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1. Introduction

Limonoids, a group of highly oxygenated triterpenoids, mainly
exist in the Rutaceae and Meliaceae plant families." When they
first attracted people's attention, limonoids were considered
a major problem for the citrus juice industry due to the bitter
principles through the biochemical transformation of a taste-
less limonoid aglycone precursor to a bitter one.> Tetranor-
triterpenoids is an alternative name for limonoids because in
the process of oxidative changes of triterpenoids, the side chain
is eventually oxidized to an a-substituted furyl ring by the loss of
four carbon atoms.* Basic limonoids contain the 4,4,8-
trimethyl-17-furyl  steroidal signature-skeleton, and all
members of the family of limonoid natural products either
contain this structure or are derived from such a precursor with
different degrees of oxidation and skeletal rearrangement.
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Recent progress in the chemistry and biology of

This review covers the isolation and structure determination of limonoids reported during 2014-2016 (with
363 new compounds in 68 papers), together with the relevant biological activities and source organisms.
Furthermore, the total synthesis and structural modifications of limonoids and their analogs regarding
the bioactivities reported during 2011-2016 have also been summarised.

Limonoids are classified into different subcategories such as
ring-intact limonoids, ring-seco limonoids, degraded limo-
noids, and highly oxidatively modified limonoids.* Limonoids
exhibited a wide spectrum of biological properties including
cytotoxic,”® antioxidant,”'® antiinflammatory,"~'> neuro-
protective,"'* antiviral," antimicrobial,'*"” antiprotozoal,*®
antimalarial,**>' insect antifeedant,*° and insecticidal activi-
ties.”””* The present review highlights the advances of limo-
noids in regard to isolation, total synthesis, and structural
modifications with the relevant biological properties.

2. Reviews

Some excellent reviews on various aspects of limonoids studies
are listed here. Overview of the distribution and chemistry of
limonoids in plants kingdom was collated in 2006." A compre-
hensive review of ‘Meliaceous limonoids: chemistry and bio-
logical activities’ has appeared in 2011.* Topics on the
chemistry and pharmacological activities of some limonoids
have also been presented.**** In 2011, biosynthesis and total
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Fig. 1 Limonoids 1-25 from Trichilia genus.
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synthesis of limonoid natural products from an organic
synthesis perspective were reviewed.***” On the other hand, it is
noteworthy that some interesting limonoids with their relevant
biological activities on annual reviews of ‘Marine natural
products’ (covering 2011-2014)**' and ‘Triterpenoids’
(covering 2011-2013) have been summarised.*>**

3. Phytochemistry

To efficiently extract and isolate new limonoid natural products
from plants, recently, several techniques have been developed.
By combination of preparative high-speed countercurrent
chromatography (HSCCC) and off-line LC-ESI-MS/MS analysis,
Rodriguez-Rivera et al. reported a new chromatographic tech-
nique to detect very low concentrated natural products from
Citrus limetta peels; moreover, four detected limonoid gluco-
sides such as nomilinic acid glucoside, limonin glucoside,
nomilin glucoside and obacunone glucoside, were easily
recovered in the fast eluting.** Haldar et al. developed the
medium pressure liquid chromatography (MPLC) and LC-ESI-
MS/MS-based technique to quickly isolate, identify and obtain
some basic limonoids such as azadirone, epoxyazadiradione
and azadiradione from neem fruits in preparative scale.*® The
LC-HRMS-guided and preparative high-performance liquid
chromatography (prep-HPLC)-based protocol was efficiently
performed to isolate twenty-one secondary metabolites
(including one limonoid, 1-O-methylclausenolide) from the
leaves and stem bark extracts of Clausena anisata.”” Recently,
supercritical CO, extraction has been applied to obtain
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RSC Advances

limonoid extracts from the seeds of C. aurantifolia swingle in
shorter time when compared with that of the conventional
methods.*® De Paula et al. reported an inexpensive and quick
ultrasound-assisted extraction (UAE) and HPLC-photodiode
array detector (PDA) technique to extract and determine aza-
dirachtin from dried entire fruits of Azadirachta indica A. Juss
(Meliaceae).” More recently, Rangiah et al have developed
an ultra high performance liquid chromatography/mass
spectrometry/selected reaction monitoring (UHPLC/MS/SRM)
assay for quantification of five neem metabolites (e.g., azadir-
achtin A, nimbin, salanin, azadiradione and epoxy or hydroxy-
azadiradione) from leaf extracts of Meliaceae family plants.*

With the development of technology, during 2014-2016,
a wide array of new limonoid natural products were isolated
from different parts of plants. Recent advances on the isolation
and structure determination of limonoids, together with their
relevant biological activities are presented according to their
source organisms such as Meliaceae, Rutaceae, Euphorbiaceae
and Simaroubaceae families.

3.1. Meliaceae

3.1.1. Trichilia. As shown in Fig. 1, 25 new limonoids were
isolated from Trichilia genus. For example, trichiconin A-C 1-
3, trichiliton I 4,%> 12-deacetoxyltrijugin A 5,>* trichiconlides A
6 and B 7,% together with spirotrichilins A 8 and B 9 (ref. 54)
were isolated from different parts (e.g., twigs, roots and fruits) of
Trichilia connaroides. Hypothetical biosynthetic pathways for 1-
3, 6, 8 and 9 were also proposed. Rubescins D 10 and E 11 were

R' R2

Fig. 2 Limonoids 26-33 from Swietenia genus.
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obtained from the roots and stem barks of T. rubescens.>
Compounds 2 and 3 showed modest anti-HIV activities with
ECs, values of 5.9, and 3.6 uM, respectively; whereas compound
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6 showed a moderate inhibitory effect on lipopolysaccharide
(LPS) induced nitric oxide (NO) production with an ICs, value of
40.5 pM. Compound 11 possessed the ability to induce
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Fig. 3 Limonoids 34—-64 from Cipadessa genus.
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apoptosis in hepatoma cells.* Ethanolic extracts of the roots of ~ activity at 50 mg mL ' (their inhibition ratios: 18.8% (12),
T. sinensis afforded four new limonoids, trichinenlides U-X 12- 21.2% (13), 18.5% (14), and 23.7% (15)).*” Ten cedrelone limo-
15, which showed weak acetylcholinesterase (AChE) inhibitory noids 16-25 were isolated from the leaves of T. Americana. The

