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We investigate theoretically the transport of electrons and holes
in crystalline solids consisting of three-dimensional arrays of
semiconductor nanocrystals passivated by two types of organic
ligands—linear chain carboxylates and functionalized aromatic
cinnamates. We focus on a critical quantity in transport: the
quantum-mechanical overlap of the strongly confined electron
and hole wavefunctions on neighboring nanocrystals. Using
results from density-functional-theory (DFT) calculations, we
construct a one-dimensional model system whose analytic
wavefunctions reproduce the full DFT numerical overlap values.
By investigating the analytic behavior of this model, we reveal
several important features of electron transport. The most
significant is that the wavefunction overlap decays exponentially
with ligand length, with a characteristic decay length that
depends primarily on properties of the ligand and is almost inde-
pendent of the size and type of nanocrystal. Functionalization
of the ligands can also affect the overlap by changing the height
of the tunneling barrier. The physically transparent analytic
expressions we obtain for the wavefunction overlap and its decay
length should be useful for future efforts to control transport in
nanocrystal solids.

Nanocrystals are a distinct class of artificial materials whose
electronic, magnetic, and optical properties are strongly con-
trolled by size and shape. They can be also used as building
blocks to create self-assembled nanocrystal solids having nearly
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crystalline order on a scale that would normally require lithogra-
phy. The first nanocrystal solid was an "elemental" solid of CdSe
nanocrystals grown by Murray and coworkers in 19951. This
work opened the door to more complex artificial electronic mate-
rials, and even to flexible electronics and nanocrystal-based inte-
grated circuits, with widely tunable properties2–4. Good electron
transport is a key requirement for these applications. Indeed, ef-
forts to improve transport have increased the mobility of electrons
in nanocrystal solids by more than five orders of magnitude since
their discovery5. But further advances may require a more fun-
damental theoretical understanding of electron transport in these
complex materials.

Electron transport in nanocrystal solids is, like the materials
themselves, a complicated subject with many aspects requiring
consideration6–8. There is a rich body of experimental data avail-
able for use as benchmarks against which theories can be tested.
A much smaller number of theoretical works exist. One reason
for this is that traditional analytic theories omit details of chem-
istry and geometry that are, in this case, often quite important9.
At the same time, first-principles theoretical treatments that prop-
erly include these details do not readily allow one to draw more
general conclusions. Nor do they always lead to clear principles
that one can use for the rational design of better materials.

In this work we draw upon both approaches—first-principles
and analytic—to formulate simple principles of conduction in
nanocrystal solids that are by construction fully consistent with
detailed atomistic calculations. We limit our scope to elemen-
tal nanocrystal solids: Bravais lattices with identical nanocrys-
tals passivated by organic ligands, as shown schematically in
Fig. 1(a). Such idealized structures might seem unrealistic, but
recent multilayer diffraction experiments have indeed demon-
strated that nanocrystal solids can approach the structural per-
fection of single crystals10. We exclude from our treatment sev-
eral phenomena known to be important for conduction: carrier
localization due to energy differences arising from nanocrystal
size inhomogeneity9,11, carrier trapping and recombination8,12,
excited-state quantum dynamics13, polaron formation and reor-

2 | 1–8Journal Name, [year], [vol.],

Page 1 of 8 Nanoscale



L

a L

D

D

(b)

(a)

g

g

Fig. 1 (a) Three-dimensional cubic lattice of nanocrystals with identical
size and shape. The lattice constant D depends on the chemical type and
length L of the organic ligands, the ligand-ligand gap g, and the nanocrys-
tal diameter a. (b) Simplified model of the cubic nanocrystal solid. This
model represents by design the closest possible contact between opposing
ligands is and more amenable to density-functional-theory calculations.
It is a periodic array of nanoplatelets, each identical and infinite in two
dimensions, with surface orientations and ligand contacts corresponding
to the opposing facets of the nanocrystal solid. In this arrangement, the
calculated equilibrium value of g is very small, 1-2 Å. Smaller and even
negative values are possible for ligands arranged as in panel (a), but steric
interactions will ensure the magnitude of g is generally small. This model
captures the three main features that control electron transport: quan-
tum size effects in the nanocrystals, the type and size of the ligands as
well as the opposing ligand-ligand interactions, and the lattice constant
of the nanocrystal solid.

