Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

.

ROYAL SOCIETY
OF CHEMISTRY

RSC Advances

View Article Online

View Journal | View Issue

ATR-FTIR spectroscopy coupled with multivariate
analysis techniques for the identification of DENV-3
in different concentrations in blood and serum:

a hew approach

i '.) Check for updates ‘

Cite this: RSC Adv., 2017, 7, 25640

Marfran C. D. Santos,? Yasmin M. Nascimento,”® Josélio M. G. Araujo & °°
and Kassio M. G. Lima {*

In most cases of virus infections the viral load is directly related to the intensity of the disease. Nowadays, the
main routine diagnoses for dengue fever are only qualitative, they only inform us if the patient has dengue
fever or not. However, it is important to be aware of the patient's viral load so that proper care can be taken.
In this study we used attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR)
coupled with multivariate analysis techniques to identify and discriminate dengue serotype 3 (DENV-3)
diluted in different concentrations in serum and blood samples with the purpose of developing a simple,
fast and non-destructive methodology for a quantitative analysis of the dengue virus. Techniques such as
principal component analysis-linear discriminant analysis (PCA-LDA), successive projection algorithm —
linear discriminant analysis (SPA-LDA) and genetic algorithm — linear discriminant analysis (GA-LDA) were
applied in this classification problem. Forty samples (40 for serum and 40 for blood) were infected with
DENV-3 at different concentrations (ten samples for each concentration) and analyzed by IR
spectroscopy. The results showed that the models were successful in classifying the virus, the best

results being for blood samples. The results of the multivariate classification were tested based on
Received 22nd March 2017 itivit ificit it d ti dicti l Youden's ind d iti d i
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likelihood ratios, suggesting that ATR-FTIR spectroscopy coupled with multivariate analysis algorithms is

DOI: 10.1039/c7ra03361c an effective tool in quantifying the dengue virus in providing rapid results, in addition to being non-
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Introduction

Dengue fever is the most transmitted viral disease in the world*
and dengue viruses (DENV) 1 to 4 are members of the genus
Flavivirus of the family Flaviviridae. Infection by a serotype
leaves the individual immune to subsequent infections by the
same serotype throughout their life and immune to another
serotype for only a few months.>* Dengue is an infection caused
by a virus transmitted by arthropods. It is estimated that
currently more than 50 million infections occur annually, of
which 500 000 lead to hospitalizations for dengue hemorrhagic
fever (DHF), with a mortality rate of more than 5% in some
regions.*
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Clinical complications caused by dengue virus infection may
range from mild asymptomatic infection to dengue fever (DF) or
more severe manifestations such as dengue hemorrhagic fever
and dengue shock syndrome (DSS).>” In most cases, patients do
not feel the symptoms or feel an undifferentiated fever with or
without redness showing on the body. In the case of DF symp-
toms, they are usually a high fever, headache, muscle pain
(myalgia), joint pain (arthralgia), pain behind the eyes and
redness on the body. Patients with DHF and DSS present high
fever, bleeding, thrombocytopenia and hemoconcentration as
the main symptoms, and may develop other complications such
as pleural effusion and gastrointestinal or gingival bleeding.”*

Viral isolation, RNA detection, antigen detection and sero-
logical methods for detecting IgM and IgG are among the most
widely used methods in laboratory diagnosis and in virological
studies,”*® but both of these methods have some limitations
such as sample handling, requiring samples in the acute phase,
and are time-consuming to achieve results, among others.
Analyzing diagnostic methods, the most widely used methods
in hospitals and diagnostic clinics are serological methods.
These methods are qualitative, that is, they only inform if the
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patient is or is not infected. However, knowledge of the patient's
viral load is of great importance, since in most cases the viral
load is directly related to the intensity and stage of the disease.
The more viruses circulating, the more severe the disease is
normally, and the greater the care taken. Finally, identification
of the viral load, for some viruses (HIV mainly), can be used to
evaluate if the treatment is being effective (if the viral load
decreases, it is assumed that the treatment is working). In the
case of dengue, rapid determination of viral load can be used as
a parameter to decide whether or not treatment is needed. With
this in mind, a quantitative test that is inexpensive, quick and
requires no sample handling is necessary so that clinical
treatment can be started as quickly as possible.