R' R?2 R®
71 H AcMe
72 AcH H

83 H OAc Ac i-Pr Ac
84 Pr'CO OAc Ac Me Ac

Fig. 4 Limonoids 65-86 from Chukrasia genus.
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structure of 16 was determined by X-ray crystallographic
studies. Compounds 20-25 exhibited potent or selective cyto-
toxic activities with ICs, values ranging from 1.0 to 39.6 uM
against five human tumor cell lines (e.g., HL-60, SMMC-7721, A-
549, MCF-7, and SW480).*

3.1.2. Swietenia. Swietemacrophin 26 (ref. 59) and swieli-
monoids A-F 27-32 (ref. 60) (Fig. 2) were isolated from the seeds
of Swietenia macrophylla which is a tropical timber tree natively
distributed throughout tropical regions of the Americas, mainly in
Mexico, Bolivia and Central America. 2-Methoxykhayseneganin E
33 (Fig. 2) was obtained from the leaves and twigs of S. mahagoni.®*
Compound 26 showed potent inhibition against LPS-induced NO
generation (ICsq: 33.45 uM), and compound 28 exhibited signifi-
cant antidengue virus 2 activity (ECso: 7.2 uM).

3.1.3. Cipadessa. As described in Fig. 3, 6 methyl ango-
lensate type limonoids, cipaferen E-J 34-39, and 3
mexicanolide-type limonoids, cipaferen K-M 40-42 were iso-
lated from the seeds of Cipadessa baccifera.®* 3-De(2-
methylbutanoyl)-3-propanoylcipadesin 43,% cineracipadesin G
44,* cipacinoids A-D 45-48,* trijugin-type limonoids cipar-
asins A-G 49-55,° cipadesin-type limonoids ciparasins H-O 56-
63,°° and prieurianin-type limonoid ciparasins P 64 (ref. 66)
were isolated from the fruits, branches and leaves of C. cine-
rascens. The absolute configurations of 45 and 47 were unam-
biguously confirmed by the solid evidence of X-ray
crystallography.®® Interestingly, compounds 53-55 contained
a rare y-hydroxylbutenolide moiety at C-17 position.*®
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Compound 37 displayed potent cytotoxic activity against B-
16 with an ICs, value of 8.51 pg mL™".°> Compound 44 showed
the potent antifeedant activity against fruit fly (Drosophila mel-
anogaster; antifeedant index (AI) at 1 mM: 32.8%).** Compound
45 (ICs0: 16.7 pM) displayed moderate inhibition activity against
protein tyrosine phosphatase 1B (PTP1B).** Compounds 50
(ECs0: 5.5 uM) and 64 (ECsq: 6.1 pM) showed significant anti-
HIV activities.®®

3.1.4. Chukrasia. As shown in Fig. 4 and 5, 26 new
phragmalin-type limonoids (including velutinasins A-H 65-
72,%” velutinalide C 73,% tabulalin K-M 74-76,%° velutabularins
K-M 77-79,”° chukbularisins A-E 80-84,”* tabularisins S 85 and
T 86,7 chuklarisin A 87 and chuklarisin B 88, and chukvelu-
tilide Y 89 and Z 90 (ref. 74)), and 2 new mexicanolide-type
limonoids (ivorenoid G 91 and andirolide Q 92 (ref. 74)) were
isolated from the seeds, twigs, stem barks, and leaves of Chuk-
rasia tabularis. The absolute configurations of 65-68 were
determined by the CD exciton chirality method. Compounds
65-68,°” 89 and 90 (ref. 74) were a rare class of C15-acyl
phragmalin-type limonoids, especially compounds 66-68 con-
tained a d-lactone ring formed between C-16 and C-30 posi-
tions.”” The steric structure of 77 was further confirmed by
single crystal X-ray diffraction.”

Compound * exhibited significant inhibition activity against
LPS-induced NF-kB production. It suggested that the ortho ester
group and/or the 2,7-dioxabicyclo[2.2.1]heptane moiety in
these phragmalin limonoids were crucial for the activities.®”

90

Fig. 5 Limonoids 87-92 from Chukrasia genus.
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Compounds 81-84, 86, and 88 exhibited significant inhibitory
activities against a-glucosidase in vitro with ICs, values of 0.06,
0.04, 0.52, 1.09, 0.15, and 0.96 mM, respectively.”*”*

3.1.5.
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Fig. 6 Limonoids 93-128 from Walsura genus.
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Walsura. Nine new cedrelone limonoids
(Fig. 6), including walsuranolide B 93, 11p-hydroxy-23-O-methyl-
walsuranolide 94, yunnanolide A 95, yunnanol A 96, 11f-
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hydroxyisowalsuranolide 97, 11f-hydroxy-1,2-dihydroisowalsur-
anolide 98, 1a,11B-dihydroxy-1,2-dihydroisowalsuranolide 99,
11B-hydroxy-1a-methoxy-1,2-dihydroisowalsuranolide 100 and
yunnanolide B 101, were isolated from the leaves and twigs
of Walsura yunnanensis.” As shown in Fig. 6, walsucochinoids
C-R 102-117 were obtained from the twigs and leaves of
W. cochinchinensis. The steric structures of 102 and 111 were

0 130R=A"20

131 R=a-OH 1032

MeOOC

R2
135 OH «o-OH
136 OAc O
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76

determined by single-crystal X-ray diffraction experiments.
The isolation of walsunoids A-I 118-126,”” and walsuronoids
D 127 and E 128 (ref. 78) from the leaves of W. robusta were re-
ported (Fig. 6). Among them, compound 118 is a novel degrada-
tion product of cedrelone-type limonoids, and 126 is a rare
cedrelone-type limonoid amide. The structure of 121 was unam-
biguously measured by X-ray diffraction.

1y M, [0)
o - OAc T ol
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R"RA BB CDE E F G H veo, o Moy o 160 161 162
RRH H OAcH H H OAcH H H 0 “T7N.OMe — R:OAc OAc One
~1OMe RZH OAc H
OH HO OH HO OH RRB B C

Fig. 7 Limonoids 129-162 from Toona genus.
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Compounds 95, 97, 127 and 128 exhibited potent cytotoxic the range of 2.2-4.5 uM.”>”®* Compounds 103 and 104 exhibited
activities against five human tumor cell lines (e.g., HL-60, mild inhibitory activities against mouse and human 11p-HSD1
SMMC-7721, A-549, MCF-7, and SW480) with ICs, values in with ICs, values of 13.4 and 8.25 uM, respectively.”