ganization energy8, Coulomb blockade14, band offsets due to
different nanocrystal or ligand types15, thermal lattice contrac-
tion16, epitaxially fused nanocrystal solids17, the space-filling
fraction of the nanocrystals18, etc. This choice allows us to fo-
cus on one of the most important aspects of carrier transport: the
overlap of quantum-confined wavefunctions on neighboring lat-
tice sites.

The importance of wavefunction overlap for transport is ob-
vious in the case of delocalized "band-like" conduction. There
is good evidence for band-like conduction in many nanocrystal
solids19–21 but the generality of this finding is not yet clear22. In-
deed, mobility data from other nanocrystal solid systems instead
show strong evidence of localized "hopping" transport6,16,23,24.
However, it is important to note that the overlap of wavefunctions
controls transport in both of these limits. Therefore, our conclu-
sions will likely be valid for a broad range of nanocrystalline solid
materials.

1 Approach
The electron and hole wavefunctions in a nanocrystal solid de-
pend on many factors: the electronic properties of the semicon-
ductor; the degree of quantum confinement; the size, type, den-
sity, and arrangement of the ligands; and the lattice spacing of the
nanocrystals25,26. Our strategy is to first use density-functional
theory (DFT) in order to capture all of these effects as accurately
as possible for a specific nanocrystal solid. We then use the result-
ing DFT quantum-confined electron and hole states to construct
a square-well model whose effective-mass-theory (EMT) wave-
functions reproduce the full DFT wavefunctions as accurately as
possible. The overlap integrals of these wavefunctions have a spa-
tial dependence that agrees remarkably well with a broad range
of experimental transport data, lending credence to our use of
wavefunction overlap as a proxy for transport. Finally, we obtain
analytic solutions for the square-well model and use them to pre-
dict the behavior of the wavefunction overlap for a broad class
of nanocrystal solids. The physically transparent form of these
solutions leads to simple principles of carrier transport that are
helpful for understanding conductivity in real systems.

The nanocrystal solid of Fig. 1(a), although highly idealized,
is still not amenable to accurate DFT calculations for realistically
sized nanocrystals. We instead perform the calculations on the
closely related system shown in Fig. 1(b). This system consists of
parallel nanoplatelets of thickness a, each passivated by ligands of
length L and separated by a fixed distance D. These three quanti-
ties have close analogs in the three-dimensional nanocrystal solid
and so this model can be expected to accurately reflect many of
its features, including quantum confinement and ligand-ligand
interaction. Of course, certain physical features are missing in
the nanoplatelet model, such as the geometrical effects of finite
sized nanocrystals; we will analyze these effects using a simple
geometrical model. By considering nanoplatelets we necessarily
restrict our investigation to a single crystallographic plane with
a well-defined ligand coverage, which we assume represents the
closest ligand-ligand contact in the full three-dimensional solid of
nanocrystals. These assumptions are physically plausible but they
also lead to substantial computational simplification: DFT calcu-
lations for the nanoplatelet model are far more tractable because
the unit cells contain only tens of atoms rather than the hundreds
or thousands required for the full solid. This allows us to use the
computationally more expensive Heyd-Scuseria-Ernzerhof (HSE)
hybrid screened-exchange functional27, which ensures that elec-
tronic properties are represented with excellent accuracy. Details
of our computational methods are in the ESI.

