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Machine learning for a sustainable energy future

Burcu Oral,a Ahmet Cos-gun,a Aysegul Kilic,a Damla Eroglu, a M. Erdem Günay b

and Ramazan Yıldırım *a

Energy production is one of the key enablers for human activities such as food and clean water

production, transportation, telecommunication, education, and healthcare; however, it is also the main

cause of global warming. Hence, sustainable energy is critical for most United Nations (UN) Sustainable

Development Goals (SDGs), and it is directly targeted in SDG7. In this review, we analyze the potential

role of machine learning (ML), another enabler technology, in sustainable energy and SGDs. We review

the use of ML in energy production and storage as well as in energy forecasting and planning activities

and provide our perspective on the challenges and opportunities for the future role of ML. Although

there are strong challenges for both sustainable energy supply (like conflict between the urgent energy

needs and global warming) and ML applications (like high energy consumption in ML applications and

risk of increasing inequalities among people and nations), ML may make significant contributions to

sustainable energy efforts and therefore to the achievement of SDGs through monitoring and remote

sensing to collect data, planning the worldwide efforts and improving the performance of new and

more sustainable energy technologies.

1. Introduction

The UN Member States adopted ‘‘The 2030 Agenda for Sustain-
able Development’’ in 2015 to offer a shared vision for peace
and prosperity for all member countries in the future. The 17
Sustainable Development Goals (SDGs) cover the basic human
needs/rights from ending poverty and deprivation to improving
health and education and reducing inequality in the entire

planet, provide specific action plans through 169 targets for all

countries in a global partnership while they also constitute the

criteria to measure the progress.1 Among 17 SDGs, ‘‘Affordable

and Clean Energy’’ (SDG 7) and ‘‘Climate Action’’ (SDG 13)

stand out as crucial goals in addressing both energy accessi-

bility and climate change.
Global energy consumption has increased dramatically in

response to industrialization, urbanization, and moderniza-
tion; the world’s gross electricity generation has increased from
9754 TW h in 1985 to 29 479 TW h in 2023 (multiplied by a
factor of 3.02). However, the majority of world energy is still
supplied by fossil fuels. As of 2023, renewable energy sources
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have a share of 30.2% in the mix of global electricity generation,
and without hydropower, this corresponds to only 16.0%;2 only
4% of transportation fuels are from renewable energy.3,4 Fossil
combustion also emits around 27 billion tons of CO2 annually,
causing global climate change, and emissions are expected to
increase by 60% in 2030.5 Global energy consumption is
expected to increase by 50% by 2050, with renewables account-
ing for only 25% of the total.

Recent international efforts, such as the COP 28 summit,
aim to accelerate the transition to clean energy, with a goal of
tripling renewable energy capacity to 11 000 GW by 2030.6 Even
though the efforts to increase the share of cleaner energy
technologies, like solar, wind, and biofuels in the energy mix,
have increased significantly in recent years, there seems to be a
long way to go to reach the desired stage. While solar and wind
energy are gaining interest, they are unlikely to meet future
energy demands alone.7 Biomass should also be considered as
a carbon-neutral alternative;8 it especially plays a key role in
developing nations, where it accounts for 38% of energy
consumption,9 primarily for cooking and heating.10

Renewable energy is critical for SDGs, particularly SDG 7
(Affordable and Clean Energy) and SDG 13 (Climate Action).11

While target 7.1 under SDG7 requires ensuring universal access
to energy services, target 7.2 directly states the need for

renewable energy (increase substantially the share of renewable
energy in the global mix), which goes together with energy
efficiency covered in target 7.3 (double the global rate of
improvement in energy efficiency) for a sustainable energy
future. Energy production rate, conversion technology used
and resources utilized may also have impacts on various
other SDGs as energy is one of the main enablers for various
essential human activities like food and clean water produc-
tion, transportation, telecommunication, education, and
healthcare. Indeed, Nerini et al. stated in their perspective
article that 113 targets (out of 169) require a change in the
energy system.12

Although the SDGs and AI/ML seem to be unrelated at first
glance, various works indicate the potential role of ML in
reaching SDGs. To begin with, monitoring, data collection,
and analysis of SDG-related activities at the global level, includ-
ing implementation projects, will be much easier with AI/ML.13

Second, AI/ML can be used for supply/demand forecasting for
goods and energy and improving the effectiveness of planning
and executing the efforts to provide these resources to
the communities in need. Finally, ML has been used extensively
in research and development, including in the fields related
to SDGs, such as renewable energy technologies and storage
systems.
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Our research groups have been collaborating on ML appli-
cations in the research of renewable energy technologies
such as solar cells,14–16 photocatalytic hydrogen production,
CO2 reduction,17,18 algal biofuels19,20 and oleaginous yeast,21

lignocellulosic ethanol, biogas, and biochar production.22–24

We also have a significant amount of ML works in supply/
demand and capacity estimation of renewable energy as well
as beyond Li-ion batteries for future energy storage needs,25–28

which is also critical for achieving SDGs; there is a strong need
for distributed energy storage coupled with solar and wind
energy production in underdeveloped regions of the world,
where the central energy supply may not be practical in
the near future. In this feature article, we have reviewed the
works published in the literature (including ours) and pro-
vided our perspective on the potential contribution of ML
to the achievement of SDGs through renewable energy pro-
cesses. To do that, first we have analyzed the relationships
between SDGs, renewable energy, and ML. Then, we have
reviewed ML applications in solar, wind, and bioenergy tech-
nologies from the SDGs’ perspective, considering that they are
the most commonly researched/investigated renewable energy
technologies in recent years. Finally, we have reviewed ML
applications in rechargeable batteries and discussed their rela-
tionship with SDGs.

2. Basic concepts and critical linkages
2.1. Machine learning basics

ML is the subfield of artificial intelligence that aims to learn
from past data (or other similar events) using statistics and
some algorithms (Fig. 1).23 One can perform various functions
(like clustering, classification, prediction, or association) by
constructing a dataset and selecting appropriate algorithms
for the purpose. For example, k-means clustering is one of the
most common clustering algorithms, while algorithms such as
k-means distribution, decision trees (DTs), artificial neural
networks (ANNs), and support vector machines (SVMs) are used
for classification. The prediction task can be considered as one
of the most frequently performed ML tasks. It can be done
using various algorithms such as ANNs, SVMs, random forest
(RF), and gradient boosting.29 In addition to the basic functions
and algorithms summarized above, some more recent and
effective tools like deep learning algorithms, transfer learning
approach, physics-informed ML, and large language models
have been developed in recent years.

A typical workflow for ML applications is presented in Fig. 2.
In the dataset construction step, the data correlating descriptors
(input variables) and desired performance variables (or outcome)
can be collected from various sources. The pre-processing step

Fig. 1 ML tasks and their popular algorithms (reproduced with permission from Springer, Copyrightr 2024).23
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aims to prepare the data for analysis; the data are formatted in a
machine-readable format, while the incomplete data points have
to be completed or removed from the dataset. The potential
descriptors should also be analyzed in terms of cross-
correlations and redundancy, and their numbers should be
reduced as much as possible (dimensionality reduction) as a
smaller model for a given dataset is more robust.30 For this, the
insignificant descriptors can be eliminated (feature selection),
and/or a new set of descriptors (like principal components) can
be created to replace the original set (feature extraction).31

The model development step starts with the selection of
appropriate algorithms, which is highly dependent on the
objective of analysis and the structure of data. Then, the model
is developed by dividing the dataset as training (to construct
the model) and testing (verification of model performance on
unseen data); often, k-fold cross-validation is implemented for
model building (i.e., to determine the optimal model hyper-
parameters). Then, the model is tested using the testing data to
determine its generalization ability.29

2.2. Machine learning for SDGs

The contribution of ML or artificial intelligence (AI) in general to
SDGs can be analyzed at three levels. First, ML can contribute to
the planning and execution of SDGs directly. As we will summar-
ize below, there are strong correlations among various SDGs, and
the actions needed to achieve most of the goals have to be
planned and implemented by multi-organizational structures over
multi-national geography. Hence, effective coordination of efforts
is critical for success, requiring effective monitoring of activities,
collecting relevant data, and making timely and effective deci-
sions. The data needed are likely to be large and complex due to
the diversity of issues and the size of populations and geography
involved, and such complex data can only be collected using some
automated systems and analyzed using effective tools like ML. For
instance, remote sensing technologies can be used to monitor
and collect data for climate, agriculture and fishing, clean water
resources, pollution of rivers, and mass migrations of humans;32

then the data collected can be analyzed using ML technologies to
assess the current state and develop an effective action plan for
related SDGs.

Indeed, a significant number of works have been published
in SDG-related areas, such as the use of satellite images and ML
or meta-analysis of mobile phones33 to predict poverty, for

remote sensing of agricultural activities,34 and for monitoring
inland water quality.35 Various organizations like the UN
Department of Economic and Social Affairs,36 the Food and
Agricultural Organization,37 the European Space Agency Earth
Observation for Sustainable Development,38 and the Commit-
tee on Earth Observation Satellites39 also provide data that can
be used for the efforts to reach the targets of SDGs. For
instance, Porciello et al.40 argued that ML can be used to speed
up evidence synthesis, which can be defined as the process of
collecting/data information from different sources for decision-
making in a specific area, to support SDGs and reporting a
model for SDG2 (zero hunger).41

Second, ML may directly contribute to the efforts to reach some
of the specific goals and targets. Vinuesa et al. have analyzed the
relationship between AI and SDGs using a consensus-based expert
elicitation process.42 They considered a software technology as AI if
it has at least one of the following capabilities: perception,
decision-making, prediction, automated knowledge extraction
and pattern recognition, interactive communication, and logical
reasoning.42 They found that AI can enable 134 targets across all
SDGs while, interestingly, it can inversely affect 59 targets. AI may
contribute to the building of smart and low-carbon cities through
the range of interconnected technologies, including autonomous
vehicles and smart appliances; however, large computing facilities
required for AI/ML have significant energy consumption and
carbon footprint.43 Nevertheless, the potential contribution of AI
to the well-being of humanity (including achieving SDGs) will still
be well beyond its inverse effects, even though some extra care
should be needed in practical applications.

ML may also be used for specific tasks involving SDG 7
(Affordable and Clean Energy) and SDG 13 (Climate Action),
which are directly related to sustainable energy efforts. Fore-
casting renewable energy supply, optimizing the smart control/
scheduling of energy systems, and accurately modeling emis-
sions are just a few areas where ML can make significant
contributions. As we will extensively discuss the ML applica-
tions in specific energy technologies in the following sections,
we will restrict ourselves to a few cases that are specific to SDG 7
and SDG 13. For example, Marcillo-Delgado et al.44 reported a
case study that used compositional analyses of the electricity
access problems for the most affected areas in the context of
SDG7, while Matenga45 used an ordinal k-means clustering
algorithm to analyze the degree of closeness of an energy
market to achieve SDG 7. Similarly, Li et al.46 analyzed the

Fig. 2 A typical workflow for machine learning analysis.
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energy deprivation for socially disadvantaged groups in India
within the SDG7 framework using machine learning. There
have also been published cases involving SDG13. For example,
Lei et al.47 reported an ML model for the prediction of air
pollution in Macau, China, as an effort to meet SDGs, whereas
Hwang et al.48 used text mining analysis to determine climate
change awareness and its relationship to SDG13 among various
social groups.

