

Reactions of Chlorinated Ethenes with Surface-Sulfided Iron Materials: Reactivity Enhancement and Inhibition Effects

Journal:	Environmental Science: Processes & Impacts
Manuscript ID	EM-ART-12-2019-000593.R1
Article Type:	Paper

Environmental Significance Statement

There is a growing interest in the subject of sulfur-modified iron (ZVI) materials for reductive dehalogenation in recent years owing to its ability to remarkably increase the rates of trichloroethene (TCE) degradation and more selective electron transfer to target contaminants against background constituents. This study examined systematically the effects of different sulfidation treatments on the reactivity of four commercially available ZVIs for reductive dechlorination of perchloroethene (PCE), TCE, and *cis*-dichloroethene (*cis*-DCE). We showed for the first time that the effect of sulfidation is highly contaminant-specific with the observed kinetic enhancements in the order of TCE > PCE > *cis*-DCE. Furthermore, there is a clear divide in *cis*-DCE dechlorination performance among the high-purity ZVIs and those derived from a less pure feedstock such as cast iron. The innate impurities in the latter can serve as adventitious catalysts and their actions are inhibited by sulfidation.

2 3 4	1	Reactions of Chlorinated Ethenes with Surface-Sulfided Iron Materials:
5 6 7	2	Reactivity Enhancement and Inhibition Effects
8 9 10 11	3	Syful Islam ^{1,^} , Yanlai Han ^{1,^,#} , Weile Yan ^{1,2*}
12 13	4	¹ Department of Civil, Environmental and Construction Engineering, Texas Tech University,
14 15 16	5	Texas, United States
17 18 19	6	² Department of Civil and Environmental Engineering, University of Massachusetts Lowell,
20 21 22	7	Massachusetts, United States
23 24 25	8	
26 27 28	9	
29 30 31 32	10	
33 34 35	11	
36 37 38	12	
39 40 41	13	^ with equal contribution
42 43 44	14	[#] Current affiliation: U.S. EPA National Exposure Research Laboratory
45 46 47	15	* Corresponding author. Tel: (978)-934-2256
48 49 50 51 52 53 54 55 56 57	16	Email address: <u>weile_yan@uml.edu</u>
57 58 59 60		1

Abstract

Recent studies on the use of controlled sulfur amendment to improve the reactivity and selectivity of zerovalent iron (ZVI) in reductive dechlorination reactions have generated a renewed interest in ZVI-based remediation materials. However, existing studies have focused on the reactions between trichloroethene (TCE) and lab-synthesized ZVI, the applicability of sulfidation to ZVIs with different material characteristics for reductive dechlorination of chloroethenes such as tetrachloroethene (PCE) and cis-dichloroethene (cis-DCE) have not been systematically examined. In this study, four ZVI materials from commercial sources having different size, morphological, and compositional characteristics were subject to various sulfidation treatments and were assessed in batch reactions with PCE, TCE, or *cis*-DCE. Sulfur-amendment induces modest increases in PCE degradation and steers reaction to a cleaner pathway that has minimum accumulation of partially dechlorinated intermediates. In the case of *cis*-DCE, bifurcating outcomes were observed that include enhancement effects for two high-purity ZVIs and inhibitory effects for two ZVIs possessing low levels of metal impurities. Further investigations based on controlled metal dosing reveal that the trace metals commonly present in cast iron or recycled metal scraps, such as Cu and Ni, can act as adventitious catalysts for *cis*-DCE reduction. Sulfidation results in poisoning of these catalytic ingredients and accounts for the adverse effect observed with a subset of ZVIs. Collectively, this study confirms enhanced degradation of highly chlorinated ethenes (PCE and TCE) by sulfidation of ZVIs from diverse origins; nonetheless, the effects of sulfidation can be highly variable for the lesser chlorinated ethenes due to differences in the material characteristics of ZVI and the predominant dechlorination pathways.

30	Keywords: 7VI	culfur cul	lfidation (dechlorination	TCE PCE	and cis_DCE
39	Keywolus. Zvl,	sunui, su	muation, o	decinormation,	ICE, FCE,	and cis-DCE

Introduction

41	Chlorinated ethenes, such as tetrachloroethene (PCE) and trichloroethene (TCE), are
42	common groundwater pollutants and their efficient removal remains a lingering challenge
43	due to their historical uses in diverse industries ^{1, 2} , significant accumulation in fractured
44	bedrocks or low-permeability media ^{3, 4} , and recalcitrance to natural attenuation ^{1, 5} . In
45	addition to TCE and PCE, lesser chlorinated analogues such as <i>cis</i> -dichloroethene (<i>cis</i> -DCE),
46	1,1- dichloroethene (1,1-DCE), and vinyl chloride (VC) have been frequently detected in the
47	subsurface environment owing to incomplete biodegradation ⁶ or the formation of
48	intermediates during abiotic transformation ^{7, 8} . These complications have spurred continuous
49	search for effective remediation approaches in the past three decades.
50	Zero-valent iron (ZVI or Fe(0)) materials have been applied extensively to
51	environmental remediation ^{6, 9-13} . The nanoscale or bulk ZVI materials can transform
52	chlorinated ethenes into non-toxic end products with minimal build-up of problematic
53	intermediates, however, one serious drawback is the tendency of iron to passivate in
54	groundwater matrices or under aerobic conditions ¹⁴⁻¹⁸ . In recent years, a collection of
55	studies have shown that amending the iron substrate with low doses of sulfur significantly
56	mitigates passivation and steering the electron selectivity towards the target contaminants ¹⁹⁻

⁵⁷ ²⁴. In addition to these desirable properties, the promise of ZVI sulfidation lies in the

simplicity and robustness of the sulfidation process. In general, controlled sulfidation can be

59 attained by either exposing ZVI to aqueous or gaseous sulfur precursors ^{19, 20, 24} or placing

60 ZVI in contact with solid phase sulfur (e.g., elemental sulfur) using mechanochemical means

.

^{25, 26}, and concise summaries of a variety of sulfidation protocols are available in several recent reviews ^{6, 27}. Our earlier investigation demonstrated that at low sulfur doses, improvements in TCE reduction rates attained by different sulfur precursors are comparable. Further, the enhancement effect saturates at a S/Fe mole ratio of ca. 0.05 for the nanoscale ZVI, thus a consistent beneficial outcome is expected over a wide range of operation conditions ²².

Reduction of chlorinated ethenes by iron substrates may occur via direct electron transfer or indirect reduction involving atomic hydrogen ^{6, 28}. Concerning the mechanisms of sulfur-induced improvements in TCE dechlorination rates, multiple accounts have been proposed including depassivation of the native oxide layer ²⁹, more facile electron conductance from the Fe(0) core to contaminants via the iron sulfide phase (FeS_x) $^{23, 30, 31}$, and increased availability of atomic hydrogen on the particle surface ²². An unequivocal conclusion cannot be made at this time due to differences in experimental conditions (e.g., in dilute vs. saturated TCE solutions), as the dominant mechanism may shift with solution pH and TCE concentration ²⁸. Furthermore, there is evidence that the enhancement effect is reactant-specific ^{6, 31, 32}, and the outcome of sulfidation may not necessarily manifest in the same way for different contaminants. With this, we recognize that the majority of the studies reported thus far have employed lab-synthesized iron (nano)particles and used TCE as the target contaminant. These studies do not consider the complexity in actual remediation systems, including the variations in physicochemical characteristics and processing history of different ZVI reagents deployed in the field and the presence of co-contaminants and reaction intermediates in contamination plumes. As such, whether sulfidation can serve as a general

 strategy to improve the performance of in situ chemical reduction (ISCR) is not fullyassessed.