2 Results

2.1 Density-functional-theory calculations

We studied one of the most frequently investigated nanoscale ma-
terials system: CdSe nanoplatelets passivated by linear chain car-
boxylate ligands of various lengths28–32 and, for comparison, a
set of short aromatic carboxylate (cinnamate) ligands with vari-
ous functionalizations33. Experimentally, CdSe nanoplatelets are
zincblende while CdSe quasi-spherical nanocrystals are wurtzite
with different facets. We restrict our attention to the former
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Fig. 2 Structure of an infinite four-monolayer nanoplatelet of CdSe passi-
vated by octanoate ligands, C8H15O−2 . The relaxed, lowest-energy ligand
coordination obtained from DFT total energy calculations is shown, in
which the COO− head groups are coordinated to surface Cd atoms. The
labeled quantities correspond to Figs. 1 and 3.

because the chemical coordination of carboxylate ligands to
CdSe(001) is well understood: the deprotonated COO− head
group binds at the bridge site between two surface-Cd atoms.
(In wurtzite nanocrystals the ligand coordination will be dif-
ferent but the effect on the wavefunction overlap is likely to
be minor.) Figure 2 shows the structure obtained from DFT
calculations using the Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional34–36 of a zincblende CdSe nanoplatelet as-
sumed infinite in two dimensions with Cd-terminated (001) facets
and passivated by a full monolayer of octanoate ligands. Once
the relaxed structure is found it is straightforward to obtain the
quantum-confined wavefunctions ψ(r) for the lowest-lying elec-
tron and hole states using DFT/HSE. To ensure the accuracy of
these wavefunctions we used a plane-wave cutoff energy of 800
eV, twice the default value.

We turn now to our primary quantity of interest, the overlap
integral. The full three-dimensional overlap is

S3d(D) =
∫

ψ(r)ψ(r−D)d3r, (1)

where D = Dx̂ is the center-to-center separation of the two
nanoplatelets. At equilibrium, this separation is determined by
the length L of the ligands and their interactions and so it is
convenient to write D = a+ 2L+ g, where g is the gap between
ligands on adjacent nanoplatelets. Our total-energy calculations
show that the optimal g is very small, about 1 to 2 Å for a range
of carboxylates. For the rest of this work we set g = 2 Å but our
conclusions are not sensitive to this choice.

It is straightforward to compute S3d(D) numerically. But it will
be more informative to first define a simpler one-dimensional
wavefunction ψ(x) by averaging |ψ(r)|2 over y and z and then
analyze its overlap,

S(D) =
∫

ψ(x)ψ(x−D)dx. (2)

As an example, the wavefunction ψ(x) for the hole state of the

L

a L

a

V

Fig. 3 One-dimensional square-well model of a single nanocrystal or
nanoplatelet with organic ligands. The DFT valence wavefunction for a
four-monolayer CdSe nanoplatelet (a=12.4 Å) passivated with octanoate
ligands (L=11.1 Å), averaged in-plane, is shown in red. The square well
that best reproduces the DFT wavefunction has U=1.0 eV and V=4.2 eV
and the corresponding effective-mass wavefunction shown in blue. For
clarity the square well is not drawn to scale.

4-monolayer (ML) CdSe nanoplatelet with octanoate ligands is
shown in Fig. 3 (red curve). The planar averaging obviously af-
fects the value of the overlap but we find this effect to be quite
modest, with S typically somewhat larger (approximately by a fac-
tor 2-3) than S3d but having a very similar variation with respect
to D.

