# ChemComm

# Accepted Manuscript



This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



www.rsc.org/chemcomm

# Journal Name

## COMMUNICATION

Cite this: DOI: 10.1039/x0xx00000x

# C6 Picoloyl Protection: a Remote Stereodirecting Group for 2-Deoxy-β-Glycoside Formation

Jyh-Herng Ruei,<sup>a</sup> Patteti Venukumar,<sup>a</sup> Arun B. Ingle,<sup>a</sup> and Kwok-Kong Tony Mong,<sup>\*a</sup>

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

We reported a remote control glycosylation method using the picoloyl protecting group for 2-deoxy- $\beta$ -glycosidic bond formation. The method is applicable to various 2-deoxythioglycosyl donors and the utility is illustrated by synthesis of a deoxytrisaccharide component of landomycins.

 $\beta$ -2,6-Dideoxyglycosides are common carbohydrate components of many bioactive natural products,<sup>1</sup> including landomycins,<sup>2</sup> olivomycins,<sup>3</sup> digoxin,<sup>4</sup> and anthracyclines.<sup>5</sup> Removal or modification of the deoxyglycoside components usually changes the biological properties of the natural products.<sup>6</sup> These findings have inspired the use of glycosylation for modification of the pharmacokinetic and medicinal properties of some natural products and lead compounds in the drug industry. A point in case is the diolivosyl modified urdamycins, which are potent inhibitors of xanthine oxidase.<sup>7</sup>

Most glycosidic linkages in 2-deoxysugar-containing oligosaccharides are of a  $\beta$ -configuration. However, the construction of  $\beta$ -glycosidic bonds with 2-deoxysugar donors is conceived a difficult task.<sup>8</sup> The absence of a 2-hydroxyl substituent not only excludes the use of the neighbouring group participation mechanism (NGP), but it also promotes glycal formation. In addition, the anomeric effect of 2-deoxyglycoside favours the formation of the undesired  $\alpha$ -anomer.<sup>9-11</sup> Recently, Bennett and Zhu explored the use of S<sub>N</sub>2 substitution strategy for the preparation of 2-deoxy- $\beta$ -glycosides.<sup>12</sup> Despite such progress in glycosylation chemistry, there remain concerns over the practicability and scope of these methods.

It is known that an ester protecting group at a remote location can confer  $\alpha$ -selectivity in glycosidic bond formation.<sup>13</sup> Such remote control concept has been extended to picoloyl (Pico)<sup>14</sup> and 2-quinolonecarbonyl<sup>15</sup> protecting groups, that presumably provide a stereodirecting effect through hydrogen-bond mediated aglycone delivery (HAD) mechanism. Although the HAD

mechanism has not been vigorously confirmed, the idea offers new avenues to tackle stereochemistry problems in glycosidic bond formation.

**RSCPublishing** 

As 2-deoxysugars have no substituent at C2 position, it is rational to explore the stereodirecting effect of the Pico function for  $\beta$ -selective glycosylation. In addition, the Pico protecting group can be selectively removed without hampering common protecting functions.<sup>14b,15</sup> Such property paves ways for dideoxyglycoside formation. Herein, we report a new glycosylation method for construction of 2-deoxy- $\beta$ -glycosides and explore its utility for synthesis of the deoxytrisaccharide component of Landomycins **1a**–**h** (Figure 1), isolated from *Streptomyces*.<sup>2,16</sup>



$$\begin{split} n &= 1, R^1 = OH, R^2 = OH; \text{ Landomycin E (1a)} \quad n = 2, R^1 = OH, R^2 = OH; \text{ Landomycin A (1e)} \\ n &= 1, R^1 = H, R^2 = OH; \text{ Landomycin G (1b)} \quad n = 2, R^1 = H, R^2 = OH; \text{ Landomycin S (1f)} \\ n &= 1, R^1 = H, R^2 = H; \text{ Landomycin P (1c)} \quad n = 2, R^1 = H, R^2 = H; \text{ Landomycin T (1g)} \\ n &= 1, R^1 = OH, R^2 = H; \text{ Landomycin Q (1d)} \quad n = 2, R^1 = OH, R^2 = H; \text{ Landomycin U (1h)} \end{split}$$