174 R' = OAc, R? = 2-methylpropanoyl 178 R = COCH(CHj3), e}
O 175 R' = OH, R2 = 2-methylpropanoyl 179 R = Tig 180
176 R' = OH, R = propanoy!

(o]
/ 177 R' = H, R2 = propanoyl
Z

185

Fig. 8 Limonoids 163-187 from Carapa genus.
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3.1.6. Toona. As shown in Fig. 7, a 9,11-seco limonoid
(toonasecone A 129),” four B-seco-29-nor-limonoids (toonaci-
liatones A-D 130-133),* and seven B-seco-limonoids (toonaci-
liatones E-H 134-137)*“ and ciliatonoids A-C 137a-137c (ref.
80b) were isolated from the stem barks and the twigs of Toona
ciliata. The absolute configurations of «,B-unsaturated ketone
moiety of 130 and 134-136 were confirmed by CD exciton
chirality method and electronic circular dichroism calcu-
lation.®** Compound 137b was confirmed by single-crystal X-ray
diffraction analysis.*® In addition, toonasinenines A-J 138-
147, toonasinemines A-L 148-159,*> and toonasins A-C 160-
162 (ref. 83) were obtained from the leaves and the root barks of
T. sinensis. It is noteworthy that compounds 148-154, and 160-
162 contained the rare lactam moiety at C-17 position.*>*

72N
o 9 :/ AcO,

201

202

Fig. 9 Limonoids 188-204 from Munronia genus.
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Compound 160 was characterized by X-ray crystallographic
analyses.®®

Compound 132 exhibited modest cytotoxicity against HL-60
(ICs0: 5.38 uM) and HepG2 cells (ICsq: 5.22 uM).*® Compounds
141, 142 and 144-147 showed potent radical scavenging activi-
ties (DPPH ICs0: 51.3-104.0 pM; ABTS' ICs0: 52.2-167.3 pM);
compounds 138-141 exhibited significant anti-inflammatory
(selective inhibition of Cox-1 and Cox-2 at 100 uM: >88%), and
cytotoxic activities against seven human tumor cell lines (ICs:
2.1-14.7 uM).** Compounds 148 (ICso: 10.21 puM), 149 (ICsq:
20.05 uM), 153 (ICs(: 12.56 uM), 155 (ICs0: 12.56 uM) and 156
(IC50: 20.68 uM) exhibited marked inhibitory effects on NO
production in LPS-activated RAW 264.7 macrophages at
nontoxic concentration.®
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3.1.7. Carapa. As described in Fig. 8, 22 carapanolides C-X
163-184 (ref. 84-87) were isolated from the seeds of Carapa
guianasis, a traditional medicine in Brazil and Latin American
countries. The structure of 174 was unambiguously confirmed
by single crystal X-ray measurements. Andirolides W-Y 185-187
(ref. 88) were obtained from the flower oil of C. guianasis. Their
structures were elucidated on the basis of spectroscopic anal-
yses using 1D/2D NMR spectra and FABMS. Among them,
compounds 170 (ICso: 37.4 uM), 180 (ICsy: 22.0 uM), and 181

224 H H
225 OAc H 227
226 H OAc

Fig. 10 Limonoids 205-230 from Khaya genus.

This journal is © The Royal Society of Chemistry 2017
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(ICsp: 23.3 puM) showed potent NO production inhibitory
activities.*>*

3.1.8. Munronia. As shown in Fig. 9, 17 munronins A-Q
188-204 (ref. 89 and 90) were isolated from the whole plants of
Munronia henryi. The structure of 195 was confirmed by single-
crystal X-ray diffraction analysis.* Interestingly, compound 188
contained a novel 7-oxabicyclo[2.2.1]heptane moiety at the C-11
and C-14 positions. Among them, compounds 189, 195-199,
and 202-204 showed significant anti-TMV activity with ICs,

R® R*

207 R=H 209 H Ac OH H
208 R=0H 210 OAc Ac H OH
211 OH COCH(CHz), H OAc

215R"=0H R?=0OH
216 R'=0AcR?=0
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2230Ac H OH
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values in the range of 14.8-48.3 pg mL ™ '.** Compound 188 3.1.9. Khaya. As shown in Fig. 10, 14,15-didehydror-
(ICso values: 0.44-2.3 uM) exhibited potent cytotoxic activities uageanin A 205,°* 3-O-methylbutyrylseneganolide A 206,° and
against five cancer cell lines (e.g., HL-60, SMMC-7721, A-549, ivorenoids A-F 207-212 (ref. 92) were isolated from the fruits

MCF-7, and SW480).*

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
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Fig. 11 Limonoids 231-255 from Xylocarpus genus.
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and stems of Khaya ivorensis. Compounds 207 and 208
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possessed a rare rearranged skeleton and a unique y-lactone (C- were obtained from the stem barks and seeds of K. senegalensis,
16/C-8). Additionally, khaysenelide A-F 213-218 (ref. 93) with respectively. Compounds 213 and 215 were confirmed by single-
modified furyl ring, and khasenegasins O-Z 219-230 (ref. 94) crystal X-ray crystallography data.

0“ o
|
OH
Ay
)
o0
A3
258 R = OMe
259 R = OEt o” 9
I
R' R2 R?
2710H A, O
2720Me A, O

273 OMe A, B-OAc, o-H
274 OEt A4 B-OAc, o-H
275 OEt A4 B-OH, o-H
276 OH A, O
2770Me A, O
2780Et A, O
279 OH A; O
280 OMe A; O

AcO

297 R =Tig
O 298 R=A
299 R=B

Fig. 12 Limonoids 256-299 from Aphanamixis genus.
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Compounds 209 (ICsy: 15.3 uM) and 212 (ICs: 17.5 puM)
exhibited moderate cytotoxic activity against HL-60 cell line.**
Compound 230 displayed the significant neuroprotective
activity against glutamate-induced injury in primary rat cere-
bellar granule neuronal cells with increased viability of 83.3% at
10 uM and 80.3% at 1 pM.**