Figure 4 summarizes our numerical results for S(D) using six
linear carboxylate ligands of increasing length: the deprononated
anions of formic, acetic, pentanoic, octanoic, undecylic, and
myristic acids. The results are extremely well described by an
exponential in the ligand length, S(L) = S0 exp(−L/L0), where the
decay length L0 is 1.42 Å for 4-ML nanoplatelets. To explore the
effect of stronger quantum confinement we also calculated the
overlaps using 2-ML nanoplatelets. The results are very similar:
the prefactor is larger because the wavefunction leakage is greater
but the decay length (1.47 Å) is only slightly longer. The results
for seven functionalized aromatic ligands are compared in Fig. 6
to the linear ligands. Because of the functionalization, the behav-
ior of the aromatics is more complicated and so we discuss them
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Fig. 4 Theoretical and experimental conductivity in ordered nanocrystal
solids. Results from density-functional-theory (DFT) and effective-mass
theory (EMT) are in color and show the overlap integrals of the quantum-
confined hole-state wave functions for CdSe nanoplatelets as a function
of the number of carbon atoms in the ligand molecules. The results for 4-
ML platelets obtained from DFT (red) and EMT (blue) are in extremely
good agreement; the EMT values are offset by one decade for clarity.
The results for 2- and 4-ML nanoplatelets differ by a scale factor but
are otherwise very similar despite the very different degree of quantum
confinement. The exponential dependence of the DFT overlap integral
on ligand length L is characterized by the decay length L0=1.42 Å for 4-
ML platelets. Results from three experiments using similar alkane chain
ligands are in gray: conductivity data for Au clusters from Wuelfing et
al.37 (squares) yield L0=1.33±0.06 Å; mobility data for PbSe nanocrys-
tals from Liu et al.23 (diamonds) yield L0=1.08±0.14 Å; and conductivity
data for Cu2−xSe nanocrystals from Khoshkhoo et al.38 (triangles) yield
L0=1.40±0.06 Å.

separately in Section 3.3.

Figure 4 also shows transport data as a function of ligand
length from three recent experiments: conductivity data for Au
clusters37, mobility data for PbSe nanocrystals23, and conductiv-
ity data for Cu2−xSe nanocrystals38. None of these experiments
used CdSe nanocrystals and so the data cannot strictly be com-
pared to our calculations. But all three have in common the use
of linear alkane chain ligands (alkanethiols in Ref. 37 and alka-
nedithiols in Refs. 23 and 38) and therefore, despite having head
groups different from carboxylates, their saturated linear carbon
chains are otherwise the same. It is striking that the decay lengths
for very different nanocrystals are so close (in the range 1.1 to 1.4
Å) and in excellent agreement with our theoretical values. This
strongly suggests that the wavefunction overlap is almost entirely
determined by the ligands, and that the size, shape, and chemical
nature of the nanocrystals play only a minor role. In the follow-
ing section we introduce an analytical model that explains (1)
why the decay length is nearly the same for these different sys-
tems; (2) which materials properties determine its value; (3) why
it depends only weakly on the nanocrystal size and composition.

2.2 Square-well model and effective-mass theory

To construct a square well representing a single nanoplatelet or
nanocrystal, as depicted in Fig. 3, we fix the physical dimensions
a and L and then find the potential barriers U and V that lead
to the effective-mass wavefunction φ(x) that best matches ψ(x)
in the logarithmic least-squares sense. The resulting φ(x) for the
hole state of the 4-ML CdSe nanoplatelet with octanoate ligands is
shown in Fig. 3 (blue curve). See ESI for details of this procedure,
including the solution of the stepped square-well problem using
a transfer-matrix method, and methods and values for the effec-
tive masses of CdSe and the ligands as required in effective-mass
theory (EMT).

The EMT overlap integrals S(D) are also plotted in Fig. 4 for 4-
ML nanoplatelets. As expected, these values are very close to the
DFT values (they are offset for clarity in the plot) and have a very
similar decay length of L0=1.32 Å. This similarity confirms that
the square-well model and EMT approach provides an accurate
representation of the full DFT overlap integrals. Therefore, we
turn next to analyzing the quantities in this model that determine
L0 and from this analysis derive several important characteristics
of transport.

