7® ROYAL SOCIETY
P OF CHEMISTRY

Dalton
Transactions

View Article Online
View Journal | View Issue

PERSPECTIVE

Low-concentration CO, capture using metal—organic

’ M) Check for updates ‘
frameworks — current status and future perspectives

Cite this: Dalton Trans., 2023, 52,
1841
* and Chao Xu (2 *

Michelle Ahlén, Ocean Cheung
The ever-increasing atmospheric CO, level is considered to be the major cause of climate change.
Although the move away from fossil fuel-based energy generation to sustainable energy sources would sig-
nificantly reduce the release of CO, into the atmosphere, it will most probably take time to be fully
implemented on a global scale. On the other hand, capturing CO, from emission sources or directly from
the atmosphere are robust approaches that can reduce the atmospheric CO, concentration in a relatively
short time. Here, we provide a perspective on the recent development of metal-organic framework (MOF)-
based solid sorbents that have been investigated for application in CO, capture from low-concentration
(<10 000 ppm) CO, sources. We summarized the different sorbent engineering approaches adopted by
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researchers, both from the sorbent development and processing viewpoints. We also discuss the immediate
challenges of using MOF-based CO, sorbents for low-concentration CO, capture. MOF-based materials,
with tuneable pore properties and tailorable surface chemistry, and ease of handling, certainly deserve con-
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Introduction

The ever-increasing combustion of fossil fuels, such as energy
generation in coal-fired power plants, cement plants, and oil
refineries has contributed towards increasing the atmospheric
CO, concentration.” The atmospheric CO, level has gone from
the pre-industrial value of 280 ppm to a current level of
418 ppm (December 2022).> The greenhouse effect that is
caused by the high atmospheric levels of CO, is considered to
be one of the main reasons for global warming as well as the
associated environmental issues. In addition to the irreversible
changes to the climate and environment, a high atmospheric
CO, concentration is a big risk to human health, for example, it
can trigger respiratory illnesses when the atmospheric CO, con-
centration is over 600 ppm.® Although the move towards non-
fossil fuel-based energy generation could be a long-term solu-
tion to reduce CO, emission due to human activities, carbon
capture and storage (CCS) is undoubtedly an important current
approach to reduce the CO, emission from point sources of
CO,. Alternatively, direct air capture (DAC) of CO,, which
implies not only capturing CO, from emission point sources,
but rather from the atmosphere, is also an important comp-
lementary approach for reducing the atmospheric CO, level.
DAC is a negative emission technology that has the potential to
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tinued development into low-cost, efficient CO, sorbents for low-concentration CO, capture.

lower the atmospheric CO, concentration down to 350 ppm.*
DAC of CO, would mean capturing CO, from sources with low-
concentrations, or trace amounts of CO,. This type of CO,
capture is important for gas purification, indoor air quality
control, and a number of industrial processes. DAC of CO, has
been discussed for indoor settings such as classrooms, hospi-
tals, or offices in order to ensure the well-being of individuals.
Air purification devices are needed in ventilators, or in confined
spaces such as spacecraft and submarines to keep the CO, con-
centration at a safe level. From an industrial point of view, in
order to meet the liquefied natural gas (LNG) specifications,
CO, concentration in natural gas has to be reduced down to
50 ppm before its liquefaction.” These example application
areas show that there is currently a great interest and urgent
need for the development of efficient technology for low-con-
centration CO, capture. For the purpose of this perspective, we
operationally define “low-concentration” as below approximately
10 000 ppm in CO, concentration.