In this study, we investigated sulfidation of four bulk ZVI materials, including ZVI prepared from an electrolytic method or reduction of Fe-carbonyl complexes and two commercial ZVI products frequently employed for environmental remediation. Sodium thiosulfate was used as the sulfur precursor following our previous protocol ²². The rates and reaction products of the resultant iron materials with PCE, TCE, and cis-DCE were systematically assessed. PCE and TCE are parent contaminants, while *cis*-DCE is a persistent daughter product arising during biological attenuation of TCE/PCE plumes ^{3, 6}. The goals of these investigations were to assess the applicability of sulfidation as a general approach to engineering the reactive properties of pre-formed ZVI materials, to evaluate the effects of sulfur amendment on the rates and daughter product formation during degradation of common chlorinated ethenes detected in the subsurface, and to highlight the advantages and potential complications of sulfidation for *in situ* reductive dechlorination applications.

MATERIALS AND METHODS

Chemicals and Materials

Four types of commercial ZVI were used in this study. Alfa Aesar iron powder
(catalogue # AA0017030) was purchased from Fisher Chemical. BASF carbonyl iron powder
(CIP-OM), was provided by BASF SE (Germany). Hepure Ferox-PRBTM iron powder was
supplied by Hepure Technologies Inc (Hillsborough, NJ, USA). Peerless cast iron powder

(50D) was provided by Peerless Metal Powders & Abrasive (Detroit, MI, USA). The materials were designated in short as ZVIAA, ZVICIP, ZVIHP and ZVIPL, respectively. Among the materials, ZVI^{PL} and ZVI^{HP} are widely used commercial ZVI materials for active remediation of chlorinated solvent-impacted sites. Unlike the two high-purity ZVI of synthetic origins (ZVI^{AA} and ZVI^{CIP}), the remediation-grade ZVIs were manufactured from cast iron stock. ZVI^{HP} was specifically developed for permeable reactive barrier applications and therefore has a relatively large size distribution. To improve its size uniformity, the particles were sieved, and only the fraction passing through the ASTM Sieve #40 (opening size 425 µm) was collected for further evaluations. Other ZVI materials were used without size fractionation.

114 Pretreatment and Sulfidation of ZVI

All surface treatments were conducted in the atmospheric environment. Deoxygenated distilled-deionized water (DDI) was used in laboratory procedures. Deoxygenation of DDI was carried out by purging the solutions with N₂ for 30 min prior to its use. In all aqueous treatments or reductive dechlorination experiments, the loading of ZVI in the aqueous phase was 10 g/L, except for ZVI^{HP}, which was used at 50 g/L due to its relatively large particle size (Table 1). Each material was subject to the following sulfidation treatments. Method one, referred to as *direct sulfidation*, entails the addition of an appropriate amount of sodium thiosulfate (Na₂S₂O₃) to an aqueous suspension of ZVI, and the mixture was agitated on a wrist action shaker for 60 min at 250 rpm. The resultant particles were collected via vacuum filtration using 0.2 µm membrane filters (PALL life sciences), rinsed with deoxygenated DDI, and used immediately in the dechlorination

experiments. The second method, dubbed *two-step sulfidation*, involves pre-washing the commercial ZVI with 0.1% v/v HCl for 1 h (or 0.1% v/v acetic acid in the case of ZVI^{CIP}) to remove the surface passivation layer. Dilute acetic acid was employed for ZVI^{CIP} due to its higher efficiency at stripping off the organic surface coating on the CIP particles. The acid washed particles were collected through vacuum filtration, rinsed with DDI, and were re-dispersed in DDI. Following that, thiosulfate was amended following the same procedures as the direct sulfidation process. Unless otherwise noted, the amount of thiosulfate added corresponds to a S/Fe mole ratio of 0.05. 1 mole of thiosulfate is considered to release 1 mole of sulfide ion ^{22, 33}. As a comparison, the iron receiving the acid washing but not sulfidation was also prepared and evaluated for its dechlorination efficiency.

136 Preparation of Metal-amended ZVI

To assess the effects of trace metal impurities on the reactivity of the as-is and sulfur-amended iron materials, ZVI^{CIP} (a ZVI with no detectable metal impurities) was deposited with a small amount of Cu, Ni, or Mn. Metal amendment was performed by pre-washing 300 mg ZVI^{CIP} in 30-mL dilute acetic acid for 24 h. The particles were harvested by vacuum filtration and immediately immersed in 30 mL of 150 mg/L Cu(II), Ni(II), or Mn(II) solution (refer to Chemicals in SI for the metal salts used) and mixed on a wrist-action shaker at 250 rpm for 1 h. The resultant particles were collected by vacuum filtration & rinsed with DDI. A portion of these particles was used immediately in dechlorination experiments, and the remaining particles were subject to the two-step sulfidation following the same procedure as described in the earlier text, and the resultant particles were used immediately in further experiments. The filtrates were analyzed by inductively coupled plasma-mass spectrometry

2	
3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
∠ I วว	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
22	
J∠ 22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
<u>4</u> 2	
Δ <i>Λ</i>	
44	
45	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/ 52	
58	
59	
60	

148 (ICP-MS) and the mass loading of Cu, Ni, and Mn in the respective particles were

149 determined to be 0.14 (\pm 0.01) %, 0.11 (\pm 0.07) %, and 0.19 (\pm 0.04) %, respectively.

150 *Reduction of Chlorinated Ethenes*

151 TCE, PCE, and *cis*-DCE degradation experiments were performed to evaluate the effects 152 of different surface treatments on the dechlorination performance of various ZVIs. All batch 153 experiments were carried out in 45-mL EPA vials containing 30 mL of aqueous solution and the remaining as headspace. ZVI materials were introduced into deoxygenated solution at 10 g/L 154 except for ZVI^{HP}, which was loaded at 50 g/L. Each reactor was capped with a PTFE-lined 155 mininert valve, and a small aliquot of the stock solution of TCE, PCE, or *cis*-DCE in methanol 156 was injected to start the experiment. Periodically, an aliquot (25 - 50 µL) of the headspace gas 157 158 was withdrawn using a gastight syringe and was analyzed for the parent and daughter compounds. 159

160 Analytical methods

A gas chromatography (GC) system (Agilent 6890) equipped with an Agilent 161 162 PoraPlot Q column (25 m x 0.32 mm) and a flame ionization detector (FID) was used to quantify the parent compounds and reaction products. The headspace samples were injected 163 in a splitless mode at 250°C. The oven temperature (35°C for 5 min, ramp 12°C/min to 164 220°C, and hold at 220°C for 5 min) provided adequate separation between chlorinated 165 ethenes and all reaction products. The calibration curves for TCE, PCE, and cis-DCE were 166 constructed by headspace analysis of the respective aqueous standard solutions prepared in 167 168 the same vials as the experimental reactors. Calibrations for hydrocarbons (C_1 - C_6) were