Finally, ML is frequently used in the development of new
technologies that will enable SDGs. As we will briefly discuss
below, most of the new renewable energy technologies, espe-
cially solar cells and biofuels, both of which are critical for a
sustainable future, have benefited ML for a long time. For
example, ML has been used in numerous research steps, from
material screening to performance tests and stability studies of
perovskite solar cells,16 which have been among the most
popular research topics in recent years due to their great
potential. Advances in computational power have facilitated
the development of new materials via high throughput screen-
ing, computational chemistry, and physics-based modeling.49

The creation of extensive experimental and computational
databases, such as ICSD,50 Materials Project,51 and NOMAD,52

has accelerated material property prediction and screening.
These databases, together with DFT calculations, provide a
foundation for material research focused on renewable energy
systems. Physics-based models reduce the need for large data-
sets and enhance prediction accuracy by embedding funda-
mental physical principles, making them highly effective for
material screening. For instance, Li et al.53 developed a transfer
learning approach to evaluate the stability of ABX3 inorganic
perovskites as oxygen reduction electrocatalysts in solid oxide
fuel cells. Their physics-informed model used structural and
elemental parameters to predict formation energies, training
on a dataset of 570 known compounds. It was then applied to
forecast formation energies for 578 additional unknown com-
pounds. In this way, 1148 data points were assembled to train a
convolutional neural network for high-throughput screening.

They found 98 stable perovskite structures, which were verified
by DFT calculations. Jyothirmai et al.54 investigated single-atom
metal and nonmetal catalysts for pairing with g-C3N4 to
enhance hydrogen generation efficiency, evaluating various
ML algorithms for predicting the Gibbs free energy of hydrogen
adsorption. In another study, Burns et al.55 screened metal–
organic frameworks (MOF) for CO2 capture, and to support
efficient screening, they developed ML models using standard
adsorption metrics to predict MOF performance under specific
purity and recovery requirements. Numerous reviews explore
the applications of ML in material screening for sustainability
purposes,56 with a focus on specific clean energy domains like
battery materials,57 hydrogen generation photocatalysis,58 and
solar cell materials.59

ML may also have enormous impacts on other SDG-related
technologies ranging from health and pharmaceuticals to new
material design and manufacturing and environmental reme-
diation. We can generalize this further by including the use of
ML in monitoring, control, and optimization of chemical
processes and plants as an indirect way of ML contribution to
SDGs. Indeed, most of such efforts are to improve the efficiency
of the processes to consume less energy and raw materials and
to reduce emissions and waste; the energy and materials saved
after these efforts can be redirected to contribute to the projects
for SDGs while the reduced emissions may allow the use of
fossil fuels over a longer period in less fortunate parts of the
world if it is necessary. Table 1 provides the pros and cons of
common ML algorithms in the field of renewable energy, with a
more extensive list available elsewhere.60

2.3. Renewable energy for SDGs

The use of renewable energy technologies and improving
energy efficiency are the basic ingredients of sustainable energy
as both are among the targets of SDG 7; target 7.2 requires
substantially increasing the share of renewable energy in the
global energy mix, and target 7.3 aims to double the global rate
of improvement in energy efficiency. The link between energy

Table 1 Most frequently employed ML techniques in the renewable energy field

Method Advantages Disadvantages Tasks

Apriori algorithm Simple and easy to implement May require significant time and memory Association rule mining
Centroid based clustering Easy and quick to use, helpful for

exploring and segmenting data
Needs a set number of clusters in advance and
can be affected by starting conditions

Clustering

Hierarchical clustering Effectively manages large datasets Sensitive to outliers and computationally costly Clustering
Logistic regression Easy to interpret and effective with small

datasets
Assumes linear relationships and is limited to
classification tasks

Classification

Decision trees Interpretable, both continuous and
categorical data can be used

Can go to overfitting Classification

Linear regression Easy to apply, quick training Can be used only for linear relationship Estimation
Random forests High accuracy, less likely for overfitting Computationally more costly than decision

trees and challenging to interpret
Estimation, classification

Support vector machines Capable of handling high-dimensional
data and non-linear relationships, with
strong robustness to noise

Computationally costly and requires careful
parameter tuning

Estimation, classification

Artificial neural networks Can capture complex patterns, work with
large datasets, and model non-linear
relationships

Requires large data and can be challenging to
interpret

Estimation, classification
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and SDGs has been investigated by various investigators.12,61,62

For example, the International Council for Science published a
guide for the interactions among SDGs: the four SDGs, SDG 2
(zero hunger), SDG 3 (good health), SDG 7 (clean energy), and
SDG 14 (life below water), were found to be in synergetic inter-
actions with other SDGs. The council identified 316 target-level
interactions (238 positive, 66 negative, and 12 neutral). Although
no basic incompatibility among the SDGs was observed, some
potential constraints and conditionalities were identified, indicat-
ing a need for coordination, management, and appropriate inter-
vention to protect vulnerable groups, promote equity, and manage
the demands for natural resources to balance economic and
social development with environmental concerns. For example,
the chapter of the report devoted to SDG7 stated that distributed
renewable (solar and biogas) energy may make a significant
contribution to the development of rural communities while the
centralized infrastructure (even if they are also possible) may
increase the cost of energy. It also stated in the report that the
energy efficiency target may be considered a ‘win–win’ strategy as
the amount of energy to be saved is equivalent to the amount of
energy that does not need to be produced.

Nerini et al. also reported a work that analyzed interactions
specifically between energy and SDGs, and mapped synergies
and trade-offs using a consensus-based expert elicitation pro-
cess in their perspective article.12 They identified 113 targets,
including target 13.2 (involving climate change) and target 3.9
(involving reducing deaths from pollution), that require
changes in the energy system. They also found evidence show-
ing synergetic interactions between 143 targets and SDG7,
while there were also 43 trade-offs. As affordable, reliable,
and sustainable energy is critical for most of the activities to
ensure human well-being, which is the ultimate goal of SDGs,
energy synergistically interacts with various SDGs and targets
such as raising living standards through the provision of basic
services, including healthcare, education, water, and sanitation
(SDG2–4, 6–7, 9), improved household incomes (SDG8), and
resilient rural and urban livelihoods (SDG1, 11). On the other
hand, they stated that almost all trade-offs arise from the
tension between the urgent action required for human well-
being (ending poverty, providing clean water, food, and energy)
and the careful planning for the efforts to integrate renewable
energy production and energy efficiency.

Finally, we performed a keyword search using the keywords
of sustainable development goal(s) in the ‘‘Energy fuels’’ cate-
gory in the Web of Science (WOS) Database between the years
2014 and 2024 with the words resulting in 123 articles. Then, a
keyword co-occurrence analysis (Fig. 3) was performed using
VOSviewer (version 1.6.20) to observe the most frequently used
keywords and the associations between each of them.63 In the
figure, larger nodes and labels indicate a higher frequency of
keywords, whereas wider and closer connections between
nodes suggest a closer relationship between two keywords or
phrases.64 The co-occurrence plot shows that SDGs are strongly
associated with concepts like environment, climate change
and CO2 emissions as well as the energy transitions; the
apparences of the biomass and bioenergy in plot the are

especially important for the SDGs efforts in developing coun-
tries as the biomass is a domestic and generally abundant
source while the biofuels are quite suitable to substitute fossil
fuels in transportation without significant investment in vehi-
cles and fuel distribution network.

3. Machine learning for energy supply/
demand estimation

ML has been used for the effective planning and managing of
regional and national energy systems for many years, including
energy forecasting, capacity estimation for renewable energy
(like solar or wind energy capacity of regions), optimization,
fault detection, and stability in energy grids, managing battery
systems, and energy trading.61 Among all these functions,
supply/demand forecasting is quite critical for SDGs; it is an
indispensable task for the management of regional or national
energy supply systems (distributed or central) to be effective. As
a first step, the variables influencing energy consumption must
be correctly identified to predict future consumption in a given
country.65 One of the key factors that influence the energy
consumption of a country is its population as the energy
consumption grows with increasing population. This trend
can also be observed for the entire world, as shown in Fig. 4.
The global population has increased from 4.84 billion in 1985
to 8.02 billion in 2023 (multiplied by a factor of 1.65) (Fig. 4a).
During the same period, global gross electricity generation has
increased even more from 9754 TW h in 1985 to 29 479 TW h in
2023 (multiplied by a factor of 3.02) (Fig. 4b).

Another important factor influencing energy consumption is
the wealth of the people living in a country as measured by the
gross domestic product per capita (GDP per capita), which may
also be observed through improvements in the lifestyle of
individuals like an increase in the number of electric equip-
ment and computers owned, an increase in the number of
vehicles used, and heating and cooling devices used to make
the living spaces more comfortable.67,68 Additionally, employ-
ment and inflation rates in a country are two other socio-
economic factors that can affect energy consumption.69 In the
case of high unemployment and high inflation rates, consu-
mers tend to reduce their expenses until they become econom-
ically better.67 Finally, the variables related to climate, such as
temperature, sunshine hours, humidity, precipitation, and
wind speed, have all been shown to influence energy consump-
tion by affecting heating and cooling needs.70

Today, the majority of world energy is still supplied by fossil
fuels, as shown in Fig. 4b. As of 2023, renewable energy sources
have a share of 30.2% in the mix of global electricity generation,
and without hydropower, this corresponds to only 16.0%. In the
case of underdeveloped countries, the total share of renewable
energy is much lower, even though the population in these
countries grows faster.71 Unfortunately, fossil fuel sources are
concentrated in a few countries in the world, resulting in
foreign dependency in many countries.67 Predicting how much
energy these countries will use in the future is a very important
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task in making new deals with exporting countries and creating
long-lasting energy policies and smart strategies like develop-
ing renewable and sustainable energy programs.44

Energy consumption is usually forecasted in three time periods:
short-term (a few hours to a few days), medium-term (a few weeks to
a few months), and long-term (a few months to years),72 and the
number of publications on forecasting energy consumption over
these horizons has increased significantly as reviewed recently.73

Forecasting techniques are classified into two categories: conven-
tional statistical methods (such as trend analysis, end-use analysis,
and econometric approaches) and ML-based methods (such as fuzzy
logic, ANNs, and SVMs), as explained elsewhere.74 To forecast future
energy consumption, the researchers apply a wide range of meth-
odologies, such as multiple linear and nonlinear regression,67,75

autoregressive integrated moving averages,76–79 adaptive-network-
based fuzzy inference systems,80 multivariate adaptive regression
splines,76 and ML-based approaches like ANNs80–88 and SVMs.76,78,88