Spectroscopy studies the behavior of samples against their
interaction with radiation. Spectroscopic techniques are known
to provide fast and reliable results and its use in biological
studies has been defined by biospectroscopy.** Several studies
have been carried out using spectroscopy for virology purposes,
such as detection and quantification of the poliovirus using
FTIR spectroscopy,” detection of hepatitis C virus infection
using NMR spectroscopy,” and diagnosis of HIV-1 infection
using near-infrared spectroscopy,” among others, showing
promising results regarding the technique's ability to identify
the presence of the virus.

The mid-infrared region comprises the 400 to 4000 cm™* of
the electromagnetic spectrum. This radiation is absorbed by
molecules present in biological samples. The 900 to 1800 cm™*
range is known as the biomolecule fingerprint region, because
spectral bands present referral tolipids (~1750 em™ %), carbo-
hydrates (~1155 cm ™), proteins (amide I, ~1650 cm ™', amide
I, ~1550 cm™ ', amide III, ~1260 cm™ ") and DNA/RNA (~1225
cm ', 1080 cm '), > In general, attenuated total reflection
Fourier-transform infrared spectroscopy (ATR-FTIR) can be
used for collecting spectra in this range.*

When interrogating different biological samples with FTIR,
the generated spectra have a lot of information which can make
interpreting difficult; therefore, it is convenient to use algo-
rithms that aid and facilitate spectral interpretation. In this
study we used principal component analysis (PCA - it reduces
data dimensionality, making use of the components that
explain data variability),'® successive projection algorithm and
genetic algorithm (SPA and GA - they reduce the size of the data,
selecting the variables that discriminate classes)'”'® and linear
discriminant analysis (LDA - it provides a maximum separation
of classes through the ratio of the variance between classes and
within the classes) as chemometric algorithms of multivariate
classification for discriminating classes wvia spectral
information.

Classification by different concentrations of the dengue
virus through ATR-FTIR spectra using the PCA-LDA, SPA-LDA
and GA-LDA algorithms has never been studied. This study
aims to quantitatively discriminate DENV-3 samples in serum
and blood. The results were encouraging and show the poten-
tial of the technique to identify and quantify DENV-3, and it
may be used in the future as ancillary tools for clinical
diagnostics.

This journal is © The Royal Society of Chemistry 2017
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Material and methods
Subculture of cells

VERO E6 cells (African green monkey kidney cells) biological
sample has been used by biomedical laboratories worldwide. It
is very common for collaborating research groups to share this
cell line. In this study, the VERO E6 cells was kindly provided by
the Biotechnology Laboratory of Natural Polymer-Biopol,
Department of Biochemistry, Federal University of Rio Grande
do Norte (UFRN). VERO E6 cells (African green monkey kidney
cells) cultivated at 37 °C in 5% CO, were used in the study.
Leibovitz's 15 (L-15) medium of the culture bottle (25 cm?®) was
discarded and subsequently 5 mL of PBS was poured in to
remove cell debris (2 times, then discarding PBS). 1000 pL of
trypsin was added and then incubated for 5 minutes at 37 °C.
Then it was observed in a microscope to check if total mono-
layer displacement occurred. Upon observing total displace-
ment, 10 mL of 10% L-15 medium was added to the bottle along
with homogenates and 5 mL was transferred to a sterile bottle.

Replication of dengue virus

Aliquots from cultivated DENV-3 were kindly provided by the
staff from the Laboratory of Molecular Biology for Infectious
Diseases and Cancer (LADIC/UFRN). Isolated DENV-3 was
inoculated into VERO E6 cells with the purpose of promoting
viral replication. Next, 100 uL viral sample was used in a 25 cm?®
bottle of cells. It was incubated for 1 hour at 37 °C, being
homogenized every 15 minutes. Then medium was added with
2% fetal bovine serum (FBS) in order to provide nutrients for the
cell. Finally, it was incubated again at 37 °C where it remained
for 7 days, and was observed daily. Confirmation of viral
infection was performed by nested Reverse Transcriptase PCR
assay (RT-PCR). After the viral infection was confirmed, the
supernatant was transferred to a falcon and centrifuged for 5
minutes at 1000 turns per minute. Lastly, 20% fetal bovine
serum was added to the virus isolate and stored at —70 °C. The
titer of DENV-3 was determined by plaque assay at 1 x 10" PFU
mL ™%