Amine scrubbing is probably the most mature and viable
CO, capture technology that has been widely applied in
natural gas purification and post-combustion capture of CO,.°
It uses aqueous amine solutions to absorb CO, from gases via
chemical reactions, which offers high separation and purifi-
cation efficiencies even at ultralow CO, concentrations
(<1000 ppm). However, amine scrubbing suffers from signifi-
cant drawbacks such as high energy consumption for amine
regeneration, risk of amine leakage, and corrosion to the
associated equipment. Temperature or pressure swing adsorp-
tion (TSA, PSA) technologies have also been developed for CO,
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capture. These technologies can be adapted to utilize solid
physisorbents. Physisorbents such as porous solids can be
engineered to adsorb CO, selectively over other gases on the
internal surfaces of the sorbent. The adsorbed CO, is then
released at elevated temperatures and/or reduced pressures
and the sorbent is regenerated for subsequent cycles.”” In
contrast to chemisorption processes (using chemisorbents),
physisorbents adsorb CO, with relatively low enthalpy of
adsorption (AH,qs). The energy cost for regeneration of physi-
sorbents is much lower than for chemisorbents (where chemi-
cal bonds form between the sorbent and CO,). Porous physi-
sorbents including activated carbons,'*** zeolites,"*°
silica,"”'® and porous organic polymers'®>" have been inten-
sively studied for CO, capture. Some of these sorbents show
great potential for post-combustion carbon capture, where CO,
partial pressures are 0.05-0.15 bar. However, it appears to be
more challenging to use conventional porous physisorbents
for low-concentration CO, capture, as physisorbents tend to
have low CO, uptake at low-concentrations (i.e. low partial
pressures). The advantages of these physisorbents for CO,
capture at low CO, concentrations fade significantly in terms
of uptake capacity, selectivity, and adsorption kinetics. In the
ideal case, a suitably engineered CO, sorbent for DAC would
not only have high CO, uptake capacity at low CO, concen-
trations, but should also show high CO, selectivity under
the relevant conditions. This means that the AH.y of CO,
sorption at zero or low loading must be significantly
lower than that typically observed for physisorbents (~—20 to
—40 kJ mol™"). However, very low enthalpies of CO, sorption
(i.e. <~—60 k] mol™), or chemisorption of CO,, may mean that
regeneration of the sorbent will be energy-demanding.
Metal-organic frameworks (MOFs) are a type of porous
coordination polymers constructed by linking metal ions or
clusters with organic linkers via coordination bonds.**** They
usually have ordered porous channels and high specific
surface areas. The rich coordination chemistry and large
amount of available organic linkers endow MOFs with syn-
thetic and structural diversity. Consequently, more than
90 000+ types of MOFs with defined structures have been syn-
thesized so far.>* The unique advantages of MOFs include
tunable pore size and surface chemistry. The possibility to pre-
design structures and composition renders MOFs attractive for
many applications including low-concentration CO, capture.”®
For example, by judicious selection of the building units, the
size, and shape of the pore-aperture of MOFs can be precisely
tuned to achieve a high CO, separation efficiency by the mole-
cular sieving effect.>**® Formation of ultramicropores,* "
creation of unsaturated metal centers,***® and amine
grafting®®° are effective approaches to introduce strong CO,
adsorption sites on MOFs that can increase the binding
affinity between the sorbents and CO,. Such functionalized
MOFs usually display high CO, uptake capacity and high
selectivity, even at very low CO, concentrations. In this per-
spective, we will give an overview of the recent advances in the
development and engineering of MOFs for low-concentration
CO, capture. The relationship between the CO, capture per-
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formances (e.g. uptake capacity, selectivity, enthalpies of
adsorption, kinetics, cyclic stability) and the MOF structures,
as well as possible approaches to structure and upscale MOF
sorbents for applications, will be discussed. We also discuss
the prospects and challenges when it comes to the use of
MOFs for CO, capture from low-concentration sources under
different circumstances.

Strategies for enhancing CO, capture
performance on MOFs

On MOFs, the general approach adopted to increase the CO,
capture performance, especially for low-concentration CO,
capture, is by tuning the sorption affinity for CO, at low-con-
centrations.>' The CO, partial pressures (pco,) that is of inter-
est range from ~0.4 to 10 mbar. This partial pressure range
can be considered as equivalent to 400 ppm (current atmos-
pheric CO, concentration) up to 10000 ppm under atmos-
pheric pressure, respectively. The CO, adsorption affinity at
low-concentrations can be achieved through three main
routes: (1) via careful control of the pore architecture of the
frameworks, (2) through the introduction of high-energy sorp-
tion sites (e.g. open-metal sites, anionic groups), and (3) by
post-synthetic amine-functionalization. In all cases, the CO,
sorption isotherm of these MOFs should have a very sharp
increase in the very low-pressure region (i.e. at 0.4 mbar for
atmospheric CO, concentration). In this section, these three
approaches will be discussed. The CO, capture performance of
all the sorbents discussed in this paper are summarized in
Table 1 for comparison.

Engineering pore architecture for CO, sorption

The typically weak CO, binding affinity on MOFs is related to
physisorption-based processes. The weak interaction between
CO, and the pore surface of MOFs is also indirectly linked to
the low CO, selectivity over other gases, including the gaseous
constituents of indoor air, such as O,, N,, and H,0.?® The
development of MOF sorbents for low-concentration CO,
capture through pore-size tailoring has been attained with a
handful of materials. Ultramicroporous MOFs (i.e. frameworks
containing pores with apertures <5-7 A)*” have remarkable
CO, uptake capacities at low CO, concentrations due to their
topological pore structures. The ultramicroporous MOF
UTSA-16 is an example of such a structure with narrow pore
apertures of 3.30 x 5.40 A.*® UTSA-16 was found to be capable
of selectively interacting with CO, over other gases with a
reported CO, uptake capacity of ~0.95 mmol g™" at pco, =
50 mbar, 298 K.*° The CO, molecules were found to interact
with the terminal water molecules coordinated to K' ions,
through hydrogen bonding, in the interior of the diamond-
shaped cages (4.5 A in diameter) in the framework. This inter-
action resulted in moderate AH,qs of CO, adsorption of
~—39.7 k] mol™" (at near zero-coverage).’” The hydrogen
bonding interaction between the oxygen atoms in the CO,
molecules and the crystallographically independent oxygen