The literature has expanded in recent years due to the
emergence of deep learning techniques. For instance, Liu

et al. developed a strategy to forecast energy consumption
in buildings using deep reinforcement learning techniques.89

In another example, a deep learning model was developed to
estimate the generation of renewable energy and the demand
for electricity in South Korea.90 On the other hand, Lima et al.
combined deep learning and portfolio theory to predict solar
energy generation, and the strategy was compared to other
significant methods in the literature, such as support vector
regression and ANNs.91

Another area in which ML can contribute is the integration
of various renewable energy technologies to create an efficient
grid. Although most of the energy of the world still comes from
fossil fuels, the use of renewable energy systems has been
increasing, continuously affecting the stability of grid opera-
tions due to the fluctuations in their energy output. Wind
turbines operate only when there is wind, whereas solar panels
generate electricity only when exposed to sunshine, and this
variation is a fundamental challenge for integrating renewable
energy into the grid system. ML can come into the picture at

Fig. 3 Co-occurrence analysis for SDGs and energy/fuels between the years 2014 and 2024. Keywords that appear more than two times are displayed.
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this point to analyze the climatic patterns and predict electricity
generation using renewable energy to balance demand and
consumption.92 Likewise, ML methodologies (such as nested
learning) can be used to improve real-time power consumption
monitoring and energy storage planning in order to maintain a
balance between demand and supply.93 Indeed, a recently
published review paper examined various computational meth-
ods for reducing the impact of renewable energy sources on
power system frequency.94

When a bibliometric analysis is done on the published articles,
the recent trends in energy forecasting can be seen better. For this
purpose, the ‘‘Energy fuels’’ category under the Web of Science
Database was searched for the years between 2014 and 2024 with
the words in the title: ‘‘energy forecast’’ or ‘‘energy prediction’’ or
‘‘energy estimation’’ or ‘‘electricity forecast’’ or ‘‘electricity predic-
tion’’ or ‘‘electricity estimation’’, resulting in 2142 articles. The
co-occurrence networks, which show the connections between
keywords and their frequency of appearance together in publica-
tions, are given in Fig. 5a, where keywords that appear more than
25 times are displayed under different clusters. Additionally, in
Fig. 5b, the keyword ‘‘machine learning’’ is centered, and its
associations are exposed. It is shown that demand and consump-
tion are the most frequent keywords associated with the target
variables, whereas ANNs, deep learning, support vector regres-
sion, and classification are the most frequently used keywords
associated with the methodological pathway for ML.

4. Solar energy

Solar energy, with its vast potential and growing technological
advancements, may play a pivotal role in advancing SDGs. It
can be used for water or space heating, electricity production,
desalination of seawater, as well as water splitting and CO2

reduction solar fuels.95 Water heating is already quite common
and can be easily spread on wider area while the technologies

for water splitting and CO2 reduction are not matured yet;
the biggest contribution to SDGs will likely come from solar
electricity and desalination.

4.1. Solar power generation

4.1.1. Solar power generation technologies. Solar electricity
can be produced using concentrated solar power (CSP) plants
or photovoltaic (PV) systems. In CSP plants, solar radiation is
concentrated in a smaller area of absorbers to collect thermal
energy to produce pressurized vapor and run a turbine for
electricity production. There are various forms of thermal solar
technologies that are usually distinct from the geometrical
structures (such as parabolic troughs, solar towers, and solar
dishes) used to concentrate solar.96 The PV systems, on the
other hand, directly convert solar radiation to electricity using
some semiconducting materials. PV systems are also quite
diverse, including single/multi-crystalline silicon, thin film,
organic/polymeric, dye-sensitized, and perovskite solar cells.97

Although thermal technologies may also have a significant
contribution to world electricity production, they may not be
suitable to meet the targets of SDG7, especially in developing
regions of the world, where small-scale distributed power
generation will likely be more suitable, because they have to
be built and operated on a large scale with high cost and
administrative difficulties. In contrast, PV solar systems can
be produced and installed for any size of application, like a
water pump, an elementary school, a hospital, or an entire
town. Single/multi-crystal silicon solar cells (first generation)
are the dominant design in today’s industry due to their
efficiency and long-term durability. However, in recent decades,
new solar cells have emerged, offering new materials and
technologies to improve efficiency, reduce costs, and expand
the possibilities of solar energy applications. Thin film solar
cells (including the use of silicon as a thin film), dye-sensitized
solar cells, organic solar cells, and perovskite solar cells, which

Fig. 4 Historical data for (a) the growth of world population66 and (b) global electricity generation.2
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use innovative materials to generate electricity more efficiently,
are among the alternatives that have been investigated in recent
years as reviewed by various investigators.98,99

The growth of solar energy use, especially for electricity
production, is impressive. While the total electricity generation
was only 1.2 GW in the year 2000, it reached 1418 GW in the year
2023, as shown in Fig. 6a. Moreover, the total annual electricity
generation was found to be 1630 TW h (corresponding to a share

of 5.5% in the total global electricity generation mix) in 2023, as
indicated in Fig. 6b. Although the African continent receives a
significant amount of solar irradiation, the share of solar power
generation is much lower than that of the other regions.

4.1.2. ML applications in solar power generation. As solar
energy technologies advance, ML may help in overcoming cri-
tical challenges related to efficiency, cost, and scalability. ML
accelerates the development and deployment of solar energy

Fig. 5 Co-occurrence analysis for energy/fuels between the years 2014 and 2024: (a) co-occurrence analysis for energy forecasting and (b) co-
occurrence analysis for ML use in forecasting.
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solutions in a variety of ways, such as increasing efficiency,
lowering costs, enabling large-scale implementation, and advan-
cing complementary technologies like photocatalysis and
desalination.101 A bibliometric analysis over the past 10 years
was conducted to understand the latest trends and emerging
concepts in ML applications within solar energy research. The
literature search was performed using the WOS, with the key-
words (‘‘solar’’) and (‘‘energy’’ or ‘‘utilization’’ or ‘‘systems’’ or
‘‘to fuel’’ or ‘‘fuel’’) and (‘‘machine learning’’ or ‘‘data driven’’). A
total of 2759 articles were identified and analyzed in the Bib-
liometrix package in R.102 The co-occurrence analysis was per-
formed using the Walktrap algorithm103 for clustering, and an
association was applied for normalization using the default
settings of the Biblioshiny function.102

The word cloud of keywords reflects the most frequently
occurring terms in the context of ML applications in solar
energy (Fig. 7a). The size of each word corresponds to its
frequency, with forecasting standing out as the most prominent
keyword, indicating its significance in ML research related to
solar energy. This is followed by PV, which highlights its central
role in the application of ML for solar energy utilization.

In addition to domain-specific keywords, several ML algorithms,
such as ANNs, SVMs, RF, and deep learning, also emerge as
common terms, emphasizing their popularity in this field. In
addition to forecasting, optimization also appears as another task
performed using ML. The co-occurrence diagram shown in Fig. 7b
shows the relationships of major clusters with the frequent key-
words. ANNs and deep learning are the most commonly used ML
techniques in forecasting. For example, Soukeur et al.104 used
ANNs using 39-year historical data to successfully predict daily
solar radiation in Oran and showed that it can be used to ensure
optimal management of solar energy farms. Ledmaoui et al.,105 on
the other hand, compared the performance of ML algorithms for
solar energy production and demonstrated that ANN resulted in
the best predictive power.

ML has been extensively implemented in specific solar
power technologies in a variety of ways. As an example for
CSP, the multiple deep learning models were used to predict
the aggregated CSP energy production in Spain using a variety
of inputs, including top-of-atmosphere irradiance, cloud cover
forecasts, external temperature, and time-related variables such
as the hour of the day and day of the year,106 while a CSP plant

Fig. 6 Historical analysis of solar energy: (a) total installed capacity and (b) total electricity generation.2,100

Fig. 7 Bibliometric analysis of ML in solar energy research: (a) word cloud and (b) co-occurrence network.
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was simulated with ML to reduce the time compared to the
traditional simulation model.107 Pargmann et al.108 introduced
an ML-based differentiable ray tracing approach to accurately
determine mirror imperfections and irradiance profiles;
Narasiah et al., on the other hand, developed an ML model
for the discovery of a cost-efficient dry cooler design, which is
essential for CSP plants.109 As a last example, Pérez-Cutiño et al.
utilized ML to detect broken receiver tubes using data from
unmanned aerial vehicles and sensors from CSP plants.110

ML also has a crucial role in advancing PV technologies,
including silicon-based solar cells; researchers have leveraged ML
models to improve various aspects of silicon solar cell perfor-
mance, including long-term performance predictions, efficiency
optimizations, and manufacturing processes. For example, Lopez-
Flores et al. worked on a model for PV production;111 they used an
artificial neural network model to predict PV plant metrics such as
total profits, water consumption, waste, and emissions, including
production timelines. Nguyen et al., on the other hand, have
predicted the annual energy output of building-integrated PV
systems under realistic environmental conditions using ANN.112

ML models may also analyze sensor data from solar panels to
predict potential failures or efficiency drops before they occur; for
example, Weiqing Li investigated the stiffness degradation in PV
modules using ML and the finite element method.113 Examples of
other ML applications involving silicon-based PV panels can be
found in various review articles published in the literature.114,115

The impact of ML on the new generation systems, like thin
film technologies, dye-sensitized solar cells (DSSCs), organic/
polymeric solar cells (OSCs), and halide perovskite solar cells
(PSCs), is more direct and pronounced; for example, ML
models can predict the optimal combination of materials, such
as perovskites or organic materials, leading to improved light
absorption and energy conversion rates. Indeed, the halide
perovskite solar cells, which have drawn significant attention
in recent years due to their high efficiency and expected low
costs despite their inherent instability, may have the biggest
share in the papers involving ML applications from material
screening to performance prediction. For example, Zhang et al.
focused on utilizing ML to accelerate the identification of small
molecule passivation materials for PSCs, addressing a key
challenge in improving their efficiency using DFT-generated
data,116 and they identified key molecular traits that enhance
passivation performance. They then discovered three new mole-
cules, which were experimentally validated, showing a notable
increase in performance. Our group, on the other hand, analyzed
experimental data collected from the literature to determine the
conditions for high power conversion efficiency,117 stability,118

hysteresis, and reproducibility of PSCs.14 Additionally, we inves-
tigated 2D/3D perovskite structures using eXtreme gradient
boosting (XGBoost), random forest regression, and ANNs.15

There are also various reviews published on ML applications in
perovskite solar cells,119–121 including one of ours.16 Given the
rapid rise in popularity and research on perovskite materials,
there has been a growing need for systematic data management
to make the vast amount of research data more accessible and
usable. In response, Jacobsson et al. developed the Perovskite

Database Project (PDP), which extracts and organizes mean-
ingful device data from peer-reviewed studies on metal-halide
perovskite solar cells.122 The database includes information on
over 42 400 PV devices, with up to 100 parameters per device.