RNA extraction and nested Reverse Transcriptase PCR assay
(RT-PCR)

Viral RNA for the nested RT-PCR assay was extracted by using
QIAamp® Viral RNA Mini kit, Qiagen (Catalog number 52906),
in accordance with the manufacturer. The nested RT-PCR
protocol for DENV detection and typing was performed as
previously described by Lanciotti et al. (1992).

Sample preparation

For IR measurement, healthy human serum and blood samples
were infected with DENV-3 in conical-bottomed microtubes at
four dilutions (1 x 10% 1 x 10% 1 and 0.1 PFU mL ™" for serum,
and 1 x 10, 1 x 10% 10 and 0.1 PFU mL™"* for blood). All
experiments were performed in compliance with the guideline
“Biomedical research ethics review method involving people”
(Brazil), and approved by the medical ethics committee at
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Federal University of Rio Grande do Norte/Brazil (protocol
number # 51057015.5.0000.5537), informed consents were ob-
tained from human participants of this study. The data set
consisted of 40 samples (40 for serum and 40 for blood) divided
into ten for each dilution. Another 10 non-infected serum and
blood samples were used as a control.

ATR-FTIR spectroscopy

Spectra acquisition was performed within 1 hour of sample
contamination. ATR-FTIR spectra were performed using
a BRUKER model FTIR VERTEX 70 equipped with ATR acces-
sory. The spectra were obtained in the range of 400 to 4000
cm™!, with a resolution of 4 cm™', with 16 scans and
a measurement time of 13 seconds per spectrum. The ambient
temperature was 22 °C. Air was used as background in obtain-
ing the spectra of samples contaminated with DENV-3. Soon
after each acquisition of the background, 2 puL of each sample
was added to the ATR crystal, making sure that no air bubbles
were trapped. At each acquisition, a small piece of aluminum
foil was placed on the sample, following the studies of Cui et al.
(2016) where it has been observed that this is an appropriate
substrate for ATR-FTIR analyzes of various biological specimens
because it does not interfere with the spectra, does not sacrifice
important biochemical fingerprint information of the sample
and is inexpensive."™ After the acquisitions, the crystal was then
cleaned with alcohol (70% v/v) and dried using paper towel. In
order to make sure the ATR crystal was clean, a spectrum was
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collected using the latest background collected for reference.
BRUKER OPUS software was used to convert the spectra to
absorbance.

Chemometric methods and software

Principal Component Analysis (PCA) is a multivariate statistical
method that seeks to determine a smaller set of variables from
the linear combination of the original variables which
summarize the original system, thus reducing the dimension-
ality and complexity of the data. A reduction of variables is
performed in which the original spectral matrix X is decom-
posed as the product of the matrices scores and loadings,* as
shown in eqn (1):
X=TP"+E (1)

where: X is the I x J data matrix (/ is the number of objects and J
is the number of variables); T is the I x A matrix of score vectors
ta (A is the number of calculated components); P is the J x A
matrix of loadings vectors (the superscript T indicates the
transpose of the matrix P); and E is the I x J residual matrix.

Successive Projection Algorithm (SPA) is a variable selection
method (in this case, the variables are the wavenumbers) that
uses simple operations in a vector space to minimize variable
collinearity. SPA is a direct selection method, meaning it starts
with 1 variable and then incorporates another variable in each
interaction until it reaches a number of more discriminant N
variables.*®
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Fig.1 Raw spectra for each original class: (a) DENV-3 in serum (1 x 10%, 1 x 102 1 and 0, 1 PFU mL™); (b) DENV-3 in blood (1 x 10% 1 x 102, 10