1 2		
3 4	169	performed using the commercial gas standards after accounting for partition between
5 6 7	170	headspace and aqueous phases using the respective Henry's Law constants ^{34, 35} .
8	171	
9 10 11	172	Material Characterizations
12 13	173	The average particle sizes of the ZVI materials were measured using an API
14 15	174	Aerosizer Particle Size Analyzer (TSI Inc, Massachusetts, USA). The specific surface areas
16 17 18	175	were analyzed with a surface area and pore size analyzer (Quantachrome NOVA 2000e,
19 20	176	USA) using 11-point N ₂ -adsorption curves. Metal impurities in ZVI materials were
21 22	177	quantified by digesting the as-received ZVI particles in 5.6% (v/v) HCl solution for 72 h. The
23 24 25	178	resultant solution was filtered, and the filtrate was analyzed using ICP-MS. The digestion
25 26 27	179	was performed in duplicates.
28 29	180	
30 31	181	Results and Discussion
32 33 34 35	182	Characteristics of ZVI Materials
36 37	183	Table 1 summarizes the properties of the ZVI materials employed in this study. The
38 39	184	SEM images of the particles are available in Fig. S1 in the Supporting Information. ZVIAA
40 41 42	185	and ZVI ^{CIP} exhibited a similar morphology of a spherical shape with smooth, non-porous
42 43 44	186	surface texture that is consistent with their syntheses routes of electrolytic reduction and
45 46	187	thermal decomposition of iron pentacarbonyl (Fe(CO) ₅) ³⁶ . In comparison to the uniform
47 48	188	morphology of the synthetic ZVIs, the two ZVIs used in environmental remediation, i.e.,
49 50 51	189	ZVI ^{HP} and ZVI ^{PL} , appeared as flaky and irregular-shaped particles. ZVI ^{HP} comprised
52 53	190	predominantly of coarse granules spanning several tens to hundreds of microns in diameter
54 55 56		
57 58		10
59		

and the particle surface was characterized by a high degree of roughness contributed by crevices and cracks. ZVI^{PL} had a broad size distribution ranging from very fine (< 10 µm) particles to large chunky flakes spanning tens of microns. Although the SEM images of ZVI^{PL} suggest mainly coarse granules, the surface-area-weighted average size determined through the Aerosizer method is $3.3 \pm 2.5 \,\mu\text{m}$, which reflects the dominant quantity of small particles as the Aerosizer method operates on a particle counting principle ³⁷. Both ZVI^{HP} and ZVIPL displayed a tiered structure with the surface of the primary particles decorated with a large number of fine debris (insets of Fig. S1). This feature has been observed of the mechanically processed ZVI³⁸, and it may account for the relatively high specific surface areas of the two materials (Table 1) in spite of the large primary particle sizes revealed in the SEM micrographs (Fig. S1). The purity of ZVI reported by the manufacturers suggests that ZVIAA has the highest purity, followed by ZVI^{CIP}. The two remediation-grade ZVIs carry up to 10 wt.% impurities

(Table 1). To identify the major non-ferrous metal constituents in the solid matrix, all ZVI materials were digested in 6% (v/v) hydrochloric acid solution for 72 h. Neither ZVI^{AA} or ZVI^{CIP} contains detectable levels of metal ingredients other than Fe. ZVI^{HP} and ZVI^{PL} have 0.48 wt.% and 0.67 wt.% manganese, respectively. Other metals of a significant presence include copper and nickel (Table 1). Both materials generated appreciable amounts of solid residues upon acid digestion (Fig. S2). No attempt was made to ascertain the composition of these residues, although carbon, silicon, and sulfur ingredients are expected based on their common presence in cast iron-derived ZVI reagents ^{39, 40}.

212 Effect of Sulfidation on Reduction of TCE

Page 13 of 36

1

2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
39	
10	
л л1	
41	
42	
43	
44	
45	
46	
47	
<u>⊿</u> 2	
40	
49	
50	
51	
52	
53	
54	
55	
55	
20	
57	
58	
59	
60	

213	Reductive dechlorination of TCE was conducted using the as-received ZVIs and
214	those that had received various treatments including: (a) dilute acid washing, (b) direct
215	sulfidation, and (c) two-step sulfidation. The adoption of acid washing prior to sulfidation is
216	based on the rationale that the affinity of low-valent sulfur ligands for iron oxide surfaces are
217	significantly lower than for the metal iron ⁴¹ , therefore, the presence of a continuous layer of
218	native oxide may impede sulfidation of the metal phase. The rates of TCE degradation by the
219	original and surface treated ZVIs are depicted in Figure 1. As shown, the reactivity of the as-
220	received ZVIs varies considerably. The two remediation ZVIs were considerably more
221	reactive than the synthetic iron (i.e., ZVI ^{AA} and ZVI ^{CIP}) as the latter group did not produce a
222	significant loss of TCE during a 30-day monitoring period. Although direct exposure to
223	thiosulfate led to noticeable increases in TCE dechlorination rates, the combination of acid
224	washing and sulfur amendment delivered the greatest rate enhancement effects consistently
225	for ZVI ^{AA} and ZVI ^{CIP} .

226 Comparatively, acid washing alone elicited remarkable increases in TCE reaction 227 rates for ZVI^{PL} and ZVI^{HP}, indicating that the surfaces of the two ZVIs are fairly susceptible 228 to chemical modification and these materials may be inherently more reactive than the high-229 purity ZVIs. Compared to acid-washing, direct or two-step sulfur amendments gave rise to 230 small incremental improvements for ZVI^{HP}, yet the same treatments substantially accelerated 231 TCE decomposition by ZVI^{PL}. The highest rate constants attained by sulfur treated ZVI^{PL} and 232 ZVI^{HP} were 190 folds and 4.2 folds of the as-received materials, respectively.

To assess the effect of S/Fe ratio, sulfidation of ZVI^{PL} was performed using the twostep sulfidation procedure but with varying doses of thiosulfate. As plotted in Fig. 2, a steep

2	
- 5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
27 20	
20 20	
29	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
כן בי	
J∠ 52	
55 51	
54	
55	
57	
58	
59	
60	

235	rise in the surface-normalized TCE decomposition rate constant (k_{SA}) was observed at a S/Fe
236	mole ratio as low as 0.0037, corresponding to 670 μ M of thiosulfate in contact with 10 g/L
237	ZVIPL suspension. The rate constant plateaus as S/Fe ratio exceeds ca. 0.01. This trend
238	resembles the characteristics of a similar plot of the sulfidated nZVI (S-nZVI), although in
239	the latter case, rate saturation occurs at a nominal S/Fe mole ratio of approximately 0.05 ^{22, 30} .
240	The smaller dose of sulfur precursor required by these micron-sized ZVI to attain the
241	saturated reaction rate is likely related to a smaller specific surface area available of the ZVI
242	granules relative to the nanoparticles. For both types of iron, the observation that the
243	reactivity of the particles initially increased with the sulfur loading then leveled out at higher
244	sulfur loadings demonstrates that the enhancement effect is a surface phenomenon. Excessive
245	sulfur, either present in the aqueous phase or forming surface-attached or discrete sulfide
246	particles, did not contribute appreciably to the observed reaction rates. The finding also
247	implies that the natural level of sulfide in an anoxic environment may be adequate to improve
248	ZVI performance in situ.