4.2. Solar fuel production

4.2.1. Solar fuel production technologies. Solar energy is
also being used to generate (green) hydrogen, a clean fuel that has
immense potential in sectors such as transportation, industry, and
energy storage. One notable approach is the PV water electrolysis
method, which has shown considerable promise for green hydro-
gen production. Although hydrogen production through water
electrolysis has been known for over 200 years, the efficient use
of electrolyzers still requires significant scientific work.123 Hydro-
gen produced this way has a share in global hydrogen production
of only 4% due to economic and technical difficulties.124 There are
several methodologies related to electrolysis, including alkaline
water electrolysis, anion exchange membrane (AEM) water electro-
lysis, proton exchange membrane (PEM) water electrolysis, and
solid oxide water electrolysis. However, identifying complex rules
or pathways that result in high performance may require optimiz-
ing variables such as support and surface elements, membrane
type, electrolyte type, cathode and anode gas diffusion layers, flow
rate, and temperature.123,125,126

Solar energy can also be used directly to produce hydrogen
through photocatalytic (or photoelectrochemical) systems, in
which solar irradiation is used to generate photoelectron–hole
pairs to be used to split water to hydrogen or reduce CO2 in
the presence of water to generate a variety of solar fuels (such as
hydrogen, CO, methane and methanol); the second process has
the additional benefit of reducing CO2 emission. Although this
technology has not matured yet, it has been investigated
significantly due to its potential to contribute to the efforts toward
sustainable energy in the future. There may be some variation in
the process described above with the use of different reaction
systems like type I, type 2, and z-scheme heterojunctions or when
performing the process in a photoelectrochemical cell. However,
the major challenges remain the same: finding semiconductor(s)
that effectively work under visible light and cocatalyst(s) that will
separate electron–hole pairs effectively before their recombina-
tion. Various semiconductors have been tested for photocatalytic
water splitting and CO2 reduction so far: metal oxides (like TiO2,
ZrO2, CeO2, and ZnO2), perovskites (like NaTaO3 and SrTiO3),127

nitrides (especially g-C3N4), sulfides (like CdS, ZnS, and CuS),128

MOFs129 and halide perovskites.130 Similarly, various cocatalysts
such as noble metals (like Pt, Au, Pd, Ag, Rh), metal/metal oxides
(Cu-based, Ni-based, Cd-based materials), and alloys (like Au/Cu
and Pt/Cu) have been used together with the semiconductors.131

The details of the processes can be found in numerous publica-
tions, including some review articles.132

4.2.2. ML applications in solar fuels. In solar fuel production,
ML is used for material discovery and development, performance
prediction, and optimization of operational conditions. As dis-
cussed in a recent study,133 advanced modeling techniques
and ML-based methodologies can be used to discover the
ideal combination of variables that leads to high performance.
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For instance, Zhao et al. successfully applied dynamic hierarchical
modeling and control to high-temperature PEM electrolyzer cell
systems.134 Furthermore, Mohamed et al. used five different ML
techniques to forecast hydrogen generation rate and density.135

Yin et al., on the other hand, concentrated their study on the uses
of ML approaches in membrane design and discovery.136 As a last
example, Kim et al. focused on developing optimal ML techniques
for understanding the operational features of PEM electrolyzers.137

As far as the photocatalytic and photoelectrochemical systems
are concerned, material screening is a popular area for ML
applications due to the large number of materials with potential
semiconductor properties and the continuous development of new
synthesis methods. For instance, Zhou et al. introduced a novel
ML-driven methodology for the rapid screening of metal oxide
photocatalysts for water splitting.138 Similar to the perovskite
database project mentioned above, Isazawa and Cole created a
Photocatalysis Dataset for water-splitting applications.139 They
developed a dataset of 15 755 records extracted from 47 357 papers,
focusing on water-splitting activity with photocatalysts. Similar
studies were also performed for CO2 reduction. For instance,
Khwaja and Harada used first-principles screening and ML for
high throughput screening of synthesizable, light-absorbing, and
water-stable MOFs for the photoreduction of CO2.140 Performance
prediction, such as estimating product rates (in photocatalysis) or
power conversion efficiencies (in photoelectrochemical systems),
represents another key application of ML in solar hydrogen
production. Liu et al. developed a regression fusion model to
predict the hydrogen production rate for TiO2 photocatalytic water
splitting using ML.141 Our group also used ML for performance
prediction of water splitting in photocatalytic142 and
photoelectrochemical143 systems, as well as CO2 reduction over
metal oxide semiconductors18 and MOFs.17 We also reviewed ML
applications in catalysis and photocatalysis,29 while we concen-
trated only on the perovskite semiconductors in another review.16

4.3. Solar desalination for clean water production

4.3.1. Solar desalination basics. Solar thermal desalination
uses solar energy to heat water and produce steam, which is
then condensed into freshwater. It is energy-efficient and can
be applied on a small scale for rural communities or on a large
scale for cities. Desalination processes can be grouped as
electrochemical, thermal, and membrane-based processes.
Electrochemical methods, such as electrodialysis (ED), use
ion-selective membranes and an electric field to separate ions
from seawater, while thermal systems such as humidification–
dehumidification systems (HDH), multi-effect distillation
(MED), multi-stage flash (MSF), solar still (SS), and solar
chimney (SC) utilize evaporation–condensation cycles to pro-
duce freshwater from saltwater. On the other hand, the
membrane-based processes, comprising reverse osmosis (RO)
and membrane distillation (MD), employ semipermeable mem-
branes that separate water from salt and other impurities.144

These technologies can also be grouped in terms of the way
they use solar energy; some systems, such as HDH, SS, and SC,
use solar energy directly, while others, like solar-powered ED,
MSF, and RO, utilize solar electricity.145

Solar desalination may be one of the critical technologies to
achieve SDGs, especially SDG6 (ensure availability and sustain-
able management of water and sanitation for all); it may
effectively address the global water crisis, which has been
elevated in recent years due to factors like population growth,
pollution of water sources and poor farming. This is particu-
larly crucial in water-scarce regions like Africa and the Middle
East, where access to fresh water is limited, but solar energy is
abundant. Although significant progress has been made in
recent years, and the combined capacity of present desalination
plants worldwide has reached 95 million m3 d�1,144 these
technologies have to develop further and spread to wider
geographies to solve the clean water requirement of the future.

4.3.2. Machine learning in solar desalination. ML may
help to enhance desalination by improving efficiency and energy
consumption through modeling and optimizing the processes;
applications are quite diverse. For example, Salem et al. used a
multilayer perceptron to predict the efficiency of water
desalination.146 Priya et al. used ML for a two-dimensional mate-
rial search for water desalination systems.147 Plasencia et al., on
the other hand, utilized SVMs and DTs for the analysis of reverse
osmosis desalination.148 At the same time, Acevedo et al. employed
the ANNs to predict the permeate output in a gap membrane
distillation (PGMD) module from the operational parameters.149

Karunakaran et al. used various ML algorithms to model and
optimize the forward osmosis (FO) process.150 In another example,
Kandeal et al. predicted the performance of a double slope solar
still (DSSS) using ML algorithms under the climatic conditions of
Egypt.151 Similarly, Wang et al. investigated the hourly perfor-
mance of tubular solar stills.152 While these ML models used data
generated by the investigators themselves, An et al. analyzed the
productivity of a humidification–dehumidification system using
data collected from various sources in the literature.153

5. Wind energy
5.1. Wind power generation

Wind energy, as a renewable energy source, has some advan-
tages, like continuous generation of electricity during the day
and nighttime, less CO2 emissions, and high efficiency. It is
important for achieving SDGs because the wind is free and
widely available around the world. On the other hand, it has
some disadvantages like environmental impact, limited life
expectancy, and variable power output.154 Meteorological and
environmental factors have a significant impact on the instabil-
ity and uncertainty of wind power, which causes challenges to
its integration into electricity generation.

The utilization of wind energy has grown significantly over
the years, with the global installed wind power capacity increas-
ing from 17.0 GW in 2000 to the impressive milestone of 1 TW
in 2023, as displayed in Fig. 8a;100,155 as indicated in Fig. 8b, the
electricity generated by wind turbines reached 2304 TW h
(about a share of 7.8% in the total global electricity generation
mix) in the same year.2 It is observed that wind-based electricity
generation in Asia has grown the most in the past 23 years,
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reaching a capacity of 522.4 MW, followed by Europe
(258.0 MW) and the Americas (214.3 MW) in 2023. Africa is
the last among other regions, which makes the implementation
of sustainable development goals, including wind energy, even
more important for this region.

A bibliometric analysis was also conducted to determine the
general trends in the scientific community for wind power
capacity estimation within the ‘‘Energy fuels’’ category under
the Web of Science Database with the words in the title: ‘‘wind
energy estimation/prediction/forecast’’ or ‘‘wind power estima-
tion/prediction/forecast’’ for the years between 2014 and 2024,
resulting in 988 articles. Accordingly, the keyword co-occurrence
analysis is shown in Fig. 9, where it is displayed that ‘‘speed’’
is the most frequently used keyword surrounded by ‘‘wind
power forecasting’’, ‘‘wind power prediction’’, ‘‘artificial neural
networks’’ and ‘‘optimization’’.

5.2. ML applications in wind power generation

Predicting wind speed and direction is crucial for estimating
wind power to establish renewable energy strategies and orga-
nize and coordinate grid operations.156 Wind speed/power pre-
diction can be classified into four categories based on its time
horizon: very short-term (from a few seconds to 30 minutes
ahead), short-term (from 30 minutes to 48 hours ahead),
medium-term (from 48 hours to one week ahead), and long
term (from 1 week to years ahead).157 Various tools based on
statistics and ML have been used and discussed by different
researchers to predict wind speed or power for these time
horizons.158 Forecasting methods such as auto-regressive mov-
ing average (ARMA), auto-regressive integrated moving average
(ARIMA),159 and discrete-time Markov chain models160 are quite
effective in predicting short- or very short-term wind speeds.
Additionally, as a part of ML techniques, ANNs161,162 have
become widespread for wind power prediction, as well as kernel

ridge regression,163 SVMs,163,164 and deep learning-based
methodologies.165,166

ML can also be used to predict wind speeds in target
locations based on data from neighboring regions where wind
speeds have been measured for many years. For instance, Velo
et al. used ML to predict the wind speed of a target location
using the wind speed and direction data from nearby stations
in Galicia, Spain.167 Similarly, Fadare used ML methods with
geographical variables as descriptors to predict wind speeds in
some target locations in Nigeria.168 Likewise, in one of our
previous studies, we modeled mean monthly wind speed as a
function of several geographical variables, atmospheric vari-
ables, and the month of the year to predict wind speed for some
target locations in the Aegean region of Turkey.169