3 Discussion

3.1 Wavefunction overlap

The EMT wavefunction φ(x) is a piecewise function consisting of
cos(kx) in the semiconductor region and predominantly single ex-
ponentials exp(−αlig|x|) and exp(−αvac|x|) in the ligand and vac-
uum region, respectively. In the ESI we derive from this wave-
function an expression for the dependence of the overlap integral
on L and a:

S(D) = exp(−L/L0)ξ (a), (3)

where L0 = 1/2αlig and ξ (a) is a decreasing function of nanocrys-
tal size which scales as 1/(a+2L0) for small a and is independent
of L. This expression leads to two important conclusions. (1)
The exponential decay length L0 has no explicit dependence on a
and hence is primarily an intrinsic property of the ligands. This
explains why experiments involving alkane chain ligands exhibit
very similar decay lengths even though the nanocrystals them-
selves are of different sizes and even different materials. (2)
For fixed ligand length L, the overlap integral decreases with the
size a because of reduced wavefunction leakage. This is in agree-
ment with our DFT results for the overlap values of 2- and 4-ML
nanoplatelets (Fig. 4).

3.2 Behavior of the decay length

We turn now to finding an explicit expression for the decay length
L0 by determining the exponent αlig = [2mlig(U −E)]1/2/h̄, where
mlig is the effective mass in the ligand region and E is the energy
of the lowest-lying bound state. Exact values for E can only be
found numerically or graphically, but by linearizing the square-
well equation (see ESI) we obtain a compact analytic expression
for the decay length,

L0 = L0

[
1− 2

1+(U/U0)1/2

]−1/2
, (4)
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Fig. 5 Decay length L0 obtained from effective-mass theory as a function
of platelet thickness (or nanocrystal diameter) a and square-well barrier
height U . Thick lines show exact results. Thin lines show the linear-order
decay length of Eq. (4). The linear-order values for 2- and 4-ML CdSe
nanoplatelets are marked by black circles and agree well with the decay
lengths obtained by numerically fitting the full DFT results in Fig. 4.

where
L0 =

1
2

h̄
(2mligU)1/2

(5)

is the decay length in the limit of large U and a and we have
defined a characteristic energy scale,

U0 =
h̄2

2mliga2 , (6)

which also sets a lower limit of validity for the barrier U . For
carboxylates, U is of order 1 eV while U0 is much smaller (less
than 0.1 eV for 2-ML nanoplatelets). In this regime it is easy to
see that L0 scales as U−1/2 to lowest order. The linearization also
sets a lower limit of validity for the size, amin = 2L0, which is of
order 2 Å. This criterion is easily satisfied for most nanoplatelets
and nanocrystals of practical interest. In this regime it is easy to
show that L0 is equal to the size-independent value L0 multiplied
to lowest order by 1+amin/a. The smallness of the size-dependent
correction term explains the insensitivity of L0 to the nanoplatelet
size a found in our DFT results for 2- and 4-ML nanoplatelets.

Figure 5 illustrates these two trends numerically. The barrier
heights U provided by carboxylate ligands are in the range 1 to 2
eV (between the green and blue curves) and thus the decay length
L0 is in the range 1.0 to 1.5 Å. In this regime L0 is only very weakly
dependent on the nanocrystal size and is essentially independent
of its electronic properties such as band gap and effective mass.
This explains why the experimental transport data in Fig. 4—from
solids of Au, PbSe, and Cu2−xSe nanocrystals but with chemically
similar alkane chain ligands—all have very similar values of L0.
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Fig. 6 (a) DFT overlap integrals of the quantum-confined hole-state
wave functions for 4-ML CdSe nanoplatelets, comparing linear and func-
tionalized aromatic ligands. For the aromatic ligands, the length of the
ligand (projected onto the CdSe surface normal) was used to define the
equivalent number of carbon atoms for a linear chain. (b) DFT overlap in-
tegrals rescaled by by 1/exp(−L/L0), as a function of the HOMO-LUMO
gap Eg calculated within DFT/PBE. The curve is a fit to exp(−βE1/2

g ),
which is the expected behavior for wavefunction confined by a square-well
with barrier height Eg.

3.3 Functionalized aromatic carboxylate ligands
We turn now to a chemically more complex set of ligands: the
conjugate bases of seven functionalized cinnamic acid molecules
recently investigated in Ref. 33. These ligands have carboxy-
late head groups and are therefore very likely to coordinate to
CdSe(001) in the same way as the linear carboxylates, making
them especially suitable for direct comparison. But their ad-
ditional functional groups—of nitrogen, fluorine, oxygen, and
methyl groups—make their role in wavefunction overlap more
complicated. Nevertheless, we show here that their predicted be-
havior can be qualitatively and even quantitatively understood
using the same approach developed above for the linear ligands.