Product distribution data (Fig. 4b), determined at ca. 90% conversion or the last 249 250 sampling point for experiments with slow kinetics, indicates that the major products of TCE 251 reactions with different ZVIs were acetylene, ethene, ethane, and higher order hydrocarbons (only C₃ to C₆ hydrocarbons were quantified). Chlorinated intermediates were not detected 252 253 during TCE experiments. Except for acetylene, whose concentration peaked at an 254 intermediate stage (Fig. S3), other products appeared to accumulate in the system without further reactions. Comparing the product distribution profiles across the types of ZVI and the 255 treatment methods, it was observed that sulfidation of iron resulted in an increased proportion 256

of acetylene relative to other products. The shifts in product distribution are more prominent in the case of ZVI^{HP} and ZVI^{PL}. Regardless of the ZVI origin, the two-step sulfidation led to greater dominance of acetylene compared to direct sulfidation. In prior studies of TCE reaction with ZVI⁴², iron sulfides ⁴³⁻⁴⁵, or sulfidated nanoscale ZVI^{22, 30}, significant accumulation of acetylene was also reported and a direct conversion of TCE to acetylene as opposed to stepwise hydrogenolysis was inferred. Prior kinetic analysis shows that the increased production of acetylene is mainly attributed to a large boost in the rate of TCE to acetylene conversion, whereas the hydrogenation reactions of acetylene are not affected or moderately slowed down by sulfidation ²². Therefore, sulfur amendment improves multiple reductive steps to varying extents and the initial conversion of TCE to acetylene exhibits the most pronounced enhancement effect.

269 Effect of Sulfidation on Reduction of Other Chlorinated Ethenes

The effect of sulfur amendment was assessed for the dechlorination of PCE and cis-DCE. Among DCE isomers, *cis*-DCE is the most persistent and tends to accumulate in the environment during natural attenuation of PCE or TCE ^{6, 46}. The surface area-normalized rate constants (k_{SA}) of different ZVIs are compared in Figure 3. For consistency, the acid-washed (as opposed to as-received) particles were used as the reference materials to eliminate the effect of varying degrees of passivation caused by material storage or handling. The sulfidated particles were all subject to the two-step sulfidation. With sulfur amendment, more rapid PCE dechlorination was consistently observed of all ZVIs (Figures 3a). The rate constants of the sulfur-laden ZVIs were in the range of 140% to 630% of those of the acid-treated particles,

with the two remediation-grade ZVIs (i.e., ZVIPL and ZVIHP) exhibiting the largest gains in reaction rates. However, the extents of improvements for PCE were somewhat smaller than TCE (Figure 3b). The variations in sulfidation-induced enhancement effects may stem from the difference in reductive dechlorination pathways undertaken by different chlorinated ethenes ^{43, 45, 47}. As shown in Figure 4a, PCE decomposition by acid-washed ZVI^{AA} and ZVI^{CIP} vielded a significant amount of TCE and higher order hydrocarbons. Upon sulfur treatment, TCE accumulation was virtually eliminated. For the two remediation-grade ZVI (ZVI^{HP} and ZVI^{PL}), TCE production was minimal by either acid-treated or sulfur-amended particles. Sulfidation of the latter two types of ZVI also created remarkable increases in acetylene formation. Other intermediates, including dichloroethenes or vinyl chloride, were not detected in the product mix.

Prior studies reported that abiotic dehalogenation of chloroethenes proceeds via hydrogenolysis, which goes by sequential replacement of chlorine substituents by hydrogen producing lesser chlorinated intermediates, or alternatively, the parent compound may chemisorb onto iron surface and the surface complex undergoes concerted C-Cl bond dissociation to yield acetylene as the main intermediate ^{43, 44, 47-49}. In either case, reduction via either direct electron transfer or indirectly through surface-adsorbed atomic hydrogen are involved ^{6, 22, 23, 28}. Electrochemical investigations suggest that the contribution of the two pathways to PCE and TCE decomposition varies with contaminant concentration and solution pH ²⁸. Direct electron transfer is thought to occur to a larger degree for PCE reduction than TCE at near neutral pH ^{28, 47}. Recent investigations have shown that, in contrast to the large improvement in TCE dechlorination performance, sulfidation has little or inconsistent effect

301 on the reduction of carbon tetrachloride ^{6, 22}, which reacts predominantly via direct electron 302 transfer. As such, the modest enhancement in PCE degradation seen in this study implies 303 indirect reduction with atomic hydrogen may play a less important role in PCE reduction than 304 in the case of TCE ²⁸, in agreement with findings from computational analysis that electron 305 transfer to PCE on ZVI surface involves a smaller activation energy than TCE ⁵⁰.

In comparison to PCE and TCE experiments, in which sulfur amendment is able to bring about faster dechlorination for all iron materials, sulfidation resulted in bifurcating outcomes for *cis*-DCE reactions (Figure 3c). Specifically, sulfidation of ZVI^{AA} and ZVI^{CIP} produced more swift cis-DCE reduction compared to their acid-washed counterparts, rendering over an order of magnitude increase in k_{SA} for both ZVI^{AA} and ZVI^{CIP}. Therefore, for these two synthetic ZVIs, sulfidation is proven advantageous for the degradation of all chloroethenes evaluated in this work. Nonetheless, sulfur treatment casts a pronounced inhibitory effect on the other two ZVI materials, causing 66% and 98% decreases in the rate constants for ZVI^{HP} and ZVIPLS, respectively. *cis*-DCE may lose one chlorine generating vinyl chloride as an intermediate or it may shed off two chlorines concertedly to yield acetylene or its hydrogenation products ^{46, 47}. We did not detect vinyl chloride in the product mixture in all *cis*-DCE experiments and there was no consistent changes in product distribution related to sulfur treatments (Fig. 4c). Although a smaller enhancement effect by sulfidation is expected of cis-DCE as the structure of the molecule is cumbersome for the elimination of the two chlorine substituents concurrently ⁴⁸, we could not rationalize the drastic loss of reactivity due to sulfidation for the two ZVIs intended for remediation use (ZVI^{HP} and ZVI^{PL}). Instead, we

hypothesize that the metal impurities present in these two ZVI materials may influence theoutcomes of sulfidation treatments. This hypothesis was tested with the following study.

325 Effects of Metal Impurities and Sulfur Amendment

Cu, Ni, and Mn were detected in the bulk substrate of ZVI^{HP} and ZVI^{PL} at up to 0.7 wt.% (Table 1). To investigate whether these trace metals may fortuitously catalyze dehalogenation, we used ZVI^{CIP}, a high-purity ZVI with no detectable metal impurities, as the base material and loaded it individually with a small amount of Cu, Ni, or Mn via aqueous impregnation. The mass loadings of Cu, Ni, and Mn in the particles were reported in the Materials and Methods section. These values are comparable to the impurity content of the two commercial ZVI materials (Table 1). We reckon that, although the artificially impregnated particles likely bear all impurities on the surface whereas impurities in ZVI^{HP} and ZVI^{PL} are expected to distribute throughout the particles, the former can provide meaningful insights into the effects of individual metals in the commercial ZVIs.