and 0, 1 PFU mL™Y).
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Genetic algorithm (GA) was another technique used for
variable selection. This algorithm makes use of techniques
based on biological genetics and evolution. A population is
created with n subsets, where each subset is composed by
a random combination of variables (wavenumbers). Each
subset is formed by m (the total number of variables that can be
chosen), 1's (variables selected by the model) and 0's (unse-
lected variables). Therefore, in genetic terms, each variable
represents a gene, and a set of variables represents a chromo-
some. For example, for a selection problem with 10 variables,
a chromosome could be 1001010110, where variables 1, 4, 6, 8
and 9 would be the variables selected for the model, and vari-
ables 2, 3, 5, 7 and 10 would be the variables to be optimized.**
In this study for the GA routine, the number of individuals
(population) for each generation was 24, with the number of
generations equal to 12. The genetic operator mutation and
crossover were held constant at 10 and 60%, respectively. GA
was repeated three times and the best result was used. In this
study, in order to select the best optimal number of variables for
SPA and GA we used a cost function calculated in the validation
set,”” as shown in eqn (2):

1 Nv
G=— n 2
Nv;g )

x 10
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in eqn (2), g, is defined as:

2
o = r (Xm ml(n)) (3)

minl(m)#l(n) r? (xm ml(m))

where I(n) is the index of the true class for the n™ validation
object x,,.

Linear Discriminant Analysis (LDA) was another technique
employed. It is a supervised technique that is based on the
discriminant process developed by Fisher in 1936. LDA maxi-
mizes the ratio between the variance between classes and
intraclass variation in any particular data set, thus ensuring
maximum separability. LDA is efficient when combined with
dimensionality reduction techniques (such as PCA, SPA and
GA).

The results of the multivariate classification for PCA-LDA,
SPA-LDA and GA-LDA were tested based on:sensitivity (confi-
dence in obtaining a positive result for a truly positive sample):

sens (%) = v (4)

LN
TS TNRR

specificity (confidence in obtaining a negative result for
a sample actually negative values):

N
spec(%) =

AN
™1 Fp <%

(5)
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Fig.2 Pre-processed spectra (cut between 900 and 1800 cm™2, baseline correction and smoothing) of: (a) DENV-3 in serum (1 x 10% 1 x 102, 1
and 0,1 PFU mL™Y); (b) DENV-3 in blood (1 x 10% 1 x 102 10 and 0,1 PFU mL™).
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positive predictive values (PPV; measures the proportion of
correctly assigned positive examples, and their value ranges
from 0 to 1):

TP

PPV = ——
TP + FP

(6)
negative predictive values (NPV; measures the proportion of
correctly assigned negative examples and their value ranges
from 0 to 1):

N

NPV = ——
TN +FN

(7)

Youden's index (YOU; assesses the ability of the classifier to
avoid failures):

YOU = sens — (1 — spec) (8)

positive likelihood ratios (LR(+); represents the ratio between
the probability of predicting a sample as positive when it is truly
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positive and the probability of predicting one as positive when it
is not positive):
sens

LR(+) = 1 — spec

(9)

negative likelihood ratios (LR(—); represents the ratio between
the probability of predicting a sample as negative when it is
positive and the probability of predicting a sample as negative
when it is truly negative):

LR(—) = 1 — sens (10)
spec

where TP is defined as true positive, FP is false positive, TN is

true negative and FN is false negative.

MATLAB R2012b software (Math-works, Natick, USA) was
used for data import, pre-treatment, and construction of the
chemometric classification models. The raw spectra were pre-
processed with cuts between 900 and 1800 cm ' (235
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Fig. 3 DF1 x DF2 discriminant function values calculated with 4 PC's for: (a) DENV-3 in serum (@1 x 10° @1 x 10 @1 and 0,1 PFU mL™Y); (b)

DENV-3in blood (@1 x 10° @1 x 102, @10 and ~0.1 PFU mL™).