A wind turbine has several mechanical parts and electrical
equipment that sometimes work under extreme environmental
conditions. Moreover, wind farms are typically located in remote
areas where a wind turbine failure is difficult for a person to
prevent immediately. As a result, some detection sensors are
used to collect data from wind farms, and using these data, it is
possible to monitor wind turbine conditions170 and predict
failure in wind turbines using ML approaches171 so that the
operator can stop the turbine operation to avoid potential
damage.172 On the other hand, false alarms generate unneces-
sary downtime, which results in productivity losses and higher
maintenance expenses. As a result, detecting false alarms is also
one of the most important components in making wind energy
competitive with other energy sources.173,174

Physics-informed ML, which is a novel approach that com-
bines physical rules and ML algorithms to generate models that
are both data-driven and physically consistent, has been popu-
larized recently for condition detection or anomaly detection.175

For instance, Schröder et al. used the transfer learning approach
to detect abnormal behavior in wind turbine sensor data using a

Fig. 8 Historical analysis of wind power: (a) total installed capacity and (b) total electricity generation.2,100
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physics-constrained artificial neural network.176 Similarly, de N
Santos et al. used a similar approach for health monitoring of
wind turbine fatigue using physics-guided learning of neural
networks.177 Perez-Sanjines et al. applied physics-informed deep
learning for fault detection of wind turbine gearboxes.178 Physics-
informed ML can also be used for different purposes in the field
of wind energy. For example, Baisthakur and Fitzgerald estimated
the aerodynamic forces on wind turbine blades using physics-
informed neural networks.179 On the other hand, Wang et al. used
LiDAR (light detection and ranging) data as the data source and
combined the principles of fluid dynamics to build a physics-
informed neural network for observing wind turbine wake
dynamics.180 Cobelli et al. used a similar methodology to model
wind fields in wind farms, specifically for reconstructing the
inflow velocity field of a single wind turbine.181

6. Biofuels

Biofuels, derived from organic biomass, offer a sustainable alter-
native to fossil fuels and align with SDGs (particularly SDG 7 and
SDG 13).182 They play a crucial role in decarbonizing the trans-
portation sector and advancing the net-zero emission goal. How-
ever, the long-term sustainability of biofuels requires addressing
social, environmental, and economic factors, including land use,

feedstock sources, and food security. Balancing these challenges
is essential to maximize the positive impact of biofuels on both
SDGs and the global goal of net-zero emissions. Given the socio-
demographic, political, and technological changes in developing
nations, achieving the SDGs presents a significant challenge.11

Biofuels, particularly those derived from organic waste, can sup-
port integrated biorefineries and energy production while also
contributing to waste management and the circular economy.183

To determine the general trends in the scientific community
and to see the relationship between biofuels and sustainable
development goals, a bibliometric analysis was also conducted
in the WOS database with the words in all fields: ‘‘biofuel/
biomass/bioenergy’’ and ‘‘sustainable development goals/sdg’’
for the years between 2014 and 2024, resulting in 847 articles.
Fig. 10 shows the keyword co-occurrence analysis, where the
‘‘sustainable development goals’’ is in the center, surrounded
by various bioenergy sources and types as well as production
methods like ‘‘biodiesel’’, ‘‘biochar’’, ‘‘microalgae’’, ‘‘pyroly-
sis’’, and ‘‘anaerobic digestion’’ together with the words related
to the environment like ‘‘CO2 emission’’, ‘‘climate change’’, etc.

6.1. Biofuel technologies

6.1.1. Biomass sources. Biomass is used in both non-
energy (e.g., biomaterials, chemicals) and energy applications,

Fig. 9 Co-occurrence analysis for wind power capacity estimation. Keywords that appear more than 25 times are displayed.
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including traditional and sustainable fuel production, by using
various conversion techniques to produce biofuel.184 In developing
regions, biomass remains a key energy source for households and
industries, while its potential in the global energy transition is also
growing.185 Biofuels derived from biomass, such as bio-hydrogen,
biogas, and biodiesel, offer a promising pathway for sustainable
energy.186 However, competition with food crops for arable land
remains a challenge. First-generation biofuels use edible biomass
such as seeds, grains, and sugars, while second-generation bio-
fuels utilize lignocellulosic feedstocks and waste materials. Third-
generation biofuels, which employ high-lipid microorganisms like
microalgae, provide additional benefits such as carbon sequestra-
tion and water treatment while requiring less land and offering
high productivity.184 Currently, the technology for third-generation
biofuels has not yet reached maturity. High-yield strains of bacteria
and microalgae have been identified, and the technology for
transesterification has improved significantly. Though these bio-
fuels have shown promise, commercial scalability remains limited
due to the lack of supply chain standardization.186

As a major representative of second-generation biofuel feed-
stock, lignocellulosic feedstocks, such as agricultural residues,
forestry waste, and energy crops, offer several advantages.187

These biomass sources are abundant, renewable, and low-cost,

providing a consistent supply for biofuel production.187 Utilizing
waste biomass supports rural economies by creating new markets
for agricultural waste and aligns with circular economy principles
by repurposing materials, increasing resource efficiency, and
reducing environmental impact. As a major representative of
third-generation biofuel feedstock, microalgae is a promising
renewable resource for bioenergy production due to its high
oil content and various biomolecules, including lipids, proteins,
and carbohydrates; it is produced via photosynthesis, using
carbon dioxide and nutrients like nitrogen, potassium, and
phosphorus.188 It offers advantages such as requiring minimal
arable land and having high biomass productivity; it can be grown
in various environments, including open raceway ponds. Its high
lipid content, ranging from 20% to 50%, makes it suitable for
biofuel production, particularly for transportation fuels.

Interest in co-producing commodity and perennial bio-
energy crops is growing due to their agricultural and environ-
mental benefits. One key factor is the use of marginal lands
(areas with suboptimal conditions for commodity crops or
high susceptibility to environmental degradation) for bioenergy
crop cultivation. Targeting these lands with advanced, high-
yielding bioenergy crops can promote sustainable biofuel pro-
duction while enhancing ecosystem services. This approach

Fig. 10 Co-occurrence analysis for SDGs and biofuels from 2014 to 2024. Keywords that appear more than 25 times are displayed.
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also addresses concerns about indirect land use change, which is
a significant issue in large-scale biomass production.189 Mar-
ginal lands, as defined by the FAO and others, are those with
limited agricultural potential, requiring additional inputs but
offering negligible returns. These lands include fallow or idle
plots, abandoned farmlands, barren lands with hostile condi-
tions (e.g., high salinity, aridity), grasslands, shrublands, and
contaminated sites. Utilizing these areas for bioenergy crops like
microalgae or lignocellulosic biomass reduces competition with
food resources and conserves freshwater supplies.190

6.1.2. Biofuels. The development of biofuels, primarily
ethanol and biodiesel, has gained significant attention as a
means to combat climate change and meet emission reduction
targets, and their technological maturity level has reached a
certain limit.191 Also, as global demand for diesel and biodiesel
rises, the by-products of biodiesel production, such as crude
glycerol, offer valuable opportunities for producing hydrogen,
ethanol, and other biochemicals.192,193 There are other biofuels
that may be produced with different forms and properties, and
used for different purposes. For example, biochar, produced
through slow pyrolysis of biomass, has gained attention for its
potential applications like carbon sequestration, soil amend-
ment, and wastewater treatment in addition to its traditional
role as fuel.11 Similarly, pellets, another solid biofuel with high
heating value and low moisture content, are valued for their low
storage costs and high combustion efficiency.194 Biohydrogen,
a promising carbon-neutral energy carrier, is produced bio-
logically through methods such as microbial electrolysis, dark
fermentation, and biophotolysis.195 The yield and quality of
biofuels strongly depend on several factors, including feedstock
type, reaction conditions, and the use of catalysts.184

6.2. Machine learning for biofuels

The use of ML for biofuels, with the perspective of achieving
SDGs, can be evaluated using the following four critical
research areas: (i) optimum use of lands, (ii) developing low-
investment solid biofuels, (iii) improving the performance of
mature biofuels like biodiesel and bioethanol, and (iv)
the development of new biofuel technologies. The first area
(optimum land use) involves the identification of potential land
for biomass cultivation, particularly focusing on sustainable
sources like lignocellulosic feedstock and microalgae. As an
example, Ching et al. developed early prediction models for
Spirulina platensis biomass yield, achieving good results
with ridge regression.186 Similarly, Igou et al. applied deep
learning to predict open raceway pond microalgal productivity
using sensor data.196 Chen et al., on the other hand, assessed
marginal lands for microalgae cultivation, using GBM to pre-
dict biomass production potential. Their study identified over
7.37 million km2 of suitable land for biofuel cultivation, with
marginal land areas concentrated in equatorial regions.190

As the second area, the solid biofuels, such as bio-briquettes
and pellets, which offer an affordable energy solution with low
investment costs, especially for developing regions of the world,
were investigated. For example, Bamisaye et al. used adaptive
neuro-fuzzy inference system (ANFIS) models to predict the

calorific value and fixed carbon content of bio-briquettes made
from waste biomass,197 whereas Mancini et al. predicted pellet
quality using various ML models. Naive Bayes achieved the best
results for classifying pellet samples based on ash content, with
recall values as high as 0.92 for low-ash samples.194 Shafizadeh
characterized hydrochar from lignocellulosic biomass, sewage
sludge, and other waste materials using DTR models, finding
that ash and carbon content, along with operating temperature,
are key factors in hydrochar production.198

The third area involves the issues related to the more effective
use of mature biofuel technologies (biodiesel and bioethanol).
For example, Wong et al. used an extreme learning machine to
predict engine performance when running on ethanol.199 Kale
et al. investigated the optimization of homogeneous charge
compression ignited engines using biofuel blends; SVMs were
employed to model fuel parameters, showing that energy content
and cooling potential are the most influential for predicting
engine characteristics.200 Luna et al., on the other hand, pre-
dicted cold filter plugging points and kinematic viscosity in
biodiesel blends using ridge regression and AutoML, achieving
predictive accuracy close to experimental error.201 Aghbashlo
et al. developed models to optimize the exergetic performance of
diesel engines using biofuel-diesel blends.202

Finally, the ML research focuses on optimizing key process
parameters for better prediction and control of yields in new
technologies. For example, Khandelwal et al. applied ML
models like XGB and CatBoost to predict gas yields from
supercritical water gasification of lignocellulosic biomass,6

while Djandja et al. developed models to predict bio-oil yields
in solvothermal liquefaction, identifying biomass conversion as
a crucial intermediate step.3 In another example, Yang et al., on
the other hand, explored microwave pyrolysis with various ML
models, where GBR and RF showed promising results. Our
group also investigated the use of algal biofuels, oleaginous
yeast, and lignocellulosic materials.19–21,203

7. Batteries for energy storage

Developing high-capacity and low-cost batteries is also critical
for achieving SDG 7 and its targets mainly because electroche-
mical energy storage systems are highly efficient, directly con-
verting chemical energy into electrical energy in a single step.
Moreover, these systems can be designed specifically according
to the need at the required location and capacity and would
be suitable for indoor or outdoor operations; such flexibility
would be especially vital in developing regions of the world,
where the central power generation and distribution network is
not sufficient. Another evident impact of the development of
high-performance, affordable rechargeable batteries would be
on SDG 13: Climate Action. Yet, there are less apparent relation-
ships between rechargeable batteries and the other SDGs. For
instance, Hannan et al. conducted a comprehensive study on
the connection between battery energy storage systems and the
SDGs and proposed that batteries positively affect the success
of 60 targets (35.5%).204
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Recent research trends in the development of rechargeable
batteries are critically linked to several SDGs. For instance, the use
of earth-abundant and geography-independent active materials,
the improvement in the battery manufacturing and recycling
methods that are more environmentally friendly and cost-
effective, the development of battery systems suitable for second-
ary use, and the design of hybrid renewable energy storage systems
combining different energy generation and storage systems will
have a crucial influence on the success of not only SDG7 and
SDG13 but also SDG 3 (good health and well-being), SDG 6 (clean
water and sanitation), SDG 8 (decent work and economic growth),
SDG 9 (industry, innovation, and infrastructure), SDG 11 (sustain-
able cities and communities), SDG 12 (responsible consumption
and production), SDG 14 (life below water), SDG 15 (life on land),
and SDG 16 (peace, justice, and strong institutions). ML plays a key
role in all of these research approaches.