Among the trace metals incorporated onto ZVI^{CIP}, Mn had a negligible effect on *cis*-DCE degradation efficiency (Figure 5a). Ni-deposited particles exhibited highly variable performance between replicate experiments, possibly due to slow transformation of Ni(II) to its catalytic active form on ZVI surface based on findings in our prior studies ^{51, 52}. Comparatively, the Cu-amended particles were the most efficient at *cis*-DCE dechlorination. k_{SA} of Cu-amended ZVI^{CIP} is 6.6 x 10⁻⁵ L/m²•min, approximately 200 times the rate constant of the acid-washed ZVI^{CIP} or 15 times that of the sulfidated ZVI^{CIP} (Table 2). Compared to Ni or Pd, Cu is not an efficient hydrogenation catalyst, but Cu is fairly active for the dissociation

of carbon-halogen bonds ^{53, 54}. Combining ZVI and Cu can therefore enable rapid conversion of TCE to predominantly ethene. However, when the particles deposited with Cu were exposed to thiosulfate solution, the catalytic effect imparted by Cu was largely annihilated (Figure 5b). The product distribution pattern indicates that the dominant products of Cu-amended ZVI^{CIP} (viz., ethene and a smaller amount of ethane) were replaced with predominantly higher-order hydrocarbons when the Cu-amended particles underwent sulfur treatment (Fig. S4), suggesting the activity of the surface Cu sites was silenced. Sulfur poisoning of transition metal catalysts have been extensively studied ^{41, 55-57}. The strong chemisorption of sulfur onto metal surfaces causes perturbation of the electronic structures of the metal atoms, reconstruction of surface structures, and blocking of active sites, leading to severe attenuation of catalytic activities ⁴¹, ⁵⁷. Although sulfur deactivation of Cu-amended ZVI materials for reductive dechlorination has not been specifically examined, poisoning of Pd-amended ZVI, a model catalytic bimetallic material for hydrodechlorination reactions, by aqueous reduced sulfur species (sulfide, sulfite, or thiol groups in natural organic matter) has been noted in prior studies ⁵⁸⁻⁶⁰. The potent ability of the aqueous sulfur precursor to poison the adventitious catalysts on the two remediationgrade ZVIs (i.e., ZVI^{HP} and ZVI^{PL}) may explain for the drastic decrease in *cis*-DCE degradation rates upon sulfidation of these impure ZVIs.

A similar investigation using PCE as the starting compound shows that the deposition of Cu (or Ni to a smaller effect) onto the ZVI surface led to more rapid PCE transformation, with k_{SA} increasing by 35 folds for the Cu-amended particles relative to the acid-washed particles (Fig. 5c). Exposing the Cu-amended ZVI to aqueous thiosulfate resulted in a greatly attenuated PCE conversion rate, nonetheless the remnant reactivity of the particles was still higher than that of the acid-washed but unamended particles (Fig. 5d). In the headspace mixture, TCE accounted for 41% of the total products when the Cu-amended particles were used, in contrast to minimal TCE accumulation using the sulfidated ZVI or ZVI receiving Cudeposition followed by sulfidation (Fig. S4). This implies an important role of Cu in controlling the reduction pathways and also agrees with a recent finding that the reaction of TCE with Cu-Fe bimetallic creates substantial amounts of chlorinated intermediates that were not observed with pristine or sulfidated nZVI ²³.

It is interesting to note that, while PCE and *cis*-DCE reduction rates by Cu-amended ZVICIP exceed that of the sulfidated particles, the addition of Cu exerts only a moderate enhancement effect on TCE reaction (Table 2). Further, comparing the rates of Cu-amended ZVI^{CIP} against the same particles receiving Cu amendment followed by sulfidation, the loss of reactivity due to sulfidation is the most pronounced for *cis*-DCE, followed by PCE and TCE, respectively. These results imply that the catalytic function of Cu is more important for cis-DCE degradation than that those of the highly chlorinated ethenes. On the other hand, with reference to pure unamended ZVI, sulfidation brings about a remarkably higher degree of reactivity improvement for TCE than PCE and cis-DCE. The compounded outcome of the enhancing and inhibitive actions of sulfur for the remediation grade ZVI would be that sulfidation should result in an overall improved TCE degradation performance and a certain degree of reactivity loss in *cis*-DCE dechlorination. This is consistent with the observations made of ZVI^{PL} and ZVI^{HP}. It is postulated that Cu catalyzes direct dissociative dechlorination, but has a minor impact on pathway involving activated hydrogen species. The varied outcomes

caused by the sulfidation of Cu-laden ZVI therefore reflect the contribution of different
 reduction mechanisms for different chloroethenes as summarized in Figure 6.

Conclusions

Recent studies have investigated sulfidation of laboratory synthesized nanoscale ZVI using either pre-synthesis or post-synthesis sulfidation procedures ^{19, 20, 22}. Whether sulfidation is applicable to a wide spectrum of ZVI materials would have crucial implications for the amenability of this technique to *in situ* remediation applications. The results obtained in this study confirm that sulfur amendment is applicable to commercially available ZVI to attain greater dechlorination efficiencies for the highly chlorinated ethenes, with the enhancement effect being more pronounced for TCE than PCE. The preparation of sulfur-amended ZVI using bottom-up synthesis methods is therefore not necessary. As predicted previously ²², a low level of sulfur in the solid phase is adequate to achieve the saturated enhancement effect, which suggests in situ sulfidation using naturally available or augmented sulfur source is feasible for ZVI that had been emplaced in the fields. This can be a potentially important tool to reinstate the performance of previously installed iron materials and to sustain the beneficial effect of sulfidation considering that the surface-residing sulfur species is susceptible to oxidation in an oxic environment.

While sulfidation brings about more rapid and complete dehalogenation of PCE and
TCE across all forms of ZVIs evaluated in this work, there are significant differences in the *cis*-DCE dechlorination efficiencies, suggesting subtle variations in the ZVI composition due

to different material origins and processing routes can profoundly affect iron reactive properties. With the two high-purity ZVIs, sulfidation is beneficial for the degradation of all chlorinated ethenes evaluated in this study. In contrast, the ZVI materials intended for remediation saw marked loss of reactivity towards *cis*-DCE due to poisoning of metal impurities that act as adventitious catalysts. As the ZVI materials used in the environmental applications are frequently sourced from mixed industrial feedstock or recycled scrap metals, trace levels of impurities are expected. The distinct effects of common impurities such as Cu in facilitating the reduction of *cis*-DCE and its susceptibility to sulfur poisoning point to several practical considerations. For instance, the application of sulfur-modified iron may be more suitable for source zone mitigation than treating plumes that have undergone extensive environmental aging, as the latter may contain significant levels of partially dechlorinated intermediates. On the other hand, the inclusion of common impurities (due to recycled nature of the iron substrate) may make ZVI more efficient at transforming the lesser chlorinated intermediates. More broadly, the findings in this study demonstrate interesting interactions among iron, sulfur, and metal impurities that play out the many facets of ZVI chemistry. The ability to manipulate these factors would enable rational design and use of ZVI materials from diverse sources to create more tailored solutions to sites with complex mixture of contaminants.