3.1.10. Xylocarpus. As depicted in Fig. 11, 3 new limonoids,
2,3-dideacetylxyloccensin S 231, 30-deacetylxyloccensin W 232
and 7-hydroxy-3-oxo-21p-methoxy-24,25,26,27-tetranortirucall-
1,14-dien-23(21)-lactone 233, were isolated from the seeds of
the Chinese mangrove, Xylocarpus granatum.”® With an investi-
gation conducted on the seeds of the Trang mangrove plant X.
moluccensis, two phragmalins limonoids 234 and 235,°® two
mexicanolides limonoids 236 and 237,%® twelve thaixylomolins
G-R 238-249,°%” and six trangmolins A-F 250-255 (ref. 98) were
obtained. The absolute stereostructures of 246, 248 and 250
were unambiguously confirmed by X-ray crystallographic anal-
ysis. Compound 249 was the first 7-nor-limonoid with a 6-
oxabicyclo[3.2.1]octan-3-one motif. Compound 254 contained
the first oxidative cleavage on the C2-C3 bond in limonoids.
Moreover, the biosynthetic origins of 250-255 traced back to
a andirobin-type limonoid with 1,2-bisketone were also
proposed.®®

Among them, compound 240 (ICsy: 77.1 puM) exhibited
moderate anti-HIN1 activity;”* compound 247 showed
moderate cytotoxicities against ovarian A2780 and A2780/T cells
with equal IC5, values of 37.5 pM for each.””

Fig. 13 Limonoids 300-311 from Melia genus.
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312

Fig. 14 Chisotrijugin 312 from Chisocheton genus.

3.1.11. Aphanamixis. As shown in Fig. 12, 30 new highly
oxygenated prieurianin-type limonoids, zaphaprinins A-Y 256-
280 (ref. 99) and aphagranols D-H 281-285, were isolated
from the fruits of Aphanamixis grandifolia, which is a wild
timber tree distributed mainly in the tropical and subtropical
areas of South and Southeast Asia. The absolute configuration
of 256 was assigned by single crystal X-ray measurements. On
the other hand, 8 aphanamixoid-type aphanamixoids C-J 286-
293, and 6 prieurianin-type aphanamixoids K-P 294-299, were
obtained from A. polystachya.'**

Among them, compounds 264 and 274 showed strong
insecticidal activities against Plutella xylostella.”* Compounds
286, 289 and 290 exhibited potent antifeedant activities against
the generalist Helicoverpa armigera with ECs, values of 0.017,
0.008, and 0.012 umol cm™ >, respectively. Preliminary struc-
ture-activity relationship indicated that A (ref. 2 and 30)

OMe

306

R' R2 R® R*
308H Ac H a-OEt
309 Tig Ac H B-OEt
310Bz H H a-OEt
311Tig H H p-OEt
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configuration and the acetoxy substituent at C-12 position were
vital to the antifeedant activity.**

3.1.12. Melia. As described in Fig. 13, 8 new limonoids,
including 3-deacetyl-28-oxosalannolactone 300, 3-deacetyl-28-
oxosalanninolide 301, 3-deacetyl-17-defurano-17,28-dioxosala-
nnin 302, 3-deacetyl-4’-demethylsalannin 303, 3-deacetyl-28-
oxosalannin 304, 1-detigloylohchinolal 305, 3a-acetoxy-1o,70-
dihydroxy-12a-methoxynimbolinin 306, and 3a-acetoxy-1a,120:-
dihydroxy-7a-(2-methylprop-2-enoyl)nimbolinin 307, were iso-
lated from the leaves, fruits and stem barks of Melia azedar-
ach.*'* Recently, an investigation on the fruits of M. toosendan
resulted in four new limonoids, such as 1a,7a-dihydroxyl-3a-ace-
toxyl-12a-ethoxylnimbolinin 308, 1a-tigloyloxy-3a-acetoxyl-7a-
hydroxyl-12B-ethoxylnimbolinin 309,'** and 12-ethoxynimbolinins
E 310 and F 311.'*

Among them, compound 300 (IC5,: 86.0 uM) showed inhib-
itory effects against LPS-induced NO production in RAW 264.7
cell line; the IC5, values of compounds 301 and 302 against the

View Article Online
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Epstein-Barr virus early antigen (EBV-EA) were 299 and 318
molar ratio/32 pmol TPA, respectively.'” Compound 309 (MIC:
31.25 pg mL ') exhibited the potent antibiotic activity against
Porphyromonas gingivalis ATCC 33277.'%

3.1.13. Chisocheton. A new 30-nor trijugin-type limonoid,
chisotrijugin 312 (Fig. 14), was isolated from the bark of Chis-
ocheton cuminganus.*” The chemical structure of 312 was
confirmed by spectroscopic techniques such as UV, IR, MS, 1D
and 2D NMR.

3.1.14. Neobeguea. As described in Fig. 15, 11 new limo-
noids, namely, dodoguin 313, dormir A-G 314-320,'*® libi-
guins A 321, libiguins B (a) 322 and libiguins B (b) 323, were
isolated from the root barks of Neobeguea mahafalensis,
a medicinal plant in Madagascar. Interestingly, compounds
318, and 321-323 contained a C-16/30 d-lactone ring, which
was the first time reported in this species. Compounds 322
and 323 were existing in tautomers. Among them, compound
313 displayed sleep-inducing activity in Swiss albino mice;

Fig. 15 Limonoids 313-323 from Neobeguea genus.
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and compound 322 exhibited a potent sexual enhancing
activity.

3.1.15. Entandrophragma. Sixteen entangolensins A-P
324-339 (Fig. 16) were isolated from the stem barks of Entan-
drophragma angolensea, a genus of the Meliaceae family
restricted to tropical Africa.''* Their planar structures were
comprehensively characterized by HRMS and 1D/2D NMR, and
the absolute configurations of most isolates were established by
time-dependent density functional theory (TDDFT) calculations
of the electronic circular dichroism (ECD) data. Especially
compound 324 was the first natural product example of C-9/10-
seco mexicanolide. Compounds 329 (ICsy: 1.75 pM) and 334

View Article Online

Review

(ICs¢: 7.94 pM) exhibited significant NO inhibitory activities
against LPS-activated RAW 264.7 macrophages. Furthermore,
the plausible biosynthetic pathway of these compounds has
been described.

Additionally, as shown in Fig. 16, entanutilin A (339a) and B
(339b) were isolated from the stem barks of Entandrophragma
utile.** Their absolute configurations were confirmed by CD
exciton chirality method.

3.2. Rutaceae

3.2.1. Hortia. As shown in Fig. 17, 3 new limonoids 340-342
were isolated from the taproots and stem of Hortia oreadica.’"