To identify suitable conditions for glycosylation, 6-O-Pico-2deoxythioalloside **2a** (1.2 equiv.) was selected as a model donor to react with galactosyl acceptor **3** (1.0 equiv.). The final concentrations of donor **2a** and acceptor **3** in the reaction mixture were 10 and 12 mM, respectively; and such low concentration was beneficial to the HAD mechanism.<sup>14a</sup> In present procedure, donor, acceptor, and activated molecular sieve (AW300) were mixed before addition of promoters.<sup>17</sup> At first, *N*-iodosuccinimide (NIS, 1.2 equiv.) and trimethylsilyl trifluoromethanesulfonate (TMSOTf, 1.2 equiv.) were used as promoters.<sup>18</sup> Although the reaction furnished desired disaccharide 4a, some glycal formation occurred (Table 1, entry 1). Therefore, a lower -50 °C temperature was applied, though the yield was even worse due to sluggish reaction (Entry 2). Dimethyldisulfide and triflic anhydride (Me<sub>2</sub>S<sub>2</sub>-Tf<sub>2</sub>O) were then employed as promoters.<sup>19</sup> Under this condition, the disaccharide 4a was produced in high yield (90%), but the  $\alpha$ : $\beta$  ratio was 1:3 (Entry 3). The modest selectivity may be due to an acid byproduct derived from the promoter. Thus, the glycosylation employed NIS (1.2 equiv.) and trifluoromethanesulfonic acid (TfOH) as the promoters.<sup>20</sup> At 0.1 equiv of the acid, the reaction yield was moderate (50%) due to sluggish glycosylation (Entry 4). To increase the rate of the reaction, the amounts of TfOH were raised to 0.2, 0.6 and 1.2 equiv. (Entries 5-7). The best result was achieved at 0.2 equiv. of the acid; in such conditions, the  $\alpha$ : $\beta$  ratio of **4a** was 1:16 (Entry 5). However, higher acid concentration diminished the glycosylation selectivity. Due to the strong H-bonding association of the Pico group with the stationary phase of the separation column, the  $\alpha$ : $\beta$  ratio was determined by HPLC after removal of the Pico function in 4a Confirmation of the  $\beta$ -configuration of 4a was based on the  $^{3}\textit{J}_{\rm H1-H2}$  coupling constant (9.5 Hz) of the anomeric proton (5.13 ppm in <sup>1</sup>H NMR).<sup>21</sup>

proton (5.13 ppm in <sup>1</sup>H NMR).<sup>21</sup> **Table 1:** Development of a  $\beta$ -selective glycosylation method for 2-



With the optimised conditions in hand, the scope of application of the Pico protecting function was studied (Figure 2, Table 2). At first, 4-O-Pico-2-deoxythiogalactoside **5** and 6-O-Pico-2-deoxythiogalactoside **6** were coupled with glycosyl acceptors **3**, **11**, **12**, **13**, and/or **14**. Glycosylation of acceptors **3**, **11**, and **13** with 4-O-Pico protected donor **5** furnished the desired disaccharides **16–18** in high yields, with the  $\alpha$ : $\beta$  ratios from 1:6 to 1:11 (Table 2, entries1-3).



Figure 2. Deoxythioglycosyl donors  $5\mathchar`-9$  and acceptors  $10\mathchar`-15$  for glycosylation studies.