426 Acknowlegement

The authors acknowledge the start-up fund by TTU and funding support from the National
Science Foundation (CHE-1611465). The authors thanks the ZVI suppliers (BASF, Hepure

2		
3 4	429	Technologies, and Peerless MPA) for providing the iron samples and the assistance by Dr.
5 6 7	430	Juliusz Warzywoda for particle size and surface area analyses.
8 9 10	431	
11 12 13	432	Supporting Information
14 15 16	433	SEM images of commercial ZVIs, product evolution during TCE degradation by various
17 18	434	ZVIPL, and the distribution of products of PCE and <i>cis</i> -DCE reactions with metal-amended or
19 20	435	metal-amendment-followed-by-sulfidation ZVI ^{CIP} are avaiable in the supporting
21 22 23	436	information. The Supporting Information is available free of charge on the ACS Publications
24 25	437	website.
26 27		
28		
29		
30 31		
32		
33		
34		
35		
30 37		
38		
39		
40		
41		
42		
45 44		
45		
46		
47		
48		
49 50		
50		
52		
53		
54		
55		
50 57		
58		22
59		
60		

4 References

5			
6	439	1.	P. L. McCarty, Groundwater Contamination by Chlorinated Solvents: History, Remediation
/	440		Technologies, and Strategies, 2010.
8	441	2.	M. J. Moran, J. S. Zogorski and P. J. Squillace, Chlorinated solvents in groundwater of the
9 10	442		United States, Environmental Science & Technology, 2007, 41, 74-81.
10	443	3.	H. F. Stroo, A. Leeson, J. A. Margusee, P. C. Johnson, C. H. Ward, M. C. Kavanaugh, T. C.
11	444		Sale, C. J. Newell, K. D. Pennell, C. A. Lebron and M. Unger, Chlorinated Ethene Source
12	445		Remediation: Lessons Learned. Environmental Science & Technology, 2012, 46, 6438-6447.
13	446	4	R A Freeze and D B McWhorter A framework for assessing risk reduction due to DNAPL
14	447	••	mass removal from low-permeability soils <i>Ground Water</i> 1997 35 111-123
16	448	5	H F Stroo M Unger C H Ward M C Kayanaugh C Vogel A Leeson I A Margusee
17	449	0.	and B P Smith Remediating chlorinated solvent source zones <i>Environmental Science</i> &
18	450		Technology 2003 37 224A-230A
19	451	6	D M Fan Y Lan P G Tratnyck R L Johnson L Filin D M O'Carroll A N Garcia and
20	452	0.	A Agrawal Sulfidation of Iron-Based Materials: A Review of Processes and Implications for
21	453		Water Treatment and Remediation Environmental Science & Technology 2017 51 13070
22	455		12085
23	454	7	C M Su and P. W. Duls. Kinetics of trichloroathene reduction by zerovalant iron and tin:
24	455	1.	C. M. Su and K. W. Fulls, Kinetics of themoreulene reduction by zerovatent from and this.
25	450		Science & Technology 1000 22 162 169
26	43/	0	Science & Technology, 1999, 33 , 103-108.
27	458	δ.	1. L. Johnson, M. M. Scherer and P. G. Trainyek, Kinetics of halogenated organic compound
28	459	0	Degradation by iron metal, Environmental Science & Technology, 1996, 30 , 2034-2040.
29	460	9.	D. O'Carroll, B. Sleep, M. Krol, H. Boparal and C. Kocur, Nanoscale zero valent fron and
30	461		bimetallic particles for contaminated site remediation, <i>Advances in Water Resources</i> , 2013,
31	462	10	51 , 104-122.
32	463	10.	A. B. Cundy, L. Hopkinson and R. L. Whitby, Use of iron-based technologies in
33	464		contaminated land and groundwater remediation: A review, <i>Science of the total environment</i> ,
34	465		2008, 400 , 42-51.
35	466	11.	X. Zhao, W. Liu, Z. Q. Cai, B. Han, T. W. Qian and D. Y. Zhao, An overview of preparation
36	467		and applications of stabilized zero-valent iron nanoparticles for soil and groundwater
37	468		remediation, <i>Water Research</i> , 2016, 100 , 245-266.
38	469	12.	R. A. Crane and T. B. Scott, Nanoscale zero-valent iron: Future prospects for an emerging
39	470		water treatment technology, Journal of Hazardous Materials, 2012, 211.
40	471	13.	W. Yan, HL. Lien, B. E. Koel and Wx. Zhang, Iron nanoparticles for environmental clean-
41	472		up: recent developments and future outlook, Environmental Science-Processes & Impacts,
42	473		2013, 15 , 63-77.
43	474	14.	K. Ritter, M. S. Odziemkowski and R. W. Gillham, An in situ study of the role of surface
44 15	475		films on granular iron in the permeable iron wall technology, Journal of Contaminant
45	476		<i>Hydrology</i> , 2002, 55 , 87-111.
40	477	15.	V. Sarathy, P. G. Tratnyek, J. T. Nurmi, D. R. Baer, J. E. Amonette, C. L. Chun, R. L. Penn
48	478		and E. J. Reardon, Aging of iron nanoparticles in aqueous solution: Effects on structure and
49	479		reactivity, Journal of Physical Chemistry C, 2008, 112, 2286-2293.
50	480	16.	J. E. Martin, A. A. Herzing, W. Yan, Xq. Li, B. E. Koel, C. J. Kiely and Wx. Zhang,
51	481		Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles,
52	482		Langmuir, 2008, 24 , 4329-4334.
53			
54			
55			
56			
57			
58			23

2			
3	483	17.	J. Klausen, P. J. Vikesland, T. Kohn, D. R. Burris, W. P. Ball and A. L. Roberts, Longevity of
4	484		granular iron in groundwater treatment processes. Solution composition effects on reduction
5	485		of organohalides and nitroaromatic compounds <i>Environmental Science & Technology</i> 2003
6	186		37 1208 1218
7	400	10	J, 1200-1210. I Formall M Kessen N Malitas and T Li Investigation of the long term neuformanae of
8	40/	18.	J. Farren, M. Kason, N. Mentas and T. Li, investigation of the long-term performance of
9	488		zero-valent iron for reductive dechlorination of trichloroethylene, <i>Environmental Science</i> &
10	489		Technology, 2000, 34 .
11	490	19.	S. R. C. Rajajayavel and S. Ghoshal, Enhanced reductive dechlorination of trichloroethylene
12	491		by sulfidated nanoscale zerovalent iron, <i>Water Research</i> , 2015, 78 , 144-153.
13	492	20.	EJ. Kim, JH. Kim, AM. Azad and YS. Chang, Facile Synthesis and Characterization of
14	493		Fe/FeS Nanoparticles for Environmental Applications, Acs Applied Materials & Interfaces,
15	494		2011, 3 , 1457-1462.
16	495	21.	D. Fan, G. O. Johnson, P. G. Tratnyek and R. L. Johnson, Sulfidation of Nano Zerovalent
17	496		Iron (nZVI) for Improved Selectivity during In- Situ Chemical Reduction (ISCR).
18	497		Environmental Science & Technology 2016 9558-9565
19	498	22	W Van and V Han Reductive Dechlorination of Trichloroethene by Zero-valent Iron
20	/00	22.	Nanonarticles: Reactivity Enhancement through Sulfidation Treatment <i>Environmental</i>
21	500		Science & Technology 2016 In press DOI: 10.1021/200 ost 1026b02007
22	500	22	E He Z L Li C C Shi W O Yu H Z Share V W Cu V H Hare and D D Vi
23	501	23.	F. He, Z. J. Li, S. S. Sni, W. Q. Xu, H. Z. Sneng, Y. W. Gu, Y. H. Jiang and B. D. Xi,
24	502		Dechlorination of Excess Trichloroethene by Bimetallic and Sulfidated Nanoscale Zero-
25	503		Valent Iron, Environmental Science & Technology, 2018, 52 , 8627-8637.
26	504	24.	A. N. Garcia, H. K. Boparai and D. M. O'Carroll, Enhanced Dechlorination of 1,2-
20	505		Dichloroethane by Coupled Nano Iron-Dithionite Treatment, Environmental Science &
27	506		<i>Technology</i> , 2016, 50 , 5243-5251.
20	507	25.	Y. W. Gu, B. B. Wang, F. He, M. J. Bradley and P. G. Tratnyek, Mechanochemically
20	508		Sulfidated Microscale Zero Valent Iron: Pathways, Kinetics, Mechanism, and Efficiency of
21	509		Trichloroethylene Dechlorination, Environmental Science & Technology, 2017, 51, 12653-
27	510		12662.
22	511	26	J Z Jiang R K Larsen R Lin S Morun I Chorkendorff K Nielsen K Hansen and K
24	512	-0.	West Mechanochemical synthesis of Fe-S materials <i>Journal of Solid State Chemistry</i> 1998
24 25	512		138 114-125
26	514	27	I X Li X V Zhang V K Sun I D Liang B C Dan W M Zhang and X H Guan
30 27	515	21.	J. A. LI, A. T. Zhang, T. K. Sun, L. T. Liang, D. C. I an, W. W. Zhang and A. H. Ouan, Advances in Sulfidetion of Zerovalant Iron for Water Decontamination. <i>Environmental</i>
20	515		Advances in Sumdation of Zerovalent from for water Decontamination, Environmental
38	516	20	Science & Technology, 2017, 51 , 13533-13544.
39	51/	28.	J. Wang and J. Farrell, Investigating the role of atomic hydrogen on chloroethene reactions
40	518		with iron using tatel analysis and electrochemical impedance spectroscopy, Environmental
41	519		Science & Technology, 2003, 37 , 3891-3896.
42	520	29.	Y. Xie and D. M. Cwiertny, Use of Dithionite to Extend the Reactive Lifetime of Nanoscale
43	521		Zero-Valent Iron Treatment Systems, Environmental Science & Technology, 2010, 44, 8649-
44	522		8655.
45	523	30.	S. Bhattacharjee and S. Ghoshal, Optimal Design of Sulfidated Nanoscale Zerovalent Iron for
46	524		Enhanced Trichloroethene Degradation, Environmental Science & Technology, 2018, 52,
47	525		11078-11086.
48	526	31	J Xu Y Wang C Weng W Bai Y Jiao R Kaegi and G V Lowry Reactivity
49	527	011	Selectivity and Long-Term Performance of Sulfidized Nanoscale Zerovalent Iron with
50	528		Different Properties Environmental Science & Technology 2019 53 5936-5945
51	520		$\sum 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $
52			
53			
54			
55			
56			