324 325
/ o O/ /
g o
0 o) o}
\5 (o] % \ ‘5@ ~;\ ‘
\ . 0 g HO ¥ o
/ / HO /
A B c D
o)
&)
RN
RS P
RZ
(¢}
R® R* R'R?2 RS R* R®
335 A'2 o o) a-OAc
336 a-OAc, B-H (0] a-OAc
337 a-OH, p-H  o-OAc, B-H a-OAc

HO™"

339%a

326 R' = o-H; R2 = a-OH
327 R' = g-H; R? = p-OH

328 329 330 331 332 333 334
R=A B C D E F G

338 339

Fig. 16 Limonoids 324-339, 339a, and 339b from Entandrophragma genus.
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3.2.2. Dictamnus. As described in Fig. 17, kihadanin C 343
with an unusual 3,4-dihydroxy-2,5-dimethoxytetrahydrofuran
moiety as E ring, and 23-methoxydasylactone A 344, were iso-
lated from the root barks of Dictamnus dasycarpus.**> Mean-
while, 9 dictangustones A-I 345-353, were obtained from the
root barks of D. angustifolius."**>''* Among them, compound 346
displayed significant neuroprotective activity against neuronal
death induced by oxidative stress, and compound 352 exhibited
potent cytotoxic activities against four cell lines (e.g., Hela,
A549, MCF7, and LN229) with ICs, values lower than 25 puM.

3.3. Euphorbiaceae

Two highly oxygenated limonoids, such as flexuosoids A 354 and
B 355 (Fig. 18), with a C-19/29 lactol bridge and heptaoxygenated
substituents at C-1, C-2, C-3, C-7, C-11, C-17, and C-30 positions,

View Article Online

RSC Advances

354R=H
355 R=Ac

Fig. 18 Limonoids 354 and 355 from Euphorbiaceae family.

345

348

351

Fig. 17 Limonoids 340—-353 from Rutaceae family.
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Fig. 19 Limonoids 356—358 from Simaroubaceae family.

were isolated from the roots of Phyllanthus flexuosus.'*®

Compounds 354 and 355 showed antifeedant activities against the
beet army worm (Spodoptera exigua) with ECs, values of 25.1 and
17.3 pg cm™ 2, respectively. In addition, compounds 354 (ICse: 11.5
uM) and 355 (ICs(: 8.5 pM) displayed moderate cytotoxic activities
against the ECA109 human esophagus cancer cell line.

3.4. Simaroubaceae

As shown in Fig. 19, two new 16-nor limonoids, harperspinoids
A 356 and B 357, with a unique 7/5/5/6/5 ring system, were ob-
tained from the leaves and branches of Harrisonia perforata.**’
Especially the absolute structure of 356 was further confirmed
by X-ray crystallographic analysis. Moreover, compound 356
exhibited the notable inhibitory activity against the 113-HSD1
enzyme with an ICs, value of 0.60 uM. The biogenetic pathway
of these two compounds was also proposed. Perforanoid A 358
(Fig. 19), isolated from the leaves of H. perforata, showed cyto-
toxic activities against HEL, K562, CB3, DP17, and WM9 tumor
cell lines (ICs: 4.24-25.96 pM).*"’

4. Total synthesis
4.1. Cipadonoid B

In 2011, an efficient strategy for the total synthesis of cipado-
noid B 359 was reported (Scheme 1). First, compound 361 was

360 361

357

COzMe

362

358

prepared by reaction of silyl enol ether with 360. Then, aze-
daralide 363 reacted with 361 via the intermediate 362, to give
359 (20% yield) by a ketal-Claisen rearrangement.*'®

4.2. Khayasin, proceranolide, and mexicanolide

Based upon cipadonoid B 359,"'® Faber et al. further reported
a concise and enantioselective total synthesis of proceranolide
364, khayasin 365 and mexicanolide 366 (Scheme 2). First,
compound 364 was obtained from 370 by epoxidation and
cyclization; then, compound 365 was afforded by acylation of
364; finally, conversion of 364 to 366 in the presence of Jones
reagent was achieved.'*®

4.3. Limonin

As depicted in Scheme 3, Yamashita et al. described the total
synthesis of (£)-limonin 379 in 35 steps. Via an intermediate
372, a tandem radical cyclization of geraniol 371 gave 373
containing a BCD ring system with the C-13a configuration.
Then, the limonoid androstane framework 374 was constructed
by a Robinson annulation of 373. Subsequently, compound 376
was produced by epoxidation and nitrile addition, followed by
acetonitrile elimination. Through a singlet-oxygen cycloaddi-
tion and a Baeyer-Villiger oxidation, compound 378 was ob-
tained via the intermediate 377. Finally, construction of target
compound 379 was achieved by a Suarez reaction.” This study

OTBS

silyl enol ether

“  CoMe

359

363

Schemel Reagentsand conditions: (a) silylenol ether, TiCly, CH,Cl,, —78 °C; (b) KH, PhH; (c) MeOTf, CH,Cl,; (d) azedaralide 363, PTSA, xylenes,

180 °C, 4 h.
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TBSO ¢}

(c)

)

(0}

(o}
OH proceranolide 364 khayasin 365

(o}

Scheme 2 Reagents and conditions: (a) (i) KHMDS, THF, —78 °C, then (—)-DIP-Cl, (i) 3-furylaldehyde, 33-44% yield, 80-90% ee; (b) (+)-DIP-Cl,
DIPEA, 2-butanone, Et,O, =78 °C, then —105°C to —30 °C, 16 h, 47% yield, 92.5% ee; (c) TsOH, xylenes, 180 °C, 4 h; (d) 30% H,O,, K,CO3z, MeOH,
0°Ctort, 12 h, 75%; (e) AU/Hg, EtOH/THF/H,O/NaHCOs, r.t., 1 h, 30%; (f) isobutyric acid, EDCI, DMAP, CH,Cl,, 0 °Ctor.t., 4 h, 71%; (g) KoCr,O/
H,SO4, MesCO, r.t., 15 min, 68%.