To determine the general trends in the scientific community
and to see the relationship between batteries and SDGs, a biblio-
metric analysis was conducted under the WOS Database with the
words in all fields: ‘‘battery’’ and ‘‘sustainable development goals/
sdg’’ for the years between 2014 and 2024, resulting in 203
articles. Fig. 11 shows the keyword co-occurrence analysis, where
the ‘‘sustainable development goals’’ is in the center, surrounded
by various keywords such as ‘‘lithium-ion batteries’’, ‘‘energy
storage’’, ‘‘life cycle assessment’’, ‘‘circular economy’’, etc.

7.1. Li-ion batteries

Currently, the Li-ion technology, with its specific energy of up
to 170–250 W h kg�1 and cycle life of up to 3000 cycles,

dominates the market for mobile and stationary energy
storage solutions. In addition, Li-ion batteries have high vol-
tages (3.05–4.2 V), high specific power (200–1000 W kg�1), and
low self-discharge rates (less than 10% per month), making
these batteries highly attractive. In parallel, researchers con-
tinue to work on developing Li-ion batteries with better perfor-
mances for the completely electrified future.205 The current
research areas typically focus on the main components of the
batteries: the positive and the negative electrodes where rever-
sible electrochemical reactions take place, electrolytes for ionic
transport, and separators for the electrical isolation of the
electrodes.

The anodes of Li-ion batteries can be inspected under
three categories: insertion, conversion, and alloying materials.
Graphite, with a theoretical capacity of 372 mA h g�1, belongs
to the insertion-type anode family and became very popular
due to its high electrochemical stability and cost-effective
easy production. TiO2-based anodes are other intercalation-
type anodes showing high cycle life and fast kinetics;206

other intercalation-type anodes, including transition-metal oxi-
des, nitrides, and phosphides, are not as common despite
having high capacity and capacity retention due to their low
voltages.207 Finally, alloying-type anodes were developed to
reduce the side effects of pure lithium metal compared to
alloyed metals. Silicon anodes are also a hot topic in the Li-
ion battery literature as they are environmentally friendly and
abundant in nature with capacities higher than 4200 mA h g�1.
However, the silicon anodes have significant volume expansion
problems and thus are not commercialized yet.208

Fig. 11 Co-occurrence analysis for SDGs and batteries from 2014 to 2024. Keywords that appear more than 25 times are displayed.
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The material choice is also critical for the positive electrodes to
improve cell potential, thus increasing the specific power and
power densities, surpassing the cycle life, and diminishing the cell
cost. However, there is no perfect cathode material for every
application of Li-ion batteries yet. Layered transition metal oxides,
spinels, olivines, and phosphate-based materials are the main
materials at the focus. One of the biggest advantages of layered
transition metal oxides is the easy transport of Li ions in their
layered structures in the 2-dimensional space. The lithium metal
oxides, LiMO2, are formed using various metal/metals, mainly
cobalt, manganese, and nickel, with different ratios. The first
commercialized cathode material, LiCoO2, belongs to this family.
Although the oxides LiNiO2 and LiMnO2 are also options, the
mixed oxides show optimum solutions for the shortcomings of
single oxides for Li-ion batteries. LiNixCo1–2xMnxO2 is currently
one of the most preferred cathode chemistries209 where Ni
increases the voltage and capacity, while Mn and Co are respon-
sible for improving the cycle life and rate capability of the
batteries.210 Another popular cathode chemistry belongs to the
phosphate family: lithium–iron–phosphate, LiFePO4. Although
NMC has the largest market share, the LFP cathodes also gained
popularity due to their longer cycle life and safer nature. In
addition, they do not contain rare metals such as cobalt.211

Though not an active material, electrolytes of Li-ion batteries
also play a crucial role in the realization of the full potential of
the electrodes in terms of electrochemical reactions, stability,
cycle life, and safety aspects.212 Hence, electrolyte development
is also widely investigated in the literature. The liquid electro-
lytes of Li-ion batteries contain various kinds of solvents and
several additives. Typically, the non-aqueous solvents, namely
ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl
carbonate (EMC), and diethyl carbonate (DEC), are used with
tetrafluoroborate (LiBF4), hexafluorophosphate (LiPF6) and

perchlorate (LiClO4) lithium salts.213 Several thousand additives
from diverse chemistries have been utilized in Li-ion batteries.212

Meanwhile, solid-state electrolytes (SSE) have also been widely
investigated in the literature as they are believed to be the future
of Li-ion batteries, and that is why we classified these batteries as
beyond Li-ion batteries (discussed next).214

7.2. Beyond Li-ion batteries

Although not commercialized yet, new chemistries, so-called
beyond Li-ion batteries, are also widely investigated to find
alternatives with less ecological fingerprints and without supply
chain problems. In this regard, both charge carrier anodes
(Na, K, Zn, and Mg), new cathodes (S and O2), and SSEs were
studied. In our recent review article, we analyzed the literature
trends and performed a bibliometric analysis with the help of
text mining to see the trends beyond Li-ion batteries.215 The
results showed that Li–S and Na-ion batteries have been the
most popular battery chemistries for almost 15 years. This is
followed by Zn-based batteries (Zn–air and Zn-ion), Li–air, and
finally K-ion batteries. These batteries are still in the develop-
ment stage since they all have various problems. Although the
cell requirements, hence the answers to the questions shown in
Fig. 12, may change depending on the application, none of the
new chemistries has replaced the Li-ion batteries yet and
reached the desired performances in terms of energy density,
power capability, and cycle life set by the customers for a
completely sustainable future.

Members of metal-ion batteries, both mono- and multi-
valent batteries, work similarly as all of them have the rocking
chair mechanisms where a single ion transfers between the two
electrodes.216 The most popular univalent chemistries are
sodium- and potassium-ion batteries, and the biggest advan-
tages of these metals are their low cost and natural abundance.

Fig. 12 The basic variables involved in the battery cells (reproduced with permission from Wiley, Copyrightr 2022).215
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However, due to the change in the ion size of Na+ (B1.02 Å) and
K+ (B1.38 Å) compared to Li+ (B0.76 Å), special materials
should be designed specifically with large internal spaces for
these new chemistries.216 In addition, multivalent metals, due to
the multi-ion transfer, have much higher theoretical capacities.
Zn-ion batteries are among the most popular battery chemis-
tries, but they also face Zn metal stability problems and limited
available positive electrode materials.217 In this respect, as seen
from the keyword analysis of the beyond Li-ion literature, given
in Fig. 13, electrode designs are the top priority for metal-ion
batteries. On the other hand, conversion chemistries, such as
Li–S, Zn– and Li–air batteries, have attracted attention recently
due to their high specific energy. The polysulfide shuttle mecha-
nism, the insulating nature of sulfur, and volume expansions
during cycling are the main obstacles of metal-sulfur batteries.

The metal-air battery problems are also associated with positive
electrodes, where oxygen redox reactions are problematic.218

Hence, the cathode and electrolyte design are found to be at
the heart of research areas.

Furthermore, keyword analysis showed that graphene and
carbon are the most frequently found materials, especially in
the form of nanotubes and nanosheets, indicating that most of
these batteries show a potential direction in new material
selection and adaptation. On the other hand, aqueous electro-
lytes and metal oxides are found to be promising, given that
only successful results are published in academia. Meanwhile,
the high repetition of electrocatalyst and reduction keywords
shows the problems faced due to the electrochemical reactions
for metal–air batteries. Similarly, composite and polysulfide
keywords show the polysulfide shuttle mechanism effect, which

Fig. 13 The single-word keyword analysis for beyond Li-ion batteries (a)–(f) and the word associations with carbon (g) and graphene (h) (reproduced
with permission from Wiley, Copyrightr 2022).215
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is the main problem of the sulfur cathodes in Li–S batteries.
The text mining analysis also shows the significance of data
and data tools in quickly gaining insights into the subject. With
better tools such as ML, the exploration of batteries and battery
materials can be accelerated.

7.3. ML applications in battery systems

ML is used in the battery field for material screening and
property and performance predictions. With ML, structure–
property–performance linkage can be found easily, which short-
ens the path to discovering novel materials. In order to do that,
datasets obtained by in-house experiments, computational
calculations, or the collection of literature findings are utilized.
Our experience with these strategies has been successful in
applications beyond Li-ion batteries.25,26,28 In parallel to our
studies, ML applications have also been widely used in the
recent years in battery literature.215

The application of ML in Li-ion batteries is mainly focused
on state-of-charge (SoC) and state-of-health (SoH) predictions
with real-time data monitoring in real devices; given the
maturity of the battery chemistry, no beyond Li-ion chemistry
is at that stage yet.219 Typically, the voltage, current, and
temperature data of the cells have been used as the inputs to
predict the SoC and SoH outputs.220,221 On the other hand, ML
techniques have also been used to advance Li-ion battery
materials and manufacturing processes. In these works, the
data are generally obtained from density functional theory
(DFT) calculations in addition to some experimental studies
where various parameters are predicted. For electrodes, the
voltages of various materials and discharge capacities were
predicted.222,223 Similarly, the predictions of redox potentials
of electrolyte additives,224 as well as refractive indexes and
viscosities of ionic liquids,223 were also performed. In addition,
aqueous electrolyte optimization was deployed using ML.225 In
another interesting work, image analysis was performed using
DTs to detect the surface defects of separators used in Li-ion
batteries.226