| deoxythic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | calloside don | ors 2a and 2b                      |                    |                                    |                                                                               |          |                                                             |                                                                                                             |                    |                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------|--------------------|------------------------------------|-------------------------------------------------------------------------------|----------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------|
| $R'$ OH 1.0 h, $-T \circ C$ , thiophilic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                    |                    |                                    | Table 2.Scope and limitation of the $\beta$ -selective glycosylation protocol |          |                                                             |                                                                                                             |                    |                                            |
| $\begin{array}{c} \text{RO} \\ \text{OBz} \\ \text{OBz}$ |               |                                    | 2 <sup>R'</sup>    | -                                  | 2-deoxythioglycosyl<br>donor <b>2, 5–9</b> (see Fig 2)<br>(1.2 equiv)         |          | acceptor<br>+ <b>3, 10–15</b><br>(see Fig 2)<br>(1.0 equiv) | 1.0 h, -50 °C, NIS, cat TsO<br>MS (AW300) -50 °C<br>→<br>CH <sub>2</sub> Cl <sub>2</sub> (Table 1, entry 5) |                    | DH<br>→ 16–28<br>(See SI for<br>structure) |
| <b>2b:</b> R = Bn; R' = OBz<br>(1.2 equiv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | , 3 ∣<br>(1.0 equiv)               | NO DO O<br>OBz O O |                                    |                                                                               |          |                                                             |                                                                                                             |                    |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                                    | $\mathcal{T}_{c}$  |                                    | Entry                                                                         | Donor/   | Time (h)                                                    |                                                                                                             | Product            |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 42                                 | (from 2a and 3     | P = OPicco                         |                                                                               | acceptor |                                                             | No.                                                                                                         | Yield (%)          | α:β                                        |
| <b>4b</b> (from <b>2b</b> and <b>3</b> ), R = OBz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                    |                    | 1                                  | 5/3                                                                           | 20       | 16                                                          | 80                                                                                                          | 1:7.0 <sup>a</sup> |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                                    |                    |                                    | 2                                                                             | 5/11     | 21                                                          | 17                                                                                                          | 83                 | $1:11^{a}$                                 |
| Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Donor,        | Promoters (equiv.)                 | Τ°C,               | 4, (%, α:β)                        | 3                                                                             | 5/13     | 24                                                          | 18                                                                                                          | 84                 | $1:6.0^{a}$                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | acceptor      |                                    | time (h)           |                                    | 4                                                                             | 6/3      | 24                                                          | 19                                                                                                          | 79                 | $1:19^{b}$                                 |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2a, 3         | NIS (1.2), TMSOTf (1.2)            | -30, 20            | 50, $1:1^{a,b}$                    | 5                                                                             | 6/12     | 48                                                          | 20                                                                                                          | 63                 | $1:19^{b}$                                 |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2a, 3         | NIS (1.2), TMSOTf (1.2)            | -50, 20            | 30, ND <sup><i>a,c</i></sup>       | 6                                                                             | 6/14     | 24                                                          | 21                                                                                                          | 60                 | $1:19^{b}$                                 |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2a, 3         | $Me_2S_2$ -Tf <sub>2</sub> O (1.2) | -50, 1             | 90, $1:3^d$                        | 7                                                                             | 6'/3     | 1                                                           | 19'                                                                                                         | 79                 | 6:1 <sup>c</sup>                           |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2a, 3         | NIS (1.2), TfOH (0.1)              | -50, 48            | 50. $ND^c$                         | 8                                                                             | 2a / 10  | 40                                                          | 22                                                                                                          | 50                 | $1:8.0^{a}$                                |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2a, 3         | NIS (1.2), TfOH (0.2)              | -50.27             | 95, 1:16 <sup><math>d</math></sup> | 9                                                                             | 2a / 11  | 24                                                          | 23                                                                                                          | 54                 | $1:7.6^{a}$                                |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2a. 3         | NIS (1.2), TfOH (0.6)              | -50, 24            | 93. 1:8 <sup><math>d</math></sup>  | 10                                                                            | 7/3      | 16                                                          | 24                                                                                                          | 70                 | $1:12^{a}$                                 |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2a. 3         | NIS (1.2), TfOH (1.2)              | -50, 20            | 95, $1:1^{b}$                      | 11                                                                            | 7/11     | 27                                                          | 25                                                                                                          | 64                 | $1:9^{a}$                                  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2h 3          | NIS (1.2) TfOH (0.2)               | -50 1              | $70 1 \cdot 1^{b}$                 | 12                                                                            | 7'/3     | 1                                                           | 24'                                                                                                         | 90                 | $2:1^{c}$                                  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20,0          | (1.2); 11011 (0.2)                 | 50, 1              | 70, 111                            | 13                                                                            | 8/15     | 21                                                          | 26                                                                                                          | 79                 | $1:19^{b}$                                 |
| <sup><i>a</i></sup> Some acceptor <b>3</b> was silvlated. <sup><i>b</i></sup> The $\alpha$ : $\beta$ ratio was estimated from TLC or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                    |                    |                                    | 14                                                                            | 8' / 15  | 22                                                          | 26'                                                                                                         | 94                 | 10:1 <sup>c</sup>                          |
| <sup>1</sup> H NMR. <sup><i>c</i></sup> ND: not determined. <sup><i>d</i></sup> The α:β ratio was determined by HPLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                    |                    |                                    | 15                                                                            | 9/3      | 3                                                           | 27                                                                                                          | 60                 | $1:19^{b}$                                 |
| analysis after deprotection of the picoloyl group in 4a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                    |                    |                                    | 16                                                                            | 9 / 11   | 22                                                          | 28                                                                                                          | 55                 | $1:2^{c}$                                  |

It was unclear if the axial 3-O-benzoyl (Bz) function of **2a** also plays some role in the selectivity of the reaction.<sup>22</sup> For clarification, 3,6-di-O-Bz-2-deoxythioalloside **2b** that substituting the C6 Pico with a Bz function was coupled with acceptor **3** (Entry 8),<sup>23</sup> but the  $\alpha$ : $\beta$  ratio of the product **4b** was 1:1, confirming the stereo-directing effect of the C6 Pico group glycosylation.