H
OEt | Il
7 EtO,C
X o L SeRe = (@) 102
o] - >
cl
o
372

geraniol 371

378 379

Scheme 3 Reagents and conditions: (a) Mn(OAc)s-2H,0, EtOH, r.t.; (b) Zn, AcOH, r.t.; (c) MVK, tBuOK, tBuOH, 35 °C; (d) Mel, tBuOK, tBuOH,
40 °C; (e) LiAlH4, THF, 0 °C to reflux; (f) TBSCL, NaH, THF, 0 °C tor.t.; (g) Ac,O, pyridine, DMAP, CH,Cly, r.t.; (h) m-CPBA, NaHCO3, CH,Cl,, —20°C
to =5 °C; (i) NaCN, DMSO, 120 °C: (j) Ac;0O, pyridine, DMAP, CH,Cl,, r.t.
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o
10-epi-perforanoid A 386

Scheme 4 Reagents and conditions: (a) 2-methylpropenal (1.0 equiv.), aminonaphthol (15 mol%), 2-butyne (2.0 equiv.), Cy,BH (2.0 equiv.),
Me,Zn (2.0 equiv.), toluene, r.t. to —78 °C then —30 °C; (b) 381 or 382, LDA, THF, —78 °C; (c) Burgess reagent.

Entry Substrate (0.2 g/L, 8 days in M881) 17B-Hydroxy (%) 12B-Hydroxy (%)

1 azadiradione 387 61 38
2 1,2-dihydroazadiradione 388 59 40
3 1,2a-epoxyazadiradione 389 57 39
4 epoxyazadiradione 390 - 99
5 1,2-dihydroepoxyazadiradione 391 - 93
6 nimbocinol 392 71 -

7 7-deacetylepoxyazadiradione 393 - 94
8 gedunin 394 - 96

Fig. 20 Biotransformation of limonoids.
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will lay the foundation for future synthesis of diverse limonoid
skeletons.

4.4. Perforanoid A and 10-epi-perforanoid A

More recently, as shown in Scheme 4, Hao et al. developed an
efficient way to total synthesis of perforanoid A 358 and 10-epi-
perforanoid A 386. The key steps were as follows: allylic alcohol
384 was enantioselectively obtained by alkenylation of 3-for-
mylfuran 383 with 2-methylpropenal; then, Pd-catalyzed
coupling of 384 with a vinyl ether gave the y-lactone ring,
with stereoselective construction of the C13 all carbon quater-
nary center, followed by formation of the cyclopentenone ring

phragmalin 395

@ @3

402a R = -PrCO
402b R=Ac

View Article Online

RSC Advances

by a Rh-catalyzed Pauson-Khand reaction to give 385. Finally,
reaction of 385 with 381 or 382 produced 358 (33% yield) and
386 (36% yield), respectively."”” Compound 358 showed potent
cytotoxic activities against HEL, K562, and CB3 tumor cell lines
with ICs, values of 6.17, 4.24, and 3.91 uM, respectively; in
contrast, compound 386 did not display any cytotoxic activity.

5. Structural modifications
5.1. Biocatalytic modifications

Biotransformation is a good choice for the production of
sufficient amounts of scientifically and commercially valuable

403a R = -PrCO
403b R =Ac

N~owme
"OH |

404a R = j-PrCO
404b R = Ac

405 R = j-PrCO
406 R =Ac

o)
O%O;\Pr(/)

Pr()) libiguin A 321

Scheme 5 Semisynthesis of libiguin A and its analogs from phragmalin. Reagents and conditions: (a) MeNHOMe-HCl, 2 M MezAl in Hex, CH,Cl,,
rt., 68%; (b) TESCL imidazole, DMF, r.t.,79%; (c) 10 M aq. KOH, THF, r.t.; (d) EDCI, DMAP, MeOH, r.t., 63%; (e) Ac,O, DMAP, CH,Cl,, r.t.,, 92%; (f) TFA,
DMF, r.t., 78%; (g) Ac,O or i-PrCOCL, Py, r.t.; (h) MeNHOMe-HCL, 2 M MeszAl in Hex, CH,Cl,, r.t.; (i) Dess-Martin periodinane, CH,Cl,, r.t.; (j)
TMSOTf, CHyCly, r.t.; (k) for 405, i-butyric anhydride, TMSOTf, CH,Cl,, r.t.
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compounds with the advantages of strict stereo- and region-
selectivity, mild reaction conditions and simple operation
procedure. As shown in Fig. 20, 8 limonoids including aza-
diradione 387, 1,2-dihydroazadiradione 388, 1,2a-epox-
yazadiradione 389, epoxyazadiradione 390, 1,2-
dihydroepoxyazadiradione 391, nimbocinol 392, 7-deacetyle-
poxyazadiradione 393 and gedunin 394, were converted into
their corresponding 12B- and/or 178-hydroxy derivatives via
fungi MS881-mediated biocatalysis. Interestingly, when
14B,15B-epoxidation was on the basic limonoid skeleton (e.g.,
390, 391, 393, and 394), only 12B-hydroxy derivative was
produced as the single metabolite.***

5.2. Chemical modifications

5.2.1. Phragmalin. As depicted in Scheme 5, starting from
phragmalin 395 isolated from the seeds of C. tabularis, libiguin
A 321 and its analogs 401, 405 and 406 were efficiently obtained
by structural modification. This was based on selective ami-
nolysis of the lactone in 395 with MeONHMe, followed by
TMSOTf-promoted lactonization of the resulting Weinreb
amide with the 30-OH group after protection or oxidation of the
17-OH group.**

5.2.2. Toosendanin. Starting from toosendanin 407, we
prepared a series of 28-acyloxy derivatives of toosendanin 408-
434 (Scheme 6)."***>* Among them, compounds 410, 417 and
431 exhibited more potent insecticidal activity than 407 against
the pre-third-instar larvae of Mythimna separata Walker in vivo
at 1 mg mL™". Interestingly, it indicated that the proper length
of the side chain at the 28-position of 407 was important for the
insecticidal activity; however, introduction of the double bond
on the side chain decreased the activity.

5.2.3. Limonin. As shown in Scheme 7, a series of limonin
derivatives 436-465 were prepared by structural modifications
on the A, B or D-ring of limonin 379."*>**¢ It demonstrated that
oxygen bridge between C-14 and C-15 positions in limonin
derivatives was important for analgesic and anti-inflammatory

407
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activities. Compound 443 displayed a promising analgesic and
anti-inflammatory activities with high water-solubility (14.5 mg
mL~"). Among 446-465, compounds 451 and 459 showed
higher antimicrobial activities than 379 against 20
microorganisms.