ML has also been used for various purposes beyond Li-ion
batteries. In our group, ML applications in Li–S, Li–air, and Na-
ion batteries were performed successfully.25–27 For instance,
Kilic et al. reported promising materials and material types to
attain high-capacity Li–S batteries using the association rule
mining technique.26 In the following work, the analysis was
narrowed down to the batteries using ionic liquid electrolytes to
find the ionic liquid types to be used in the electrolytes of Li–S
batteries, leading to an increase in specific energy.27 Recently,
the ionic liquid electrolytes were further investigated by a
database that included ionic liquid properties obtained from
computational calculations to identify the suitable anion–
cation families. There are also various works by the other
groups related to material development for uni- and multi-
valent metal-ion batteries and metal-air batteries.227,228 In a
valuable work performed by Joshi et al., a web page was
developed to give an interphase that can easily calculate the
voltages of various materials as the electrodes for Na- and K-ion

batteries with a dataset containing 3977 data points with 80
features obtained from the Materials Project.229

SSEs are important for all battery chemistries, including Li-ion
chemistry, since liquid electrolytes increase safety concerns. In
addition, with SSEs, high-power and high specific energy batteries
are possible. Hence, SSEs have been widely investigated in both
battery literature and the industry to replace the liquid electrolytes
of Li-ion batteries.230 With the growth of big data and increased
computational power, the fast screening of promising SSE materials
has become one of the favorite tools as it is cheaper and takes less
time compared to the traditional trial-and-error procedure. In
addition, ML is also used to elaborate on the structure–activity
relationships in SSEs. The DFT method is defined as an ideal
method to calculate microscopic atomic-scale features, whereas
high throughput screening is found to be useful in increasing the
material space for the investigation of SSEs. Furthermore, the
combination of ML with DFT eliminates the downsides of DFT
with statistical learning algorithms.231 For example, the adoption of
ML and DFT provided 130 promising materials based on ionic
conductivity for SSE applications, and maximum packing efficiency
and volume per atom are some of the most important features.232

Similar works focused on the ionic conductivity of the solid
membranes include predictions of polymers,233 ternary crystals,234

and ceramics, as well as classification of LLZO materials.235 The
mechanical property predictions236 were also conducted for Li-ion
transfer. Hence, the findings of these studies can be used for any
batteries that use lithium-ion as the charge career. There are also
works related to Na-ion conducting membranes.237 In addition,
clustering analyses were performed for Raman maps of polymer
materials using k-means algorithms.238

To sum up, ML is widely used in the development of both Li-
ion and beyond Li-ion batteries and probably will be used to a
greater extent in the future. However, it should be noted that
although ML is a very helpful tool, it also has some limitations.
Although we greatly improved in creating large databases, these
still need to be improved. Databases with relevant features
and corresponding performance values are very much desired.
However, creating these databases using computational tools
such as electrochemical modeling is more straightforward
since experimenting with these many batteries is time- and
resource-consuming. Still, experiments can be performed to
validate the results found by ML algorithms. Also, the ML
models should be carefully selected to create generalizable
models that correctly direct the research to promising materials
with the available data to create a more sustainable future.

8. Future perspective
8.1. Challenges and opportunities for SDGs in general

As stated in the 2022 progress report by the UN, the defining
principle behind SDGs is ‘‘leave no one behind’’.239 Are we in
that position now, after 60% of the time was spent and just six
years away from the deadline? According to the same report, we
are far from the desired state despite some progress. The report
issued in 2023 also shows similar results from a different
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perspective.240 If we look at SDG 7 in more detail, the 2023
report states that, although more people have access to elec-
tricity in 2021 compared to 2015, the gap is still too large to
close for the developing regions. For example, in Sub-Saharan
Africa, only 50% of people have access to electricity compared
to 39% in 2015, which may be considered significant progress;
however, the bottom line is half of the people do not have
electricity yet. According to the 2023 report, the international
flow of finance to developing countries for renewables was also
declining.

Acting together as an entire planet and reaching SDGs,
requiring that more efforts should be spent by the developed
countries for the benefit of developing countries, was probably
always challenging (possibly such efforts were not even tried
before). Unfortunately, new challenges were added after 2015,
making the situation worse. The first big setback came with the
COVID-19 pandemic; the shortage of goods and services,
including vaccines, affected those who already have difficulties
in meeting those needs. The COVID-19 pandemic also seems to
weaken the solidarity among the countries as each one entered
into a survival mode. Then, the Russia–Ukraine war began
(or escalated to the current state) in February 2022, worsening
the worldwide food and energy supplies, both of which are
critical for SDGs, as both countries are among the major wheat
exporters while Russia is also a major energy supplier (espe-
cially natural gas for Europe). The political problems around
the world, including those in the energy-rich Middle East,
indicate that, unfortunately, the conditions may not improve
to favor SDGs in the near future.

On the other hand, there are also opportunities to realize
SDGs; the biggest one is the 2030 Agenda for Sustainable
Development itself. Even if the specific targets of SDGs may
not be reached by 2030, the efforts will likely continue to
increase the awareness of the need for a more sustainable
world, publicize the demands in this direction, and obtain
the contribution of people, organizations, and governments
through ever-growing means of worldwide communications.

As a result of the continuously increasing frequency of
recorded temperature, drought, flooding, and other climatic
events, global warming has become visible to even the most
skeptical eyes in recent years. Although it is far from being
called an opportunity, it may increase the awareness of the
need for sustainability, including SDGs; for instance, the need
for renewable energy could not be more apparent as energy is
one of the main causes of global warming while it is also
indispensable for many human activities.241

8.2. Challenges and opportunities for solar energy

Solar energy technologies like photovoltaics, concentrated solar
power, solar desalination, and photocatalysis each present
unique challenges and opportunities for advancing sustainable
development. The initial investment in solar infrastructure is
relatively high, which can hinder widespread adoption, parti-
cularly in developing regions.221 In addition to the cost, solar
power generation is highly dependent on weather conditions,
creating a challenge for a consistent energy supply; the

fluctuations make the integration harder. Most solar technol-
ogies require large land areas or the mining of rare minerals,
which generates some social and environmental impact.242

Despite its downsides, however, solar energy seems to be
indispensable for a sustainable future, especially in less devel-
oped regions of the world.

CSP, despite being more capital-intensive and geographically
constrained, offers advantages in large-scale energy production
and storage, providing stable, utility-scale power solutions.243 PV
systems, on the other hand, are more versatile and scalable (from
small-scale residential setups to large commercial solar farms),
providing flexibility in application depending on the energy needs
and availability of resources. They also support the development
of decentralized energy systems, which can increase energy
security, reduce transmission losses, and make energy production
more resilient to disruptions. The current challenges related to
efficiency limitations, concerns over material availability, and
waste management may be overcome with new innovations in
materials (like perovskites) and cell manufacturing.244

As far as solar fuel production is concerned, green hydrogen
production using electrolyzes powered by solar electricity will
likely be significant in the near future as the growth of current
market share indicates;245 developments in both electrolyzer
and solar technologies will contribute to the much wider
adaptation of solar electrolyzers. The photocatalytic and photo-
electrochemical processes, on the other hand, are still far from
making significant contributions to solar fuel production, even
though they also seem to hold transformative potential for the
long-term future.

Solar desalination, while promising for water-scarce regions,
also has challenges related to high energy requirements and the
slow pace of water purification compared to conventional desalina-
tion technologies. Additionally, the upfront costs of installing solar
desalination plants can be prohibitive. However, harnessing solar
energy to desalinate seawater offers a renewable, low-emission
solution for producing fresh water, which is crucial for maintaining
water security in rural regions. The integration of solar desalination
plants with renewable energy sources or solar energy sources such
as CSP or PV can decrease energy requirements and create eco-
nomic benefits.246 By overcoming these challenges through tech-
nological innovation, cost reduction, and supportive policies, these
solar technologies hold immense potential to advance global
sustainability goals, particularly in regions where energy and water
access are critical issues, such as Africa.

8.3. Challenges and opportunities for wind energy

There are numerous opportunities for the expansion of wind
energy installations, like boosting regional economies by creating
job opportunities in manufacturing, construction, repair, and
operation, as well as improving the national energy mix by
introducing a clean, renewable energy source.247 On the other
hand, there are several challenges as well. For instance, to harness
wind energy efficiently, the wind pattern of the target location is
very important. Environmental and geographical elements cause
significant local changes in wind speed and direction;248 hence, a
good site must be selected having a stable and high wind speed
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throughout the year. In addition to high average wind speed, a
wind farm must be built in a location sufficiently far from the
noise-sensitive human population, with a site that does not affect
the lives of wildlife or block the air traffic route.249 As a result of
these issues, optimal wind sites are frequently in remote loca-
tions, sometimes on the top of a distant hill, creating installation
challenges such as the transportation of large-scale equipment
and other construction materials. Moreover, those remote loca-
tions can be out of the range of the national grid system. Hence,
the national grid network must be upgraded to connect wind-rich
areas with population centers that require electricity.

Although the wind potential of Africa is estimated to be
around 10 600 TW h (with an average wind speed of 5.1 m s�1 at
an altitude of 10 m), wind energy remains underexploited
despite the growing energy demand.250 This is because of
policy-related issues (most African countries lack policies pro-
moting wind energy) and several technical issues like the inte-
gration of a fluctuating wind energy generation with the
outdated national energy grids, as well as economic issues like
the operational expenses, the cost of wind energy equipment,
and the cost services given to the industry.251 To overcome these
issues, strong policy frameworks are required in African coun-
tries, such as providing tax reduction or long-term credit oppor-
tunities for investors, as well as encouraging local producers to
manufacture expensive equipment to localize value chains.

8.4. Challenges and opportunities for biofuels

A key challenge with first-generation biofuels is their competi-
tion with food crops for arable land. This challenge has
diminished with the use of second-generation biofuels, which
use waste materials, and third-generation biofuels, which rely
on high-lipid microorganisms like microalgae. However,
despite their advantages, like carbon sequestration and mini-
mal land use, more technological advancements are needed to
reach the commercialization of these biofuels.

Various biofuels are produced with various conversion
methods using a large variety of biomass sources. The applica-
tion of ML to those fields is vastly explored. From a general
point of view, it can be said that ML models are more successful
in thermochemical conversion.252 This success is largely due to
the relative ease of combining data from diverse experimental
studies, creating robust datasets suitable for ML model training.
In contrast, biological conversion methods present challenges due
to the heterogeneity of input variables across different experi-
ments. Integrating datasets from multiple studies often requires
extensive preprocessing and meticulous data curation, leading
most research to rely on single-study data for model development,
which limits the generalizability of these models.203

Variability between different biomass sources also creates
challenges for the generalization of ML models. Early ML models
mainly focused on single biomass types; however, with the
growing interest in coprocessing and co-cultivating multiple
biomass feedstocks (and even incorporating other materials like
plastics), research has shifted towards developing ML models
that can accommodate mixed biomass sources.20 Advanced ML
techniques, along with the incorporation of variables related to

biomass characteristics, have facilitated this transition, yielding
promising results. For instance, variability in feedstock compo-
sition of different lignocellulosic biomass is mitigated through
variables like proximate and elemental analyses, which are
consistently pivotal in model development;23 on the other hand,
however, achieving a generalizable model remains a significant
challenge, particularly in biodiesel production from sources like
microalgae and other oleaginous microorganisms, where feed-
stock variability continues to hinder model reliability.

