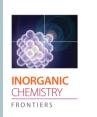
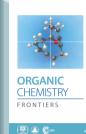

Discover top science with free access to our new journals


Environmental Science



COLUMN

Environmental Science: Nano

Cutting-edge research on the interactions of nanomaterials with biological and environmental systems http://rsc.li/es-nano

Environmental Science: Water Research & Technology

High quality research on various aspects of water science and technology, particularly water resources, security and sustainability.

http://rsc.li/es-water

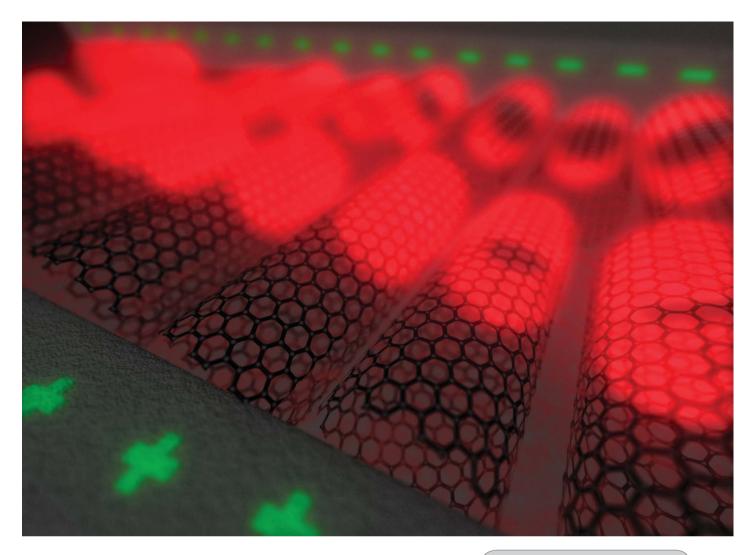
Materials Horizons

The home for rapid reports of exceptional significance on innovative materials http://rsc.li/materials-horizons

Inorganic Chemistry Frontiers An international journal developed by

the Chinese Chemical Society and Peking University. Publishes high quality work on inorganic and organometallic molecules and solids with explicit applications

🚇 🛞 🌾


http://rsc.li/frontiers-inorganic

Organic Chemistry Frontiers

An international journal developed by the Chinese Chemical Society and the Shanghai Institute of Organic Chemistry. Publishes high impact work from all disciplines of organic chemistry http://rsc.li/frontiers-organic

Register for free access: www.rsc.org/freeaccess

Showcasing research from Neso Sojic's laboratory, Institute for Molecular Sciences, University of Bordeaux, France.

3D Electrogenerated Chemiluminescence: from Surface-Confined Reactions to Bulk Emission

For the first time, the bulk generation of electrogenerated chemiluminescence in a 3D configuration is demonstrated by addressing electrochemically millions of micro- or nano-objects simultaneously in a wireless way. Each single object acts as an individual light emitter and their collective behavior enables strong light emission in the whole volume of the solution. This approach enables a change of paradigm by switching from a surface-limited process to 3D electrogenerated light emission.

As featured in:

See Alexander Kuhn, Neso Sojic *et al.,* Chem. Sci., 2015, **6**, 4433.

www.rsc.org/chemicalscience