5.2.4. Obacunone. As depicted in Scheme 8, we semi-
synthesized a series of obacunone (466) derivatives, including
C7-oxime esters 468-491, C7-oxime sulfonate esters 492-497,
and C7-esters 500-532."""'>° The structures of 480, 485, 486,
498, 499, and 518 were unambiguously determined by single-
crystal X-ray diffraction. Interestingly, when compound 466
was reduced by NaBH,, the ratio of reductive products 498
and 499 was related to the reaction mixing solvents. In addi-
tion, compounds 472, 485, 486, 490, 495, 501 and 510 (the
final mortality rates (FMRs) at 1 mg mL ': 55.2-72.4%),
showed more potent insecticidal activity against M. separata
than their precursor 466 (FMR: 41.4%) and toosendanin
(FMR: 48.3%). It demonstrated that the configuration of C7-
OH of 498 (FMR: 32.1%) and 499 (FMR: 46.4%) was impor-
tant for the insecticidal activity, and introduction of a chlo-
rine atom on the phenyl ring of the substituents could
improve the activity.

5.2.5. Fraxinellone. As shown in Scheme 9, to discover
more potent fraxinellone (533)-based insecticidal agents, first,
in the presence of selenium dioxide or chromium trioxide, we
developed an efficient method for regioselectively allylic
oxidation of 533 at its C-4 or C-10 position (A ring) to afford
534 and 579, respectively; then, a series of esters 559-578 and
580-596,"*° hydrazones 535-544 and 603-615,"*' and oxime
esters 545-558 and 597-602,"** were smoothly prepared. On
the other hand, when reduction of 533 with Red-Al reagent, we
found that the kinds and the amount of the reduction prod-
ucts 617, 628 and 656 at the C-1 or C-8 position (B ring) were
related with the molar ratio of Red-Al/533; subsequently,
esters 629-655 and 657-665, were synthesized from 628 and
656, respectively.’*® It was noteworthy that when compound
533 reacted with different chlorination/bromination reagents,

408: Me 409: Et 410: n-propyl 411: Ph 412: PhCl(p) 413: PhCl(m) 414: PhCl(0) 415: PhOMe(p) 416: PhNO,(p)

417: CH=CHPh 418: PhCH,CH, 419: CH,Ph 420: CICH, 421: CH=CH, 422: (CH3),CH 423: C(CH3)=CH,

424: CH3(CH2)3 425: (CH3)2CHCH2 426: CH3(CH2)4 427 CH=CHCH=CHCH3 428: CH3(CH2)5 429: CH3(CH2)6

430: CH3(CHy)g 431: CH3(CHy)40 432: (Z)-CH3(CH,);CH=CH(CH,); 433: CH3(CH,);OCO(CH,)s 434: CH3(CH,);0CO(CH)s

Scheme 6 Semisynthesis of a series of 28-acyloxytoosendanin derivatives. Reagents and conditions: (a) (RCO),O/NaOAc/acetone/reflux, 10—

20 h; or RCO,H/DIC/DMAP/CH,Cly/r.t.,, 6-12 h, 14-88%.
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Scheme 7 Semisynthesis of limonin derivatives. Reagents and conditions: (a) NH,OH-HCL, pyridine, EtOH, reflux; (b) (i) RCL, NaOH, TBAB,
dry THF, 80 °C; (ii) HCL, dry ether, CH,Cly; (c) HI, HOACc; (d) condition (i): abs. EtOH, appropriate amine, montmorillonite K-10, microwave-
assisted; condition (ii): abs. EtOH, appropriate amine, montmorillonite K-10, reflux; condition (iii): CH,Cl,, appropriate amine, montmo-
rillonite K-10, ultrasonic bath; (e) R'Br or R'Cl, NaH, DMF, 0 °C to r.t.; (f) for 461, sodium ascorbate, Cu(OAc),.H,O, THF : H,O (1: 1), 1-
(azidomethylene)-4-bromobenzene or 1-(azidomethylene)-4-methylbenzene, r.t., 10 h.

some unexpected furyl-ring (C ring) halogenation products
623-627 were obtained. Moreover, their possible reaction
mechanism was also proposed.™* Especially, 20 steric
structures of compounds 534, 539, 544, 553, 566, 601, 611,
617, 620-628, 659, 660 and 663, were unambiguously
established by X-ray analysis. Among them, compounds 534,
535, 557, 566, 575, 578, 579, 596, 598, 602, 606, 617, 620,
622, 627, 652, 653 and 665 (FMRs: 51.7-73.3%) displayed

This journal is © The Royal Society of Chemistry 2017

more promising insecticidal activity than toosendanin
(FMR: 48.3%).

The structure-activity relationships demonstrated intro-
duction of the carbonyl or oxime group on the C-4 position of
533 generally resulted in more promising derivatives than
those containing a carbonyl or oxime one at the C-10 position;
introduction of the heterocyclic fragments at C-4 or C-10
position of 533 was necessary for the insecticidal activity;

RSC Adv., 2017, 7, 35191-35220 | 35213
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Scheme 8 Semisynthesis of B-ring modified obacunone derivatives. Reagents and conditions: (a) NH,OH-HCI/EtOH/Py, 60 °C, 2 h, 93%; (b)
R'CO,H/DCC/DMAP, CH,Cly, r.t., 5-20 h, 64-97%: (c) R*SO,Cl/EtsN, CH,oCly, r.t., 14-30 h, 54-89%; (d) NaBH,; (e) (R*CO),0, reflux, 2 or 4 h; (f)

R*CO,H/DCC/DMAP, CH.Cl, r.t., 6-24 h, 40-97%.

the lactone (B ring) of 533 was important for the insecticidal
activity; the double bond at the C-2 position of 533 was not
necessary for the insecticidal activity; substitution of the
oxygen atom on the carbonyl group of 533 by the sulfur one
did not improve the insecticidal activity; introduction of the
acyl group on the C ring of 533 could lead to more potent
compounds than those containing the halogen atom at the
same position."?*"**

