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Introduction

As high-throughput screening methods

A divergent synthetic route to functional
copolymer libraries via modular polymers
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High-throughput polymer synthesis enables rapid exploration of chemical space but remains limited by
batch-to-batch inconsistencies that can obscure structure—property relationship trends. To address this
challenge, we developed a synthetic approach to produce multifunctional copolymers using
post-polymerization modification of activated ester modular polymers with commercially available
amines. Easily derivitized parent polymers—poly(tetrafluorophenyl acrylate) and poly(tetrafluorophenyl
styrene sulfonate)—were synthesized by RAFT polymerization to yield single polymer batches containing
highly
post-polymerization modification reaction conditions enabled the addition of sub-stoichiometric

reactive tetrafluorophenyl esters or sulfonate esters on each repeat unit. Tuning
amounts of amines (relative to the repeat unit) to yield partially functionalized intermediates that could
then be further derivatized. Reaction monitoring by °F NMR spectroscopy confirmed good control
over these sequential post-polymerization modifications. This synthetic route produced a variety of
copolymers with defined comonomer ratios while preserving the underlying polymer structure (degree of
polymerization, dispersity, tacticity) for both the acrylate and styrene sulfonate backbones. We further
applied this approach in a divergent manner to create a small library of structurally distinct copolymers
from a single parent batch in three synthetic steps. This modular, divergent synthesis demonstrates
a general route to structurally consistent copolymer libraries that enable systematic studies of structure—

property relationships and can accelerate functional materials discovery.

structure-activity relationships that can guide the future
development of antibacterial materials."*™"® Additionally,

have advanced, high-throughput synthetic techniques have been applied to

high-throughput synthetic approaches have developed in
parallel. High-throughput methods have been used in the
pharmaceutical industry for decades,"* and have more
recently begun being employed in polymer chemistry.> In the
context of polymer synthesis, these approaches have enabled
the rapid production of large libraries of polymers with
varying compositions to quickly discover new structures,
establish structure-property relationships, and optimize
polymerization conditions.

Ideally, the creation of these polymer libraries accelerates
the discovery of new materials by enabling researchers to
rapidly explore a wide range of chemical space and identify
materials with optimal properties for a specific application.
For example, copolymer libraries have been synthesized
and screened for antibacterial activity, ultimately revealing
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stimuli-responsive polymers to optimize synthetic methods
and generate libraries of polymers with tuneable
properties.'*® Despite these successes, many polymer
structures remain inaccessible by direct (co)polymerization
due to incompatibility in polymerization conditions, syntheti-
cally challenging monomers, or differences in comonomer
reactivity ratios.”>*' Furthermore, the most well-
controlled syntheses produce mixtures of polymer chains with
slight (or not so slight) differences in degree of polymerization
(DP), tacticity, and dispersity. While robotic platforms can
often keep these variations to a minimum, structural variables
are not perfectly controlled among different samples.”*>° In
applications where these minor structural changes can
produce large effects, a synthetic approach capable of holding
these variables constant—while still enabling rapid synthesis
of many structurally related materials—is desirable.

Modular polymers, that is, polymers that can be easily
modified post-polymerization,?”*® offer several key advantages
that streamline and enhance materials discovery. With a
modular approach, a single parent material may be

even
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synthesized and subsequently derivatized to produce a library
of materials that share key structural features, e.g, DP,
dispersity, and tacticity. While many modular polymer
strategies exist,” ' modular polymers featuring activated
esters, specifically perfluorophenyl esters, are particularly
effective because of their facile functionalization by
nucleophilic acyl substitution. This approach has been
well-developed to produce homopolymer libraries,>** and to a
more limited extent, copolymers.>®?°® For example, Hawker,
Bates, and coworkers recently demonstrated a high-throughput
combined chromatographic and robotic method to generate a
block copolymer library with varied block length and
composition, based on a modular polymer block. Though
limited to a series of homo-di-block copolymers, this work
highlights the opportunity to extend modular polymer
strategies to more compositionally complex copolymers.>” As
high-throughput synthesis the full potential of
copolymer synthesis by a modular approach invites further
exploration.

