small but signifi-
cant systematic errors in the displacement and force profiles,
shown by the blue bands in Fig. 3g and h. The displacements
tend to be more dispersed near contact, and the forces are
systematically overestimated. To minimize these systematic
errors due to finite camera exposure time, it is important that
tex be significantly smaller than Dt. More generally, typical
particle displacements over the considered time interval, Dt,
should be large compared to uncertainties in measuring the
particle displacement.

4.2 Statistical error estimates

Statistical errors for a force profile obtained by MLA can be
evaluated by simulating trajectories. Consider an experimental
trajectory fitted using functional forms Fe(r) and De(r), where
MLA has returned a0 as the most likely estimate of the para-
meters. One can then perform a Brownian dynamics simulation
to simulate a large number of trajectories with the same time
interval, length and spatial domains as the real experiments,
using Fe(r), De(r), and a0. Each simulated trajectory can be
analyzed to provide estimates of the parameters as well as the
force and diffusion profiles. The spreads in these values and
fits capture the statistical uncertainty on the MLA estimates.
To illustrate, we plot in Fig. 5a the local density of force
profile curves corresponding to the 1000 simulations described
in Section 3.2. From this two-dimensional histogram, we can
calculate the 5th and 95th percentiles at each separation r

(black dashed lines), and hence recover a 90% confidence
interval. The MATLAB code at the core of such analyses is
included in the ESI.†

4.3 Functional form choice and resilience

When the force and diffusion profiles vary with position, MLA
requires functional forms for each. In some cases, these func-
tional forms may be known exactly from the literature, but in
other cases, they are not. In the latter case, one must use
approximate functional forms F*(r) and D*(r). Reasonable
ones can be chosen based on some basic knowledge of the
underlying physics, such as continuity, monotony, and limiting
behavior. To characterize the impact of using an incorrect but
physically reasonable functional form, we analyzed trajectories
from Section 3.2 using functional forms different from the ones
used for the simulations, eqn (10) and (11). MLA estimates of
the force profile using an incorrect force profile F*(r) = �f
exp(�r/b) are shown in Fig. 5b. Although they agree well with

Fig. 5 Statistical and systematic errors. Density of force curves obtained
from MLA of simulated trajectories (Dt = 0.1 ms, tex = 0). Darker colors
indicate higher density. Solid black curve indicates the force or diffusion
profile. The two black dashed curves indicate the 90% confidence interval,
inferred using correct functional forms, from the density of curves at each
separation. (a) Histogram of the density of force profiles obtained from
MLA of simulated trajectories using the correct functional forms for force
and diffusion. (b) Force profiles from MLA of simulated trajectories using
the approximate force functional form F*(r) described in Section 4.3.
(c) Force profiles from MLA of simulated trajectories using the approximate
diffusion functional form D*(r) described in Section 4.3.
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the input profile in the far-field, they significantly underestimate
the force in the near-field. Similarly, estimates of the force profile
using an incorrect functional form for the diffusion profile D*(r) =
2D0(1 � (3/2)r0/r), shown in Fig. 5c, lead to small but significant
errors in the force estimate. However, in both cases we see that
even with these wrong functional forms, the fitted force profiles
remain essentially confined to the 90% confidence interval,
except maybe at very small separations with the exponential force
profile, where the fitted profiles are on average B20% below what
they should be (Fig. 5b).

5 Conclusions

Maximum likelihood analysis is a powerful method to extract
forces and diffusion coefficients from individual Brownian
trajectories. It is fast and easy to implement. Our numerical
approach to MLA is particularly useful when the amount of
data is limited and the force and diffusion profiles vary over
space. It can be very efficient, achieving small statistical
uncertainties with a modest amount of data, by exploiting
the smooth spatial dependence of the force and diffusion
profiles. It can be very accurate, when the correct forms for the
spatial dependence are employed and the typical particle
displacements are large compared to any static or dynamic
particle locating errors.

In this paper and our previous implementation of the
method,15 we considered experimental trajectories of micron-
sized colloidal particles. Fundamentally, this technique could
also be employed with much smaller objects, such as fluores-
cently labeled proteins. Advanced microscopic techniques now
allow for measurements of molecule positions with spacial
resolution around 10 nm and time resolution better than
1 ms.24 However, due to photobleaching and other experi-
mental difficulties, the recorded trajectories are typically very
short, hence making the study of molecular interactions very
difficult. We believe that extension of MLA in the domain of
single molecule tracking could not only be useful for measuring
diffusion coefficients, as already established, but also help to under-
stand long-range interactions between biological components,
hence clarifying the molecular cell processes which work by an
interplay of diffusion and interaction.

This work was supported by the National Science Foundation
(CBET 12-36086). We would like to thank Jason Merrill, Robert
Style, and Larry Wilen for helpful discussions.
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