Remarkably, glycosylation of acceptors **3**, **12**, and **14** with 6-O-Pico protected donor **6** produced disaccharides **19**, **20**, and **21** with excellent  $\beta$ -selectivity (Entries 4, 5, and 6). Putting the Journal Name

results of entries 1-6 together indicates the C6 Pico function provides a better stereochemical control in present context. Then 6-O-Bz-2-deoxythiogalactosyl donor **6'** was used as a control element to couple with acceptor **3** (Entry 7). In sharp contrast, the donor **6'** provided a moderate  $\alpha$ -selectivity of glycosylation. Noted that **21** can be converted to oliose- $\beta$ -(1 $\rightarrow$ 3)-olivose, which is the dideoxydisaccharide component in chromocyclomycin and durhamycin A.<sup>1c</sup>

After studying donors 5 and 6, 6-O-Pico-2-deoxythioalloside 2a and 6-*O*-Pico-2-deoxythioglucoside **7** were examined. Glycosylation of acceptors 10 and 11 with donor 2 gave the desired disaccharides 22 and 23 in ~50-54% yield and with considerable good  $\beta$ -selectivity (~1:8  $\alpha$ : $\beta$  ratio) (Table 2, entries 8 and 9). Moderate yield of the reactions may be caused by the disarming effect of the Bz group that affects the coupling efficiency. Furthermore, glycosylation of acceptors 3 and 11 with 6-O-Pico-2-deoxythioglucoside 7 provided the expected disaccharides 24 and 25 in 64-70% yields and their  $\alpha/\beta$  ratios are 1:12 and 1:9, respectively (Entries 10 and 11). When a control donor, namely 6-O-Bz-2-deoxythioglucoside, 7' that lacking the Pico function, was used for glycosylation of 3, a modest  $\alpha$ selectivity was observed (Entry 12). Of noted is that some variation of the protecting group pattern in donor is tolerated, as witnessed in the glycosylation of 15 with donor 8 (Entry 13). To examine the effect of the electron-withdrawing Pico group at C4 position,<sup>23</sup> 4-O-Pico protected donor 8' was coupled with 15 (Entry 14). Interestingly, a dramatic change in selectivity of glycosylation was observed and  $\alpha$ -anomer of 26' was the major product. The result implicates that the effect of the stereochemical control of the Pico function can be tuned by its position, which is in agreement with finding of Demchenoko et al.14a Encouraged by the  $\beta$ -selectivity of 2-deoxythioglycosyl donors **2a**, 6, 7, and 8, a 2,3-dideoxy-D-erytho-hexopyranosyl donor 9 was investigated, which is presumably more reactive than monodeoxy donors. Glycosylation of primary acceptor 3 with 9 still produced β-linked 2,3-dideoxydisaccharide 27 as a sole isomer (Entry 15).Unfortunately, very modest β-selectivity was given in glycosylation of secondary acceptor 11 (Entry 16).

The utility of the  $\beta$ -glycosylation method was demonstrated by synthesis of a deoxytrisaccharide target 29 from building blocks 6-O-Pico-2-deoxythioglucoside 7, 2,6-dideoxyolivoside 12, and L-rhodinosyl acetate 30 (Scheme 1a). Deoxytrisaccharide 29 is the carbohydrate component of landomycins E, G, P, and Q (1a-1d in Fig 1). Reducing end disaccharide unit 31 was first constructed by the glycosylation of olivoside acceptor 12 with Pico protected 2-deoxythioglycosyl donor 7 using the glycosylation protocol established in Table 1. Disaccharide 31 was obtained in 75% yield as an inseparable 1:11  $\alpha$ : $\beta$  mixture. Subsequent oxidative removal of the 2-naphthylmethyl (Nap) group furnished disaccharide **32**. At this stage, the  $\beta$ -isomer of 32 was isolated and used as the acceptor for glycosylation with L-rhodinosyl acetate  ${\bf 30}$  to give expected trisaccharide  ${\bf 33}$  as a single isomer in excellent yield (92%).<sup>24</sup> Subsequent deprotection of the Pico function in 33 followed by Barton-McCombie deoxygenation concluded the synthesis of target trisaccharide **29.**<sup>25</sup>

In summary, a  $\beta$ -selective glycosylation method was developed for direct synthesis of 2-deoxyglycosides and further application for preparation of deoxyoligosaccharide was demonstrated.