The economics of biofuels plays a critical role in achieving
SDGs; hence, identifying promising biomass feedstock and pro-
cesses that can maximize the production of desired/needed bio-
fuels while minimizing costs and meeting quality specifications is
a critical task. However, both feedstock and biofuel needs, as well
as financial resources for investment, are different for different
regions of the world due to the differences in climate conditions
and living standards. This will impose an additional challenge in
generalizing the experience gained in biofuels, including ML
applications, to the entire planet. On the other hand, ML may
also offer valuable assistance in identifying the optimal biomass-
to-biofuel conversion routes and optimizing them for specific
areas. This complex challenge requires a multi-disciplinary/
multi-organizational approach in which ML can help navigate
the vast solution space efficiently using the data, experience, and
expertise in various disciplines and organizations.

8.5. Challenges and opportunities for batteries

If we center particularly on the advancement of rechargeable
batteries, several critical concerns must be focused on to
succeed in the SDGs. The first concern is related to raw material
extraction and processing. Li-ion chemistries typically contain
raw materials such as lithium, cobalt, manganese, nickel,
copper, aluminum, and fluorine. Yet, there are several issues
with the extraction and processing of these raw materials. For
instance, the recovery of Li metal from mineral deposits is
highly energy intensive as it involves high temperatures, high
carbon emissions, and the evolution of acidic liquid effluents.
Similarly, the recovery of Li metal from brines may lead to the
sharing of limited water sources. Co, Ni, Mn, Cu, and Al mining
is similarly energy-intensive, all producing water pollution. In
addition to the environmental impacts, Co mining is associated
with human rights issues. On top of these, currently, these
materials travel up to 50 000 miles from the mine to the final
consumer. Sustainability needs to be prioritized to localize the
supply chain. For instance, the use of earth-abundant active
materials in developing next-generation batteries should be
highlighted. Recent approaches in the Li-ion battery literature
focus on developing Ni-rich cathodes to decrease the amount of
Co within the compound or advance LFP cathodes that do not
contain nickel or cobalt. Moreover, research beyond Li-ion
battery chemistries has accelerated the development of metal-
ion batteries, in which Li is substituted by a more abundant
element such as Na, Mg, Al, or Zn, the replacement of metal
oxide cathodes with sulfur or oxygen ones, the search for solid-
state electrolytes that are less volatile and less toxic to the
environment, and the investigation of anode-less batteries.253
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The second challenge concerns battery manufacturing: even
disregarding raw material mining and refining, 30–55 kW h of
energy is required to create a 1 kW h Li-ion battery.253 Subse-
quently, battery manufacturing should be revised to promote
sustainability. The most urgent issue in the short term would
be the development of the dry electrode coating process.
Currently, NMP solvent is used to prepare the electrode slurry.
But NMP is highly toxic, and the evaporation and following
recovery of NMP is one of the most significant energy users in a
plant. Subsequently, switching to a dry coating process could
significantly reduce carbon footprint and cost and lower energy
consumption. Furthermore, optimized charging protocols with
shorter and more energy-efficient formation cycles can lead to
significant advancements in the manufacturing process.

Battery recycling is another important issue to be considered.
The life cycle assessment (LCA) of batteries is commonly used to
investigate the environmental effect of the product from cradle to
gate, cradle to grave, and grave to cradle. LCA of Li-ion batteries
shows that recycling active materials typically consumes less energy
and produces less greenhouse gases and SOx emissions than
mining and refining these materials. Battery recycling is also
critical to prevent the depletion of the limited minerals. There
are various recycling methods, and these processes should also be
considered based on sustainability. One should also keep in mind
that the environmental and economic impact of battery recycling
also depends on transportation costs and governmental policies.254

The secondary use of batteries should also be considered. As
discussed above, battery recycling is critical for sustainability. But
conventional battery recycling methods are still energy-intensive,
costly, and emission-heavy. Moreover, with the significantly
increasing demand in the EV market, the number of retired
batteries will soon be considerably high, and recycling may not
be possible for all. Consequently, repurposing and reusing the
retired EV batteries will be required to achieve the SDGs. Second-
life batteries can be used in stationary energy storage, EV charging
infrastructure, grid stabilization, and off-grid storage for rural
areas or disaster relief.255 Some critical aspects for increasing the
secondary use of batteries would be focusing on materials and
battery design for longevity, developing market mechanisms and
policy setups that support the battery repurpose and reuse, and
designing battery management systems to manage these retired
batteries effectively and safely in their second life.256

Last but not least, the importance of hybrid renewable
energy storage systems should be emphasized, specifically for
providing reliable, sustainable, and clean energy for rural areas
and developing countries. These hybrid systems may combine
PV power, wind power, hydrogen storage, rechargeable bat-
teries, and supercapacitors. Subsequently, the design of such
systems not only has environmental and economic advantages
but also can increase access to energy in remote communities
and reduce the necessity of diesel generators for backup in the
case of a power outage or grid failure.257

8.6. Challenges and opportunities for ML

Data availability and quality are generally the biggest chal-
lenges for ML, which employs algorithms relying on statistical

learning in any field. The dataset should contain sufficient
information (i.e., input–output relationships) for the model to
be built or analysis to be performed and large enough for reliable
inference and generalization. These challenges will exist, and they
will probably be bigger in ML applications in SDGs; especially the
data collected from different sources (like different countries or
regions, different types of organizations, and different disciplines
and expertise) will have significant levels of noise, incompatibility,
mismatches, and even conflicts. On the other hand, the avail-
ability of remote monitoring and sensing technologies and the
presence of numerous data sources (including national and local
governments, offices of various UN organizations, and interna-
tional institutions) constitute a big opportunity for the use of ML
in macrolevel applications (such as the analysis and modeling of
atmospheric, agricultural, economic or demographic data) for
policy development and execution. This could be improved
further with closer collaboration among multinational organiza-
tions, governments, industry associations and non-government
organizations.

The data availability for individual technologies, on the other
hand, has been increasing continuously in recent years with a
different set of solutions. One of the most common strategies
to improve data availability is the creation of an ever-growing
number of databases containing experimental and computational
databases.16,20 Some examples of experimental databases are Paul-
ing File Database,258 Inorganic Crystal Structure Database
(ICSD),259 Cambridge Structural Database,260 Crystal Open
Database,261 CRYSTMET,262 ZINC database,263 and PubChem264

while The Material Project,265 Automatic FLOW for Materials
Discovery Library (AFLOWLIB),266 The Computational Materials
Repository,267 Open Quantum Materials Data (OQMD),268

AiiDA,269 and JAVIS- DFT270 are examples for the computational
(mostly based on density functional theory) databases. Currently,
most of the databases contain material properties, and they are
used for material screening or estimating the other properties; in
recent years, however, discipline-specific (like perovskite solar
cells122 or catalysis271) databases have been developed in increasing
numbers although they are not as sophisticated as material
databases due to the difficulty in making generalizations in
complex structures with complex functions. Other opportunities
that will contribute to the improvement of data availability are the
ever-growing trend in open-access publications and the availability
of repositories for the storage of research data and computer codes.

Implementation of transfer learning, which involves infor-
mation transfer from a model to analyze a different (but
similar) problem with a smaller number of data points, may
also be used to ease the data availability problem. Some of the
ML implementations, such as the analysis of demographic,
agricultural, and climate data, as well as energy forecasting,
optimization of national grid networks, or analysis of energy
trading, are quite similar in different countries; hence, the
models developed in the countries with high data availability
can be used for similar analysis involving other countries
through transfer learning algorithms when sufficient amount
of data is not available. The same is also true for the analysis of
research and development data in specific energy technologies,

ChemComm Feature Article

Pu
bl

is
he

d 
on

 0
5 

de
ka

br
 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

8.
01

.2
02

6 
14

:1
6:

02
. 

View Article Online

https://doi.org/10.1039/d4cc05148c


This journal is © The Royal Society of Chemistry 2025 Chem. Commun., 2025, 61, 1342–1370 |  1365

while data augmentation techniques allowing the use of experi-
mental and computational data as well as low- and high-
accuracy data can also be employed to ease the problem arising
from the insufficiency of available data.272

Another important challenge is the lack of technological
infrastructure and budget to build in less developed geographies
for which the SDGs were set in the first place. The monitoring
and data collection, which also require infrastructure, have
to be local, even though ML analysis could be done remotely
(even that would not be the best option anyway). To overcome
this, collaborations should be made between local authorities/
experts and their counterparts in other countries or international
organizations.

Finally, the concerns for the high energy consumption and
greenhouse emissions of data storage and large ML models,
which are likely to be required in SDG-related activities, have to
be resolved. Although it is not easy to forecast the potential
energy consumption and emissions for AI-related issues in the
future, the current numbers can provide some ideas to under-
stand the scale of the problem. According to the International
Energy Agency,273 the data centers use about 1–1.3% of global
electricity consumption (excluding energy used for cryptocur-
rency mining) while they account for 1% of energy related GHG
emission. These numbers are quite significant, and they are very
likely to increase more in the future with the increasing sizes of
databases and ML/AI models. On the other hand, one should
also consider the amount of energy saved and GHG emission
avoided with the use of AI; for example, Tomlinson et al.274

reported that AI-generated one-page text or an image consumes
less energy than those generated by humans. Even though the
high energy consumption and GHG emissions associated with
ML/AI are inevitable, they are probably justifiable; however, there
seems to be a need for further clarification in people’s minds.

9. Concluding remarks

Sustainable energy is one of the major enablers for SDGs, as it
is directly related to some goals (especially SDG 7 and SDG 13)
while indirectly affecting others as numerous works identified
positive and negative interactions between energy and the
targets of SDGs. Similarly, ML or AI, in general, may directly
or indirectly contribute to the efforts toward SDGs, starting
from monitoring, collecting, and analysis of worldwide SGD-
related data, assisting the planning for SDGs through forecast-
ing energy supply/demand and capacity of resources at local
and global levels, and supporting research and development in
the fields related to SDGs including solar, wind, and biofuel
technologies. Although there are significant challenges to reach
the targets of SDGs on time (in 2030), the efforts are likely to
continue beyond 2030 with increasing awareness and techno-
logical progress.

To maximize the benefit of ML in achieving SDGs and
parallel efforts beyond 2030, the data availability should be
improved first. Although this issue in scientific research has to
proceed with its own dynamics, the accessibility of national,

regional, and international levels of SDG-related data (involving
climate, demography, economy, health, education, and so on) can
be improved with special efforts by international organizations
taking part in SDGs. The effective coordination of activities
involving the use of ML in SDGs seems to be another area that
requires special attention; the people and organizations that
should take part in such efforts will likely be from various
unrelated disciplines, interest groups, and economic, social, and
cultural background with different agendas and goals. Harmoniz-
ing such diverse groups will be a challenging task by itself and
have a critical impact on the effective use of ML in SDGs.
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