1			
2			
3 1	529	32.	M. Mangayayam, K. Dideriksen, M. Ceccato and D. J. Tobler, The Structure of Sulfidized
4 5	530		Zero-Valent Iron by One-Pot Synthesis: Impact on Contaminant Selectivity and Long-Term
6	531		Performance, Environmental Science & Technology, 2019, 53 , 4389-4396.
7	532	33.	M. Kappes, G. S. Frankel, N. Sridhar and R. M. Carranza, Reaction Paths of Thiosulfate
8	533		during Corrosion of Carbon Steel in Acidified Brines, <i>Journal of the Electrochemical Society</i> ,
9	534	2.4	2012, 159 , C195-C204.
10	535	34.	C. L. Yaws, Yaws' Handbook of Thermodynamic and Physical Properties of Chemical
11	536	25	Compounds, McGraw-Hill (accessed through Knovel), 2003.
12	537	35. 26	CRC Handbook of Chemistry and Physics, / 6th ed., CRC Press, Boca Raton, FL, 1996.
13	538	36.	BASF, The CIP Technology - How is carbonyl iron powder manufactured?,
14	539		https://www.dispersions-pigments.bast.com/portal/bast/em/dt.jsp?setCursor=1_82/912,
15	540	27	(accessed Last accessed Jan 2, 2019).
16	541	37.	J. Inornburg, S. J. Cooper and D. Leith, Counting efficiency of the API Aerosizer, <i>Journal of</i>
1/ 10	542	20	Aerosol Science, 1999, 30 , 4/9-488.
10	543	38.	S. LI, W. Yan and WX. Zhang, Solvent-free production of nanoscale zero-valent from (nZVI)
20	544	20	With precision milling, Green Chemistry, 2009, 11, 1018-1020.
20	545 546	39.	Douder
22	540	40	POWDER. NAVEAC Democratics Democratics Cost on d Democratics Democratic TD NAVEAC ESC
23	547 570	40.	NAVFAC, Permeable Reactive Barrier Cost and Performance Report, TR-NAVFAC-ESC-
24	540	41	EV-1207, 2012. I. A. Badriguag and I. Urbak. Interaction of sulfur with well defined motel and evide
25	550	41.	J. A. Kouliguez and J. Hibek, interaction of sunul with wen-defined metal and oxide
26	551		Chamical Pasaarch 1000 32 710 728
27	552	42	Chemicul Research, 1999, 52 , 719-720. H. Song and F. P. Carraway, Catalytic hydrodechlorination of chlorinated ethenes hly
28	552	42.	nanoscala zero valent iron Applied Catalysis B Environmental 2008 78 53 60
29	555	12	E C Dutler and K E Haves Kinetics of the transformation of trichloreathyland and
30	555	43.	E. C. Dutter and K. F. Hayes, Kinetics of the transformation of themology 1000 33 2021
31	555		2027
32	557	11	2027. E. C. Butler and K. E. Haves. Easters influencing rates and products in the transformation of
33	558	44.	trichloroathylana by iron sulfide and iron matal. <i>Environmental Science & Tachnology</i> 2001
34 25	550		35 3884 3801
36	560	45	H V Jeong H Kim and K F Haves Reductive dechlorination pathways of
37	561	τ <i>J</i> .	tetrachloroethylene and trichloroethylene and subsequent transformation of their
38	562		dechlorination products by mackinawite (FeS) in the presence of metals <i>Environmental</i>
39	563		Science & Technology 2007 41 7736-7743
40	564	46	H Y Jeong K Anantharaman Y -S Han and K F Haves Abiotic Reductive
41	565	10.	Dechloringtion of cis-Dichloroethylene by Fe Species Formed during Iron- or Sulfate-
42	566		Reduction Environmental Science & Technology 2011 45 5186-5194
43	567	47	W A Arnold and A L Roberts Pathways and kinetics of chlorinated ethylene and
44	568	.,.	chlorinated acetylene reaction with Fe(O) particles <i>Environmental Science & Technology</i>
45	569		2000 34 1794-1805
46	570	48.	A. L. Roberts, L. A. Totten, W. A. Arnold, D. R. Burris and T. J. Campbell, Reductive
47	571		elimination of chlorinated ethylenes by zero valent metals. <i>Environmental Science</i> &
48	572		Technology, 1996, 30 , 2654-2659.
49 50	573	49.	T. Li and J. Farrell. Reductive dechlorination of trichloroethene and carbon tetrachloride
50 51	574	.,.	using iron and palladized-iron cathodes. <i>Environmental Science & Technology</i> , 2000, 34 .
57	575		173-179.
52 53			
54			
55			
56			
57			
58			25
59			
60			