Here, we demonstrate a divergent synthetic strategy to
copolymer libraries by sub-stoichiometric functionalization in
a modular polymer-based approach. This strategy enables
synthesis of copolymer libraries with high degrees of
uniformity in composition, DP, and dispersity. This approach
also enables synthesis of diverse copolymers while eliminating
the variability inherent in other synthetic approaches and
enabling access to copolymer structures inaccessible by direct
polymerization.

evolves,

Results and discussion

Synthesis and post-polymerization modification of poly
(tetrafluorophenyl acrylate) (PTFPA)

We chose poly(tetrafluorophenyl acrylate) (PTFPA) as a model
for this study because activated esters are a well-known class
of modular polymer, functionalization of the polyacrylate
backbone enables access to a variety of polyacrylates and
polyacrylamides, and the para-proton allows for reaction
monitoring by both "H and '’F NMR spectroscopy.’?>32
Monomeric tetrafluorophenyl acrylate (TFPA) was synthesized
in one step by the reaction of tetrafluorophenol with acryloyl
chloride (Scheme 1 and Fig. S1, S2, SI). TFPA was then
polymerized by reversible addition-fragmentation chain-
transfer (RAFT) polymerization using 2-(dodecylthiocarbo-
nothioylthio)-2-methylpropionic acid (DDMAT; Fig. S3 and S4,
SI) as a chain-transfer agent to control the molecular weight
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Scheme 1 Synthesis of PTFPA by RAFT polymerization. Final polymer
M, (SEC) = 24.3 kDa, b = 1.58.
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and dispersity. Size exclusion chromatography (SEC) and NMR
confirmed a well-defined polymer structure (Fig. S5-S7, SI).
Activated-ester  polymers react quantitatively with
nucleophiles (typically primary amines or, in the presence of a
catalyst, alcohols®?) to yield the corresponding functionalized
polymer (polyacrylamides or polyacrylates, respectively). In
this study, we used unhindered, primary amines due to their
facile reactivity. To test our hypothesis that addition of
sub-stoichiometric amounts (relative to the repeat unit) of
nucleophile would produce isolable polymers with retained
modular tetrafluorophenyl functionality, we reacted PTFPA
with 0.25 molar equivalents of benzylamine in DMF (Fig. S8,
SI). After reacting for 15 hours, we observed ~43% conversion
by '°F NMR, higher than what would be expected for only 0.25
equivalents of nucleophile. Similar to previous mechanistic
studies,®® we concluded that the solvent, DMF, may be
displacing the activated ester moiety. This solvent
displacement would not impact the polymer structure once
fully functionalized; however, due to our desire to easily track
functionalization by '°F NMR, we screened a series of
common organic solvents to determine which would not dis-
place the activated ester (Fig. S9 and Table S1, SI). Gratifyingly,
ethyl acetate did not appear to displace the activated ester
moiety, even after extensive heating or in the presence of
another nucleophile (benzylamine) (Fig. S10, SI). Therefore, we
continued to use ethyl acetate for the modification of PTFPA.
Addition of 0.5 equivalents of benzylamine in ethyl acetate
yielded a functionalization of ~53% after 2 hours. Subsequent
addition of 0.5 equivalents of n-hexylamine functionalized
the remaining tetrafluorophenyl acrylate to form a 50:50 poly
(benzylacrylamide-co-hexylacrylamide) copolymer (Fig. 1).
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Fig. 1 (A) Scheme for functionalization of PTFPA with benzyl- and hex-
ylamine to yield a 50:50 random copolymer. (B) Post-polymerization
modification was monitored by '°F NMR (375 MHz, DMSO-dg) with an
internal standard and quantified by the ratio of polymeric fluorine (pink
circles) to tetrafluorophenoxide (blue triangles) in the reaction solution.
Error is calculated by propagating the standard deviation between the
two sets of fluorines (ortho and meta to the oxygen).
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Synthesis and post-polymerization modification of poly
(tetrafluorophenyl styrene sulfonate) (PTFPSS)

Activated-ester moieties can be appended to other polymer
backbones in addition to polyacrylates. To demonstrate this
versatility, we synthesized tetrafluorophenyl styrene sulfonate
(TFPSS) to access styrenic backbones. The tetrafluorophenyl
styrene sulfonate monomer was synthesized in two steps, first
converting sodium styrene sulfonate to the corresponding
sulfonyl chloride with thionyl chloride followed by substitution
of chloride with tetrafluorophenol (Scheme 2 and Fig. S11-
S15, SI). The TFPSS monomer was then polymerized via RAFT
polymerization resulting in a similar DP to the PTFPA batch
(Scheme 2). Molecular weight of the final polymer was
confirmed by size-exclusion chromatography (SEC) and
matching NMR end-group analysis (Fig. S16-S18, SI). This
polymer batch was then used for all subsequent post-polymer-
ization modifications using PTFPSS.