Table 1 Variables selected by SPA-LDA to obtain the classification of different concentrations of DENV-3 in serum and blood

Chemometric analysis

Wavenumber selected (cm™")

SPA-LDA for DENV-3 in serum

SPA-LDA for DENV-3 in blood

25644 | RSC Aadv., 2017, 7, 25640-25649

908, 943, 989, 1041, 1080, 1124, 1144, 1194, 1302, 1315, 1360, 1441, 1477
1500, 1541, 1578, 1632, 1695, 1724, 1801

918, 989, 1049, 1076, 1105, 1151, 1227, 1304, 1317, 1356, 1414, 1489,
1524, 1564, 1618, 1653, 1682, 1718, 1801

This journal is © The Royal Society of Chemistry 2017
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wavenumbers at 4 cm ™' spectral resolution), baseline-corrected
and Savitzky-Golay smoothing (window 15 points). The samples
were divided into three sets for the PCA-LDA, SPA-LDA and GA-
LDA models (60% for training, 20% for validation and 20% for
prediction) using the classic Kennard-Stone uniform sampling
algorithm.* The KS algorithm was applied separately for each
class to maximize the Euclidean minimum distances between
selected and unselected samples.

Results and discussion

In Fig. 1a and b we can see the raw spectra of infected serum (1 x
10%,1 x 10% 1 and 0.1 PFU mL ") and infected blood samples (1
x 10°,1 x 10%, 10 and 0.1 PFU mL "), respectively. These spectra
were subjected to pre-processing (cut between 900 and 1800
cm !, baseline correction and smoothing) and the results can be
seen in Fig. 2a and b. As can be seen, the spectra are very similar,
being impossible the visual differentiation between them.
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Due to the great similarity between the spectra of the
different classes, it is necessary to use algorithms (PCA-LDA,
SPA-LDA and GA-LDA, in this case) that mathematically find
spectral information capable of discriminating one class from
another. The models were applied to classify the serum and
blood samples by the concentration of DENV-3 present, and
finally their performances were compared. The results are dis-
cussed below.

PCA-LDA

Fig. 3a and b show the plot of the Fisher scores in a two-
dimensional space resulting from principal component
analysis-linear discriminant analysis (PCA-LDA) for the infected
serum and blood samples, respectively. Each point represents
a spectrum of a sample. As can be seen, Fisher scores do not
show good segregation between classes. For this study the PCA-
LD was performed using 4 principal components (4 PC's, 94% of

Table 2 Variables selected by GA-LDA to obtain the classification of different concentrations of DENV-3 in serum and blood

Chemometric analysis

Wavenumber selected (cm ™)

GA-LDA for DENV-3 in serum
GA-LDA for DENV-3 in blood

905, 926, 949, 984, 1047, 1055, 1176, 1196, 1277, 1311, 1321, 1396, 1448, 1554, 1603, 1753, 1761
986, 1053, 1065, 1225, 1337, 1352, 1529, 1541, 1666, 1686, 1689
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Fig. 6 Graph of the variables selected by GA-LDA, marked in the average spectrum of: (a) DENV-3 in serum and (b) DENV-3 in blood.
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variance explained for serum samples and 95% for blood
samples).

SPA-LDA and GA-LDA

Then, SPA-LDA and GA-LDA were applied to select an optimal
number of variables through the minimum cost of the G func-
tion. Fisher scores were obtained for both models, with a better
segregation of the classes in relation to the PCA-LDA models.

In the case of infected serum samples the SPA-LDA selected
20 wave numbers, while for the case of infected blood samples
the SPA-LDA selected 19 wave numbers (Table 1). The selected
wave numbers are like biological markers, selected by the
models as the variables that most discriminate one class from
another. Fig. 4a and b show the graphs of the selected variables
by SPA-LDA for serum and blood DENV-3 samples, respectively.
Using these selected variables, the Fisher scores were calculated
(shown in Fig. 5). As can be seen, Fisher scores for SPA-LDA
show a better segregation of classes than those calculated for
PCA-LDA, being visually better separated for dengue-3 samples
in blood than in serum.

In analyzing the wavenumbers selected by SPA-LDA for the
contaminated serum samples, we observed that the main bio-
logical changes of interest that discriminate the different
concentrations are related to amide II of proteins (<1500 cm™ )
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and RNA (=~1080 cm ') vibrations. When examining the
wavenumbers selected by SPA-LDA for infected blood samples,
the main changes are related to carbohydrate (=1151 cm™ %),
protein structures (amide I, ~1653 cm ™', amide III, ~1317
em™ '), and RNA (=1227 em ™', =1076 cm ') vibrations.