1			
2	57 (50	
4	576 577	50.	D. H. Lim and C. M. Lastoskie, Density Functional Theory Studies on the Relative Reactivity of Chloroothenes on Zerovalent Iron, Environmental Science & Technology 2000, 13, 5443
5	578		5/18
6	579	51	X O Li and W X Zhang Iron nanonarticles: the core-shell structure and unique properties
7	580	01.	for Ni(II) sequestration. <i>Langmuir</i> . 2006. 22 , 4638-4642.
8	581	52.	Y. Han and W. Yan, Bimetallic Nickel-Iron Nanoparticles for Groundwater
9 10	582		Decontamination: Effect of Groundwater Constituents on Surface Deactivation, Water
10	583		Research 2014, 66, 149-159.
12	584	53.	M. X. Yang, S. Sarkar, B. E. Bent, S. R. Bare and M. T. Holbrook, Degradation of multiply-
13	585		chlorinated hydrocarbons on Cu(100), Langmuir, 1997, 13, 229-242.
14	586	54.	V. Y. Borovkov, D. R. Luebke, V. I. Kovalchuk and J. L. d'Itri, Hydrogen-assisted 1,2-
15	587		dichloroethane dechlorination catalyzed by Pt-Cu/SiO2: Evidence for different functions of
16	588	~ ~	Pt and Cu sites, <i>Journal of Physical Chemistry B</i> , 2003, 10 7, 5568-5574.
1/	589 500	33.	J. Oudar, Sulfur adsorption and poisoning of metallic catalysis <i>Catalysis Reviews-Science and</i>
10 19	590 501	56	Engineering, 1980, 22, 1/1-195. G. A. Somoriai and V. Li. Introduction to Surface Chemistry and Catalysis. Wiley, Hoboken
20	597	50.	New Jersey 2nd edn 2010
21	593	57	C H Bartholomew Mechanisms of catalyst deactivation Applied Catalysis a-General 2001
22	594	07.	212. 17-60.
23	595	58.	W. L. Yan, A. A. Herzing, X. Q. Li, C. J. Kiely and W. X. Zhang, Structural Evolution of Pd-
24	596		Doped Nanoscale Zero-Valent Iron (nZVI) in Aqueous Media and Implications for Particle
25	597		Aging and Reactivity, Environmental Science & Technology, 2010, 44, 4288-4294.
20 27	598	59.	FD. Kopinke, D. Angeles-Wedler, D. Fritsch and K. Mackenzie, Pd-catalyzed
28	599		hydrodechlorination of chlorinated aromatics in contaminated waters-Effects of surfactants,
29	600		organic matter and catalyst protection by silicone coating, Applied Catalysis B-
30	601	(0)	Environmental, 2010, 96 , 323-328.
31	602	60.	K. Mackenzie, H. Frenzel and F. D. Kopinke, Hydrodenalogenation of nalogenated
32	60 <i>3</i>		<i>Catalysis B. Emvironmental</i> 2006 63 161 167
33 24	004		Catalysis D-Environmental, 2000, 05, 101-107.
24 35	605		
36			
37			
38			
39			
40			
41 42			
+∠ 43			
44			
45			
46			
47			
48			
49 50			
51			
52			
53			
54			
55			
56 57			
57 58			24
59			20
60			

Table 1. Properties of Commercial ZVI products investigated in this study

ZVI Product	Average Diameter	BET Surface Area $(m^2/g)^c$	Fe content	Metal Impurities (wt.%) ^e		
	(μm)	······································	(Mn	Ni	Cu
Alfa Aesar Iron Powder (ZVI ^{AA})	3.80 ± 1.07^{a}	0.347 ± 0.001	~ 99.5	N.D.	N.D.	N.D.
BASF CIP TM OM (ZVI ^{CIP})	3.33 ± 1.05^{a}	0.349 ± 0.003	> 97.8	N.D.	N.D.	N.D.
Hepure Ferox- PRB TM (ZVI ^{HP})	$<425~\mu m^{b}$	0.407 ± 0.02	> 95%	0.48 ± 0.03	0.032 ± 0.005	0.073 ± 0.009
Peerless 50D (ZVI ^{PL})	$3.25\pm2.5^{\rm a}$	1.95 ± 0.003	> 90%	$\begin{array}{c} 0.67 \pm \\ 0.06 \end{array}$	$\begin{array}{c} 0.19 \pm \\ 0.02 \end{array}$	0.15 ± 0.02

^a Determined as the surface-area weighted mean diameter using aerosizer. ^b Fraction passing through
ASTM Sieve No. 40 (opening size 425 μm) was used in this study. ^cEstimated based on 11-point N₂
adsorption curves. ^d Based on specifications provided by manufacturer. ^e Measured via acid digestion
and ICP-MS analyses. N.D. stands for below detection limit, which is 0.003%, 0.0002%, and 0.011%
for Mn, Ni, and Cu, respectively.

 $1.09 (\pm 0.17) \times 10^{-5}$

 $3.28 (\pm 2.49) \times 10^{-7}$

 $4.41 (\pm 2.10) \times 10^{-6}$

 $6.61 (\pm 0.59) \times 10^{-5}$

 $8.16 (\pm 0.20) \times 10^{-7}$

 $0.94 (\pm 0.26)$

 $0.92 (\pm 0.02)$

 $1.07 (\pm 0.03)$

 $1.08 (\pm 0.18)$

 $0.93 (\pm 0.04)$

2 3 4 5	613 614	Table 2. Surface area-normalized pseudo-first-order rate constants of chlorinated ethene degradation by ZVI ^{CIP} receiving various surface treatments						
6 7		Surface Treatment	Contaminant	$k_{SA} (L \cdot m^{-2} \cdot min^{-1})$	Carbon Recovery ^a			
8		Acid wash	TCE	N.D. ^b	0.94			
9 10		Acid wash + sulfidation		$1.12 (\pm 0.36) \ge 10^{-4}$	0.57			
10		Cu-amendment		9.15 x 10 ⁻⁵	1.12			
12		Cu-amendment + sulfidation		$2.47 (\pm 0.06) \ge 10^{-5}$	0.91 (± 0.01)			
13		Acid wash	PCE	$3.15 (\pm 0.11) \times 10^{-6}$	0.81 (± 0.02)			
14 15		Acid wash + sulfidation		$4.49 (\pm 1.26) \times 10^{-6}$	0.66 (± 0.05)			
16		Cu-amendment		$1.12 (\pm 0.21) \times 10^{-4}$	1.16 (± 0.003)			

616 ^a determined at the point of ca. 90% conversion or, for slow reactions, the last sampling point. ^b rate constant not determined due to negligible product formation over 30 days. Numbers in brackets represent standard deviations of replicate experiments.

cis -DCE

Cu-amendment + sulfidation

Cu-amendment + sulfidation

Acid wash + sulfidation

Acid wash

Cu-amendment

Figure 3. Comparison of the effects of acid treatment and sulfidation on degradation rates of (a) PCE,
(b) TCE, and (c) *cis*-DCE by various ZVI materials. Initial concentrations of PCE, TCE, and *cis*-DCE
were 0.19 mM. ZVI loadings are the same as those in Figure 1. "N.D." denotes non-detectable due to
negligible product formation in the 30-day monitoring periods.

120%

100%

80%

ZVIAA

ZVICIP

ZVIPL

ZVI^{HP}

Figure 4. Distribution of reaction products from dechlorination of (a) PCE, (b) TCE, and (c) cis-DCE by various ZVI materials. Initial concentrations of PCE, TCE, and cis-DCE were 0.19 mM. ZVI loadings are the same as those in Figure 1.

32

58 59

57

Figure 5. Effect of metal impurities on (a) *cis*-DCE and (c) PCE degradation rates by metal-amended
ZVI^{CIP}. Inhibitory effect of sulfidation on (b) *cis*-DCE and (d) PCE degradation by metal-amended
ZVI^{CIP}. Initial concentrations of PCE and *cis*-DCE were 0.19 mM. ZVI loading was 10 g/L. Note that
duplicate experiments of Ni-amended ZVI^{CIP} were shown separately due to large variations.