Unlike PTFPA, PTFPSS was significantly less susceptible
to unwanted displacement by solvent and these post-
polymerization reactions could be conducted in DMF (Fig. 24A).
To form a 50: 50 poly((benzylsulfonamido)styrene-co-(hexylsul-
fonamido)styrene) copolymer analogous to the polyacrylate
shown in Fig. 1A, 0.52 equivalents of benzylamine were added
to the PTFPSS. This addition resulted in an apparent 60%
conversion of polymeric tetrafluorophenyl groups to
tetrafluorophenoxide (Fig. 2B). We attributed this slight
discrepancy to hydrolysis by residual water present in DMF. A
subsequent addition of 0.54 equivalents of hexylamine
displaced the remaining tetrafluorophenyl units, yielding the
desired 50 : 50 copolymer.

Polymer library generation by a divergent synthetic approach

To further evaluate the scope of the post-polymerization
modification of PTFPA and PTFPSS, we added 0.1 equivalents
of benzylamine to the parent polymers in ten sequential por-
tions. We used a sequential addition of amines in this reaction
and in subsequent experiments to show that a controlled
amount of the polymeric tetrafluorophenyl functionalization
was retained after each post-polymerization modification.
These reactions were quantified after each addition (0.1 mol
equiv. benzylamine, 2 h reaction time) using '’F NMR
spectroscopy. Interestingly, the PTFPA modification displayed
limited control with all the tetrafluorophenyl groups being
cleaved by the sixth addition (Fig. S19, SI). We attributed this
excess displacement to a combination of the reaction solvent,
ethyl acetate, displacing the activated ester after long exposure
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Scheme 2 Synthesis of TFPSS monomer and subsequent RAFT

Polymerization. Final polymer M,, (SEC) = 33 kDa, D = 1.40.

This journal is © The Royal Society of Chemistry 2026

View Article Online

Pa per
o
A S B
° [ ]
o [
\ P A
554 A
‘ 513

saf Y i
1.54 345 ‘
1.00 | |
0=8=0 ;

$=0

F
£

hig 0.60 =

NEts, DMF,
60°C.2h

%Conv. =

533
oo+ lray 5337349  %Conv.= 60 + 4%

% [
Q:SD ‘

Fig. 2 (A) Scheme for functionalization of PTFPSS with benzyl- and
hexylamine to yield a 50:50 random copolymer. (B) Post-polymeriz-
ation modification was monitored by °F NMR (375 MHz, DMSO-d6)
with an internal standard and quantified by the ratio of polymeric
fluorine (pink circles) to tetrafluorophenoxide (blue triangles) in the
reaction solution. Error is calculated by propagating the standard devi-
ation between the two sets of fluorines (ortho and meta to the oxygen).

periods and the NMR solvent, DMSO-d,, displacing the ester
during the NMR analysis. Closer monitoring of the reaction
progress by '’F NMR spectroscopy revealed that functionali-
zation was complete after only 45 minutes and at a lower
temperature of 45 °C (Fig. S20 and Table S2, SI). Excess
displacement was avoided by decreasing the reaction time and
temperature for future reactions. Additionally, to prevent
displacement during NMR spectroscopic characterization, we
carried out NMR experiments in acetone-ds rather than DMSO-
de. Under these conditions, the reaction behaved as expected
with each addition of 0.1 equivalents of nucleophile corres-
ponding to an approximately 10% increase in the amount of
free leaving group (tetrafluorophenoxide) present in solution
(Fig. 3, left, blue). In contrast to the PTFPA, the PTFPSS system
immediately behaved as expected by cleaving ~10% of the
tetrafluorophenyl groups with each 0.10 mol equiv. of
benzylamine after 2 h of reaction (Fig. 3, right, pink).