### Notes and references

<sup>a</sup>Applied Chemistry Department, National Chiao Tung University (NCTU), 1001 Ta Hsueh Road, Taiwan, Fax: (+886)-3-5131204; *e-mail*: tmong@mail.nctu.edu.tw.

<sup>†</sup> We thank the Ministry of Science and Technology Department of Taiwan (MOST 102-2627-M-009-003), CIS of NCTU, and Mr. Yi-Ru Kevin Yang for support and assistance

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/c000000x.

- (a) R. M. de Lederkremer, C. Marino, Adv. Carbohydr. Chem. Biochem., 2008, 61, 143-201; (b) M. K. Kharel, P. Pahari, M. D. Shepherd, N. Tibrewal, S. E. Nybo, K. A. Shaaban, J. Rohr, Nat. Prod. Rep., 2012, 29, 264-325; (c) F. Lombó, N. Menéndez, J. A. Salas, C. Méndez, Appl. Microbiol. Biotechnol., 2006, 73, 1-14; (d) A. Kirschning, A. F.-W. Bechthold, J. Rohr, Top. Curr. Chem., 1997, 188, 1-84; (e) J. Rohr, R. Thiericke, Nat. Prod. Rep., 1992, 9, 103-137;
- (a) K. A. Shaaban, S. Srinivasan, R. Kumar, C. Damodaran, J. Rohr, J. Nat. Prod., 2011, 74, 2-11; (b) T. Henkel, J. Rohr, J. M. Beale, L. Schwene, J. Antibiot., 1990, 43, 492-503; (c) X. Yang, B. Fu, B. Yu, J. Am. Chem. Soc., 2011, 133, 12433-12435.
- (a) M. G. Brazhnikova, E. B. Krugliak, I. N. Kovasharova, N. V. Konstantinova, V. V. Proshiakova, *Antibiotiki*, 1962, 7, 39-44; (b) Yu.