The seven ligands we investigated are cinnamate (4-
H), 4-cyanocinnamate (4-CN), 4-dimethylaminocinnamate (4-
N(CH3)2), 3,5-difluorocinnamate (3,5-F), 2,6-difluorocinnamate
(2,6-F), 4-trifluoromethylcinnamate (4-CF3), and methoxycinna-
mate (4-OCH3). Following the same procedure as for the lin-
ear ligands, we computed the DFT overlap integrals for hole-state
wavefunctions of 4-ML CdSe nanoplatelets passivated by cinna-
mate ligands. The results are compared in Fig. 6(a) to the linear
carboxylate results of Fig. 4. The cinnamate ligands are similar in
length to pentanoate and so it is not surprising that their overlaps
are of the same order as for that ligand, albeit considerably larger.
However, there is no discernible trend among the overlaps with
respect to the cinnamate length.

All of these findings can be understood by analyzing the elec-
tronic structure of the cinnamates, specifically their HOMO-
LUMO gaps Eg. For the linear ligands, Eg is a slowly varying
function of length L. But for the cinnamates, the different func-
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tionalizations lead to very different values of Eg even for ligands
of similar length. We used DFT/PBE to estimate Eg of isolated
cinnamic acid ligands and found them to have much smaller val-
ues (in the range 2.5 to 3.2 eV) than pentanoic acid (5.3 eV).
Smaller gaps imply lower barrier energies U and therefore greater
wavefunction leakage and larger wavefunction overlaps, which is
consistent with the results in Fig. 6(a).

This interpretation can be confirmed quantitatively by disen-
tangling the effects of the two major factors controlling the over-
lap, the ligand length L and the HOMO-LUMO gap Eg. In Fig.
6(b) we have removed the effect of varying lengths by dividing
the cinnamate overlaps by exp(−L/L0), where the decay length
L0 is 1.42 Å for these 4-ML nanoplatelets. This reveals the very
simple, physically transparent dependence of the scaled overlap
on the HOMO-LUMO gap. According to Eq. (5) this dependence
is exponential in the square root of Eg, which is quantitatively
consistent with the results in Fig. 6(b).

Finally, we note that the different cinnamate functionalizations
also lead to widely varying electric dipole moments (from −2.9 to
+6.8 D for the free cinnamic acid molecules, as reported in Ref.
33). These dipole moments are correlated with the HOMO-LUMO
gaps and hence their role in the wavefunction overlap cannot be
independently analyzed. Moreover, when bound to the nanocrys-
tal surface, these molecular dipole moments are strongly com-
pensated by an interface dipole39.This compensation makes the
intrinsic molecular dipole a less useful quantity than the HOMO-
LUMO gap for analyzing wavefunction overlap.

3.4 Geometrical effect of nanocrystal size

The results obtained so far have assumed a planar geometry with
a single gap g between opposing ligands. For nanoplatelets this
is a reasonable assumption and so no further issues arise. But
for finite nanocrystals we must address the geometrical effect of
curvature on the overlap of wavefunctions.

The decay of a wavefunction from the surface of a sphere with
radius R into the vacuum can be accurately modeled by the func-
tion fR(r) = exp(−r/L1) for r > R (outside the sphere) and unity
inside. According to our DFT calculations the decay length L1 is of
order 1 Å. Consider now the integral F(R) =

∫
fR(r) fR(r−D)d3r

where, for simplicity, we set the center-to-center separation D
such that the spheres are just touching.