In the case of the GA-LDA, 17 wavenumbers were selected for
the infected serum samples and 11 wavenumbers for the
infected blood samples (Table 2). The graph of the selected
variables can be seen in Fig. 6. As can be seen in Fig. 7, Fisher
scores showed good visual segregation between classes, mainly
in the case of infected blood samples (as in the case of SPA-
LDA).

Among the 17 wavenumbers selected by GA-LDA that best
discriminate infected serum samples, we can highlight changes
related to protein structures (amide III, =1311 cm ™', amide II,
~1554 cm '), COO~ symmetric stretch in fatty acids (=1396
cm ') and lipid (=1753 cm ™) vibrations. Among the 11 wave-
numbers selected by GA-LDA in the case of infected blood
samples, those that appear to be of major biological interest are
related to RNA (=1238 cm™ '), protein structures (amide III,
=~1329 em ™', amide I, =1661 cm ") and lipid (=1743 cm ™)
vibrations. The changes associated with RNA make sense, since
even within a single serotype there are minimal differences
found between the RNA of one viral particle and another.
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Fig.7 DF1 x DF2 discriminant function values calculated with the variables selected by GA-LDA for: (a) DENV-3 in serum (@1 x 10° @1 x 102 @1
and ©0.1 PFU mL™Y; (b) DENV-3 in blood (@1 x 10° @1 x 10° @10 and < 0.1 PFU mL™%).
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Table 3 Measurements of the performance of PCA-LDA, SPA-LDA
and GA-LDA in classifying different concentrations of DENV-3 in
serum by FTIR spectroscopy
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Table 4 Measurements of the performance of PCA-LDA, SPA-LDA
and GA-LDA in classifying different concentrations of DENV-3 in blood
by FTIR spectroscopy

DENV-3 in serum

DENV-3 in blood

Stage performance features PCA-LDA SPA-LDA GA-LDA  Stage performance features PCA-LDA SPA-LDA GA-LDA
1 x 10° PFUmL ™" 1 x 10° PFU mL ™"

Sensitivity (%) 100.0 100.0 50.0 Sensitivity (%) 100.0 100.0 100.0
Specificity (%) 100.0 100.0 100.0 Specificity (%) 100.0 100.0 100.0
Positive predictive values (PPV) 100.0 100.0 100.0 Positive predictive values (PPV) 100.0 100.0 100.0
Negative predictive values (NPV) 100.0 100.0 66.6 Negative predictive values (NPV) 100.0 100.0 100.0
Youden index (YOU) 100.0 100.0 50.0 Youden index (YOU) 100.0 100.0 100.0
Positive likelihood ratios (LR+) 0.0 0.0 0.0 Positive likelihood ratios (LR+) 0.0 0.0 0.0
Negative likelihood ratios (LR—) 0.0 0.0 0.5 Negative likelihood ratios (LR—) 0.0 0.0 0.0
1 x 10° PFUmML ™" 1 x 10> PFUmL ™"

Sensitivity (%) 100.0 100.0 100.0 Sensitivity (%) 100.0 100.0 100.0
Specificity (%) 100.0 100.0 50.0 Specificity (%) 100.0 100.0 100.0
Positive predictive values (PPV) 100.0 100.0 66.6 Positive predictive values (PPV) 100.0 100.0 100.0
Negative predictive values (NPV) 100.0 100.0 100.0 Negative predictive values (NPV) 100.0 100.0 100.0
Youden index (YOU) 100.0 100.0 50.0 Youden index (YOU) 100.0 100.0 100.0
Positive likelihood ratios (LR+) 0.0 0.0 2.0 Positive likelihood ratios (LR+) 0.0 0.0 0.0
Negative likelihood ratios (LR—) 0.0 0.0 0.0 Negative likelihood ratios (LR—) 0.0 0.0 0.0
1PFUmML™* 10 PFUmML ™’