To access more complex multifunctional copolymers, we
used a divergent synthetic approach to generate a small library
of four structurally different polymers in three synthetic steps
(Fig. 4). First, 0.25 equivalents of benzylamine were added and
allowed to react, then the reaction solution was split into two
equal portions. To the first portion, 0.5 equivalents of n-hexyla-
mine were added while 0.5 equivalents of furfurylamine were
added to the second and both were allowed to react. The
reaction solutions for this second generation were then split
into two equal portions again and the remaining 0.25 equiva-
lents of tetrafluorophenyl ester were functionalized by
allylamine or either n-hexylamine or furfurylamine depending
on what was used in the second generation. Following each
reaction period, the reaction solution was characterized by '°F
NMR (Tables S3 and S4, SI) to ensure full substitution of each
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valent additions of benzylamine with near quantitative functionalization tracked through *°F NMR.
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Fig. 4 Divergent route to a polymer library with varying benzyl-, hexyl-,
furfuryl-, and allylamine functionalization.

individual functionality, as these amines exhibit different
intrinsic reactivities toward the tetrafluorophenyl ester and a
single-portion addition would obscure control over the extent
of functionalization. While the PTFPA behaved as expected, it
should be noted that for the divergent modification of the
PTFPSS targeting a (1) 25% benzylamine, (2) 50% hexylamine,

Polym. Chem.

(3) 25% furfurylamine composition, the expected 'H NMR
integration ratio would be 1:2:1; however, the observed ratio
was benzylamine : hexylamine : furfurylamine = 1:2:0.5.
When the order of addition was changed to (1) 25% benzyla-
mine, (2) 25% furfurylamine, (3) 50% hexylamine, the
observed ratio improved to 1:1.7:1. We attribute the
incomplete incorporation of amines in this series to steric
hindrance arising from the combined use of three relatively
bulky amines. This dependence on the order of addition
indicates nearby repeat units interact during substitution,
which in turn could affect the distribution of different
substituents along the polymer chain. Although full analysis of
the substituent distribution is beyond the scope of this study,
we observed no anomalous behaviors indicative of block- or
gradient-like distributions. However, consideration of these
interactions in reaction design is critical to maintain uniform
functionalization.

While we did not isolate the first- or second-generation
materials in this work, this divergent synthetic approach
could yield a total of seven distinct polymers in three synthetic
steps. The number of distinct, final polymers could be
increased by increasing the number of divisions per gene-
ration, thereby enabling rapid production of large polymer
libraries. The final four polymers synthesized in this work
varied in comonomer identity and amount (Fig. S21-528, SI).
The two final benzyl acrylamide-co-hexyl acrylamide-co-furfuryl
acrylamide copolymers had the same comonomer identities
but different ratios of functionalization. Although four
polymers were produced using this divergent approach, we

This journal is © The Royal Society of Chemistry 2026
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demonstrated control over ten sequential additions, in theory
potentially generating over a thousand different materials even
with only two divisions per generation. Additionally, while we
used relatively simple, commercially available amines for this
study to avoid complex characterization, this method could be
expanded to incorporate a wide range of functionality,
including orthogonal functionality that could be further
derivatized by subsequent post-polymerization modification
(e.g., thiol-ene click chemistry at the allylacrylamides). Thus,
this divergent method enables the synthesis of copolymers
with controlled structural variations in few synthetic steps
while holding parent polymer parameters (DP and dispersity)
consistent.

Conclusions

In conclusion, we demonstrated a divergent synthetic strategy
to generate a library of multi-functional copolymers using a
modular polymer approach. This strategy was effective for
polystyrene (PTFPSS) and polyacrylate (PTFPA) backbones,
though conditions differed due to displacement by solvent in
the reaction and NMR experiments, or steric effects. We
showed access to a variety of polymer compositions using
commonly available amines, but we believe this approach
could be more generalizable to other nucleophiles, allowing
for diverse functionalities to be incorporated. This strategy
will enable synthesis of copolymer libraries with high degrees
of uniformity in composition, DP, and dispersity, offering a
route to improving existing high-throughput polymer synthesis
methods.
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