This journal is  $\ensuremath{\mathbb{C}}$  The Royal Society of Chemistry 2012

**Journal Name** 

A. Berlin, S. E. Esipov, M. N. Kolosov, M. M. Shemyakin, M. G. Brazhnikova, *Tetrahedron Lett.*, 1964, **5**, 1323-1328.

- 4. W. N. Moore and L. T. Taylor, J. Nat. Prod., 1996, 59, 690-693.
- (a) J. W. Lown, *Chem. Soc. Rev.*, 1993, **22**, 165-176; (b) F. M. H. de Groot, A. C. W. de Bart, J. H. Verheijen, H. W. Scheeren, *J. Med. Chem.*, 1999, **42**, 5277-5283.
- 6. (a) A. C. W.- Wilson, *Nat. Prod. Rep.*, 1997, 14, 99-110; (b) M. S. Butler, *J. Nat. Prod.*, 2004, 67, 2141–2153; (c) A. K. V. Iyer, M. Zhou, N. Azad, H. Elbaz, L. Wang, D. K. Rogalsky, Y. Rojanasakul, G. A. O'Doherty, J. M. Langenhan, *ACS Med. Chem. Lett.*, 2010,1, 326–330; (d) T. K. Ritter, K.-K. T. Mong, H. Liu, T. Nakatani, C. H. Wong, *Angew. Chem. Int. Ed.*, 2003, 42, 4657–4660. (e) C. J. Thibodeaux, C. E. Melancon, H.-W. Liu, *Nature*, 2007, 446, 1008–1016.
- A. Kirschning, G.-w. Chen, G. Dräger, I. Schuberth, L. F. Tietze Bioorg. Med. Chem. 2000, 8, 2347-2354
- (a) Kedar N. Baryal, Surya Adhikari, Jianglong Zhu, J. Org. Chem. 2013, **79**, 12469-12476; (b) E. I. Balmond, D. M. Coe, M. C. Galan, E. M. McGarrigle, Angew. Chem. Int. Ed., 2012, **51**, 9152-9155; (c) B. D. Sherry, R. N. Loy, F. D. Toste, J. Am. Chem. Soc., 2004, **126**, 4510-4511; (d) C. H. Marzabadi, R. W. Franck, Tetrahedron, 2000, **56**, 8385-8417; (e) J. Thiem, W. Klaffke, Top. Curr. Chem., 1990, **154**, 285-333.
- A. Veyrieres, *Carbohydrates in Chemistry and Biology, Vol. 1* (Eds.: B. Ernst, G. W. Hart, P. Sinay), Wiley-VCH, Weinheim, 2000, chap. 15.
- (a) P. Deslongchamps, *Stereoelectronic Effects in Organic Chemistry*, Pergamon, Oxford, 1983; (b) E. Juaristi, G. Cuevas, *The Anomeric Effect*, CRC, Boca Raton, 1995.
- (a) A. Borovika, P. Nagorny, J. Carbohydr. Chem., 2012, 31, 255-283;(b) H. Tanaka, A. Yoshizawa, T. Takahashi, Angew. Chem. Int. Ed., 2007, 46, 2505-2507; (c) J. Gervay, S. Danishefsky, J. Org. Chem.,1991, 56, 5448-5451; (d) G. Grewal, N. Kailaand R. W. Franck, J. Org. Chem., 1992, 57, 2084-2092; (e) R. W. Binkley and D. J. Koholic, J. Org. Chem., 1989, 54, 3577-3581; (f) R. Pongdee, B. Wu and G. A. Sulikowski, Org. Lett., 2001, 3, 3523-3525; (g) S. N. Lam and J. G.-Hague, Org. Lett., 2003, 5, 4219-4222.
- 12. (a) J. P. Issa, C. S. Bennett, J. Am. Chem. Soc., 2014, 136, 5740-5744;
  (b) J. P. Issa, D. Lloyd, E. Steliotes, C. S. Bennett, Org. Lett., 2013, 15, 4170-4173;
  (c) D. Zhu, K. N. Baryal, S. Adhikari, J. Zhu, J. Am. Chem. Soc., 2014, 136, 3172-3175.
- (a) A. V. Demchenko, E. Rousson, G. J. Boons, *Tetrahedron Lett.* 1999, **40**, 6523-6526; (b) B. S. Komarova, M. V. Orekhova, Y. E. Tsvetkov, N. E. Nifantiev, *Carbohydr. Res.* 2014, **384**, 70-86. (c) M. Takatani, I. Matsuo, Y.Ito, *Carbohydr. Res.* 2003,**338**, 1073-1081.
- (a) J. P. Yasomanee, A. V. Demchenko, J. Am. Chem. Soc., 2012, 134, 20097-20102;
   (b) J. P. Yasomanee, A. V. Demchenko, Angew. Chem. Int. Ed., 2014, 53, 1-5.
   (c) S. G. Pistorio, J. P. Yasomanee, A. V. Demchenko, Org. Lett., 2014, 16, 716-716.
- 15. Q.-W. Liu, H.-C. Bin, J.-S. Yang, Org. Lett., 2013, 15, 3974-3977.
- 16. X. Yang, P. Wang, B. Yu, Chem. Rec. 2013, 13, 70-84.
- 17. Acid washed AW300 molecular sieve (MS) (from Aldrich) was used and detailed activation procedure of MS was given in SI.
- G. H. Veeneman, S. H. van Leeuwen, J. H. van Boom, *Tetrahedron Lett.* 1990, **31**, 1331-1334.
- 19. J. Tatai, P. Fügedi, Org. Lett., 2007, 9, 4647-4650.
- P. Konradsson, D. R. Mootoo, R. E. McDevitt, B. Fraser-Reid, J. Chem. Soc. Chem. Commun. 1990, 270-272.

- 21. K. Bock, C. Pedersen, J. Chem. Soc. Perkin Trans. 2,1974,1293-1297.
- (a) Y.-Y. Ma, Z.-Z. Li, H.-F. Shi, J. Zhang, and B. Yu, J. Org. Chem.
   2011, 76, 9748-9756. (b) K. Wiesner and T. Y. R. Tsai, Pure Appl. Chem. 1986, 56, 799-810.
- 23. Takahashi reported that an electron-withdrawing sulfonyl protection at C4 hydroxyl was found to increase the β-selectivity of glycosylation for 2,6-dideoxy glycosyl imidate donor. Tanaka, A. Yoshizawa, T. Takahashi, *Angew. Chem., Int. Ed.* 2007, **46**, 2505 – 2507.
- 24. W. R. Roush, C. E. Bennett, S. E. Roberts, J. Org. Chem., 2001, 66, 6389-6393.
- 25. D. H. R. Barton, S. W. McCombie, J. Chem. Soc., Perkin Trans. 1, 1975, 1574-1585.

**4** | J. Name., 2012, **00**, 1-3