Sensitivity (%) 0.0 50.0 50.0 Sensitivity (%) 100.0 100.0 100.0
Specificity (%) 0.0 50.0 100.0 Specificity (%) 100.0 100.0 100.0
Positive predictive values (PPV) 0.0 50.0 100.0 Positive predictive values (PPV) 100.0 100.0 100.0
Negative predictive values (NPV) 0.05 0.0 66.6 Negative predictive values (NPV) 100.0 100.0 100.0
Youden index (YOU) 100.0 0.0 50.0 Youden index (YOU) 100.0 100.0 100.0
Positive likelihood ratios (LR+) 0.0 1.0 0.0 Positive likelihood ratios (LR+) 0.0 0.0 0.0
Negative likelihood ratios (LR—) 0.0 1.0 0.5 Negative likelihood ratios (LR—) 0.0 0.0 0.0
0.1 PFU mL™" 0.1 PFUmML™’

Sensitivity (%) 50.0 100.0 0.0 Sensitivity (%) 100.0 100.0 100.0
Specificity (%) 50.0 100.0 100.0 Specificity (%) 100.0 100.0 100.0
Positive predictive values (PPV) 50.0 100.0 0.0 Positive predictive values (PPV) 100.0 100.0 100.0
Negative predictive values (NPV) 50.0 100.0 50.0 Negative predictive values (NPV) 100.0 100.0 100.0
Youden index (YOU) 0.0 100.0 0.0 Youden index (YOU) 100.0 100.0 100.0
Positive likelihood ratios (LR+) 1.0 0.0 0.0 Positive likelihood ratios (LR+) 0.0 0.0 0.0
Negative likelihood ratios (LR—) 1.0 0.0 1.0 Negative likelihood ratios (LR—) 0.0 0.0 0.0

The good segregations shown for SPA-LDA and for GA-LDA
give us an indication that these chemometric models will
provide good results for figures of merit [sensitivity, specificity,
PPV, NPV, YOU, LR(+) and LR(-)].

The performances of the method were evaluated through
validation measures. Tables 3 and 4 presents the performance
measures for PCA-LDA, SPA-LDA and GA-LDA for serum and
blood samples with different concentrations of DENV-3,
respectively. As can be seen, the models made some errors
for the serum samples, however they obtained an excellent
classification performance for the blood samples (in this case,
PCA-LDA, SPA-LDA and GA-LDA obtained 100% sensitivity and
specificity), demonstrating that ATR-FTIR spectroscopy
together with classification techniques has the potential to
quantitatively discriminate the dengue virus (in this case
DENV-3) in serum and blood, and may, in the near future,
assist in the more detailed diagnosis and correct treatment of
patients.

25648 | RSC Aadv., 2017, 7, 25640-25649

Conclusion

The spectra acquisition of each infectious agent can be identi-
fied to avoid cross-reactions in cases of co-infections or co-
morbidities. Serum and blood-based vibrational spectroscopy
has been applied in studies with various diseases, but it has
never been used in the quantitative classification of dengue
virus (determination of dengue viral load). The importance of
this determination is related to the fact that the viral load is
associated with disease time, and, in most cases, is directly
related to the severity of the disease. A patient with a high viral
load needs a more urgent treatment. Thus, a rapid and sensitive
technique for quantitative determination of the virus may assist
in the correct treatment of patients or inform those patients
who do not need treatment. The results of this study suggest
that IR spectroscopy with multivariate classification techniques
(PCA-LDA, SPA-LDA and GA-LDA, in this case) can be applied in
this clinical perspective. Principal component-based dimen-
sional reduction techniques (PCA) and variable selection (SPA

This journal is © The Royal Society of Chemistry 2017
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and GA) combined with LDA were performed in an attempt to
extract information from the ATR-FTIR spectra that best
differentiate the DENV-3 concentrations. In comparing the
DENV-3 samples in serum and DENV-3 in blood, the imple-
mented classification models obtained better results for blood
samples, with 100% sensitivity and specificity values for PCA-
LDA, SPA-LDA and GA-LDA. Although the results have been
encouraging, it is necessary to carry out studies with a larger
number of samples for greater reliability. However, this study
shows that further research is worth exploring in this perspec-
tive and suggests that in the near future we will be able to rely on
portable spectroscopic instruments that emit specific radiation
and simultaneous multivariate analyzes in the clinical and
virological study environments.
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