35214 | RSC Adv., 2017, 7, 35191-35220

6. Biological activities of the most
active limonoids

Due to exhibiting a large number of biological properties,
currently, limonoids and their analogs have received
much research attention in the medicinal and agricultural

fields. Additionally, the most active limonoids and
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Scheme 9 Semisynthesis of fraxinellone derivatives. Reagents and conditions: (a) CrOs, Py, t-BuOOH, MW, 25 W, 25 h, 33 °C; (b) HOAc,
hydrazides or hydrazines, reflux, 5-48 h; (c) NH,OH-HCI, EtOH, Py, 80 °C; (d) R'CO,H, DCC, DMAP, CH,Cl,, r.t.; (€) NaBH4, MeOH, 0-5°C, 1.5 h;
(f) R*/R3COH, DIC, DMAP, r.t; (g) SeO,, MW, 150 W, 2.5 h, 110 °C; (h) Lawessson's reagent, toluene, reflux, 12 h; (i) Red-Al, THF-PhMe, —78~
10°C, 24 h; (j) R*COCL, AlCls, r.t., 5-12 h; (k) 2.2 equiv. DCDMH, DMF, 0-5°C, 1 h; (1) 2.2 equiv. NBS, DMF, 0-5°C, 2 h; (m) 2.2 equiv. NCS, DMF, 0-
5°C,25h,then5°C - rt, 25h.
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Table 1 14 most active limonoids against human cancer cell lines Table 1 (Contd.)
Compounds Cells ICso (#M)  Compounds Cells ICso (UM)
1,2-Dihydrodeacetylhirtin 20 HL-60 4.9 Perforanoid A 358 (ref. 117) HEL 6.17
(ref. 58) SMMC-7721 3.1 K562 4.24
A-549 2.9 CB3 3.91
MCF-7 9.8
SW480 9.0
1a-Hydroxy-1,2-dihydrodeacetylhirtin 21 HL-60 3.1 their analogs in each series against human cancer cell lines
(ref. 58) SMMC-7721 1.0 ‘ ; ;
A-549 11 and insect pests were summarized in Tables 1 and 2,
MCE-7 1.0 respectively.
SW480 1.6
la-Methoxy-1,2-dihydrodeacetylhirtin 23 ~ HL-60 5.3
(ref. 58) SMMC-7721 3.7
A-549 5.2 Table 2 33 most active limonoids and their analogs as insecticidal
SMMC-7721 5.3 agents
A-549 6.4
Cipaferen E 37 (ref. 62) B-16 8.51 Compounds Insect pests FMRs (at 1 mg mL ")
Yunnanolide A 95 (ref. 75) HL-60 3.6
SMMC-7721 2.4 Cineracipadesin G 44  Drosophila AI” = 32.8% at 1 mM
A-549 3.7 (ref. 64) melanogaster (nicotine: AI =
MCF-7 4.2 28.5% at 1 mM]
SW480 3.5 Aphanamixoids C 286  Helicoverpa armigera ECso” = 9.27 pg em 2
BEAS-2B 5.0 (ref. 101)
11B-Hydroxyisowalsuranolide 97 HL-60 3.1 Aphanamixoids F 289 EC;o = 4.28 pg em™”
(ref. 75) SMMC-7721 2.2 (ref. 101)
A-549 2.6 Aphanamixoids G 290 EC50 = 6.82 ug cm ™2
MCF-7 3.9 (ref. 101) (neem oil: EC5¢ =
SW480 2.4 2.62 pg cm?)
BEAS-2B 9.4 Flexuosoids A 354 Spodoptera exigua ED;o" = 25.1 pg em >
Walsuronoids D 127 (ref. 78) HL-60 2.7 (ref. 115)
SMMC-7721 3.1 Flexuosoids B 355 EDso = 17.3 pg cm ™2
A-549 41 (ref. 115)
MCF-7 3.1 410 (ref. 123) Pre-third-instar larvae  73.1% toosendanin:
SW480 2.8 of Mythimna separata  50.0%
Walsuronoids E 128 (ref. 78) HL-60 3.3 417 (ref. 123) 61.5%
SMMC-7721 41 431 (ref. 124) Pre-third-instar larvae  63.0%
A-549 4.4 of M. separata
MCF-7 4.4 472 (ref. 127) Pre-third-instar larvae  62.1%
SW480 4.5 485 (ref. 127) of M. separata 72.4%
Toonaciliatones C 132 (ref. 80) HL-60 5.38 486 (ref. 127) 65.5%
HepG2 5.22 490 (ref. 127) 62.1%
Toonasinenines B 139 (ref. 81) A-549 5.7 566 (ref. 131) Pre-third-instar larvae  63.0%
CHG-5 5.0 575 (ref. 131) of M. separata 66.7%
HCT15 5.7 578 (ref. 131) 63.0%
HelLa 6.2 534 (ref. 132) Pre-third-instar larvae  73.3%
HepG2 5.5 552 (ref. 132) of M. separata 70.0%
MDA-MB-231 6.0 558 (ref. 132) 73.3%
SGC-7901 6.0 597 (ref. 132) 66.7%
Toonasinenines C 140 (ref. 81) A-549 9.7 598 (ref. 132) 70.0%
CHG-5 8.3 600 (ref. 132) 66.7%
HepG2 91 602 (ref. 132) 70.0%
MDA-MB-231 9.4 535 (ref. 130) Pre-third-instar larvae  76.9%
SGC-7901 9.4 536 (ref. 130) of M. separata 65.4%
Toonasinenines D 141 (ref. 81) A-549 2.3 537 (ref. 130) 69.2%
CHG-5 2.8 540 (ref. 130) 61.5%
HCT15 2.6 603 (ref. 130) 65.4%
HeLa 2.9 604 (ref. 130) 61.5%
HepG2 3.0 606 (ref. 130) 73.1%
MDA-MB-231 2.7 608 (ref. 130) 69.2%
SGC-7901 2.1 612 (ref. 130) 61.5%
Munronins A 188 (ref. 89) HL-60 0.44 662 (ref. 133) Pre-third-instar larvae  65.5%
SMMC-7721 2.3 of M. separata
A-549 1.6 “ Antifeedant index: AL ? ECs, value: the effective concentration for 50%
MCEF-7 L5 feeding reduction.  EDs, value: the effective dosage for 50% feeding
SW480 0.86 reduction.
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7. Conclusions

However, the availability of limonoids is very limited from
natural resources because of intensive collection of plants from
the wild and long plant growth period. Although total chemical
synthesis of limonoids remains a challenge of significant
novelty and interest, it is not a practical option from
a commercial point of view. Consequently, sustainable
biotechnology and tissue culture techniques may be extensively
exploited to enhance production of limonoids to meet the
increasing demands. Additionally, to improve the water solu-
bility and bioactivities, structural modifications of limonoids
should be further strengthened.

In the present review, we summarised 363 new limonoid
natural products isolated from plants during 2014-2016,
together with their relevant biological activities and source
organisms. Moreover, we highlighted recent developments in
the total synthesis, and structural modifications of limonoids
and their analogs regarding their bioactivities during 2011-
2016. We hope that this review can provide necessary infor-
mation for synthetic, medicinal and pesticidal chemistry, and
phytochemistry researchers who are interested in the chemistry
and biology of limonoids.
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