In the ESI we show that for sphere sizes satisfying R > L1 this
integral scales linearly with the sphere size, F(R) ∝ RL2

1. This ad-
ditional scaling with the sphere size modifies the planar expres-
sion for S(D), as we summarize next.

3.5 Overall behavior of wavefunction overlap.

The effect of finite curvature of the nanocrystals, which reduces
overlap for small sizes, is counteracted by the effect of wavefunc-
tion leakage, which increases overlap for small sizes. This can be
seen by combining the expressions obtained above to express the
overall behavior of the wavefunction overlap:

S(D) ∝

(
a+2L
a+2L0

)
L2

1 exp(−L/L0). (7)

Here, a+ 2L is the effective size of the spherical nanocrystal in-
cluding its ligand shell. For very short ligands or large nanocrys-
tals the term in parentheses approaches unity, indicating that
nanocrystal size plays only a minor role in electron transport. Ex-
perimental investigation of this predicted behavior has, to our
knowledge, not yet been undertaken.

4 Relation to experiments
It has long been recognized experimentally that shorter ligands
are a promising route to better conductivity3,4,7. This strategy
can be implemented using ligand exchange after the nanocrys-
tal growth has completed, so that the colloidal synthesis itself
does not need to be changed. For example, inorganic molecular
metal chalcogenide ligands such as Sn2S6 increase the conductiv-
ity of CdSe nanocrystal films by orders of magnitude compared
to as-grown films with organic ligands40,41. The ultimate limit of
these inorganic metal ligands is a single monolayer of passivat-
ing atoms. Ligand exchange to create such a layer of passivat-
ing chlorine atoms has been demonstrated to greatly increase the
conductivity of Au nanoparticles42. Although we did not address
inorganic ligands in our investigation, our model could be readily
generalized to include them as well.

Some of these ligand exchange methods employ hydrazine,
N2H6, as part of the post-growth processing40. Hydrazine treat-
ment by itself was also shown to greatly increase the conduc-
tivity of PbSe nanocrystal solids and even to enable reversible
switching of the conduction between n-type and p-type, suggest-
ing that hydrazine dopes the material by surface charge trans-
fer43. Subsequent theoretical studies of hydrazine adsorption on
PbSe indicated the material actually remains intrinsic but other
possibilities—such as dissociative adsorption to form NH2 (which
was predicted to dope PbSe) or etching of the surface to create
vacancy defects—remain relatively unexplored44. At any rate,
these doping strategies, while interesting and potentially useful,
are outside the scope of our overlap model.

Another approach to increasing conductivity in nanocrystal
solids is by photoexcitation. In this approach, an electron-hole
pair created by an incident photon decays nonradiatively via
Auger recombination. The resulting energy excites the electron
above its ionization threshold and creates a quasi-free carrier.
This strategy can lead to photoconductivity in nanocrystal solids
exceeding the dark conductivity by 2-3 orders of magnitude even
at relatively weak light excitation41,45. This enhancement of the
photocurrent, which is due to high mobility of the photoexcited
states, arises in disordered semiconductors from variable-range
hopping. However, at room temperature, direct hopping be-
tween neighboring nanocrystals becomes dominant and therefore
the photocurrent becomes proportional to the overlap integral9.
The nature and magnitude of the disorder only affect the non-
exponential prefactor of the current. Hence, ligands control the
photoconductivity at room temperature as well as the dark cur-
rent.

5 Conclusions
Our main finding—obtained by combining first-principles numer-
ical calculations and analytic approaches—is that electron trans-
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port in nanocrystal solids is controlled primarily by the ligand
molecules. In particular, the overlap of wavefunctions on neigh-
boring nanocrystals decays exponentially with the ligand length
and the characteristic decay length scales with the square root of
the potential barrier provided by the ligand shell, with a weak
linear dependence on the inverse size of the nanocrystals. For
saturated hydrocarbon chains this decay length has the predicted
value 1.4 Å with small variations of order 0.1 Å depending on the
size and type of the nanocrystal. Because the decay length is de-
termined by the barrier height provided by the ligands, it can be
controlled using chemistry through the choice of ligand or using
geometry through the concentration of ligand molecules. These
findings may enable the rational design of new materials having
specific transport properties.
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