Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

The conversion of CO2 into valuable chemicals is a pivotal strategy to mitigate environmental and energy challenges. In this context, we report the design and synthesis of a cerium-based metal–organic framework {[Ce(L-NH2)0.5(NO3)(H2O)2]·2DMF} (Ce-TPTC-NH2), constructed from Ce(III) centers and a precisely engineered amino-functionalized terphenyl tetracarboxylate ligand {L-NH2} (TPTC-NH2). This crystalline, microporous framework not only exhibits excellent catalytic performance in the solvent-free cycloaddition of CO2 with suitable epoxides, achieving >99% conversion under mild conditions (5 bar CO2, 100 °C, 0.06 mol% catalyst) but also demonstrates unprecedented structural stability and reusability over multiple cycles. The synergistic interplay between Lewis acidic Ce3+ centers and basic –NH2 groups enables enhanced activation of both CO2 and epoxide substrates while lowering the activation barrier. Importantly, this Ce-MOF integrates bifunctional acid–base sites and is tailored specifically for CO2 fixation. The catalyst retained its crystallinity and >90% activity after five cycles, confirming its practical viability. This work introduces a design pathway for amine-functionalized Ce-MOFs, showcasing their potential as highly efficient, stable, and reusable heterogeneous catalysts for CO2 fixation under solvent-free conditions.

Graphical abstract: Amino-functionalized cerium based MOF for sustainable CO2 fixation into cyclic carbonates

Page: ^ Top