This journal is © The Royal Society of Chemistry 2023
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Table 1 Comparison of the physical properties and CO, uptake capacities of various MOFs tested for low-concentration CO, capture. In studies
where CO, uptake capacity is not list for very low pressures (i.e. <1 mbar), the CO, uptake capacity at ~50 mbar is listed

Activation
CO, partial Temperature temperature Uptake Uptake
pressure (mbar) (K) (K) (mmol g™") (em®g™)  AH,qs (kJ mol™) Ref.

NbOFFIVE-1-Ni 0.4 298 378 1.30 29.14 ~—50 (1 mmol gfl CO, 44
loading)

SIFSIX-3-Ni 0.4 298 378 0.29 6.50 ~—49.8 (1 mmol g_1 CO, 44
loading)

ZU-36-Ni (GeFSIX-3- 0.4 298 373 1.07 23.98 ~—55.5 (near-zero coverage) 45

Ni)

ZU-36-Co 0.4 298 373 0.30 6.72 ~=39.1 (near-zero coverage) 45

(GeFSIX-3-Co)

SIFSIX-3-Cu 0.4 298 323 1.24 27.79 —54 (~0.25 mmol g71 CO, 46
loading)

TIFSIX-3-Ni 0.4 298 347/433 1.15% 25.78 ~—53 (near-zero coverage) 31 and 47

NbOFFIVE-1-Ni 0.4 298 378 1.237 27.57 ~—54.9 (~0.1 mmol g~ CO, 47
loading)

SIFSIX-3-Cu-i 0.4 298 293 0.684 15.33 —32 (near-zero coverage) 46 and 48

SIFSIX-3-Zn 0.4 298 393 0.13 2.91 ~—45 (near-zero coverage) 46 and 49

Mg-MOF-74 0.4 298 453 0.14* 3.14 ~—41.5 (~0.1 mmol g* CO, 47 and 50
loading)

Zn(ZnOH),(bibta), 0.4 300 373 2.20 49.31 ~—42 (near-zero coverage) 51
~=71 (~2.0 mmol g™* CO,
loading)

Pyrazine- 0.4 298 393 1.36 30.48 —48.4 (near-zero coverage) 52

functionalized Co-

MOF-74

Co-MOF-74 0.4 298 393 0.65¢ 14.57 — 52

ZU-16-Co (TIFSIX-3- 0.4 298 373 1.05 23.53 — 53

Co)

mmen-Mg,(dobpdc) 0.4 298 343 2.00¢ 44.83 — 54

en-Mg,(dobpdc) 0.4 298 343 2.50° 56.04 — 54

en-Mg,(dobpdc) 0.39 298 403 2.83 63.43 ~—22.5 (near-zero coverage) 55
~—49--51
(~1.25-2.0 mmol g"* CO,
loading)

Mg,(dobdc)(N,Hy), 5 0.4 298 403 3.89 87.19 —90 (Virial) —118 (Clausius- 56
Clapeyron)

SIFSIX-3-Ni 1 298 378 0.62 13.90 ~—49.8 (1 mmol g_1 CO, 44
loading)

SIFSIX-3-Cu 1 298 378 1.72 38.55 ~—53 (~1.05 mmol g71 CO, 44
loading)

ZU-36-Ni (GeFSIX-3- 1 298 373 1.55 34.74 ~—55.5 (near-zero coverage 45

Ni)

ZU-36-Co (GeFSIX-3- 1 298 373 0.75 16.81 ~—39.1 (near-zero coverage) 45

Co)

SIFSIX-3-Cu 1 298 323 1.75 39.22 — 46

NbOFFIVE-1-Ni 1 298 378 1.68 37.66 — 44

TIFSIX-3-Ni 1 298 347/433 1.50¢ 33.62 ~—53 (near-zero coverage) 31 and 47

Mg-MOF-74 1 298 453 0.33¢ 7.40 ~—41.5 (~0.1 mmol g™* CO, 47
loading)

Zn(ZnOH),(bibta), 1 300 373 2.35% 52.67 ~—42 (near-zero coverage) 51
~=71 (~2.0 mmol g"* CO,
loading)

Pyrazine- 1 298 393 2.10¢ 47.07 —48.4 (near-zero coverage) 52

functionalized Co-

MOF-74

Co-MOF-74 1 298 393 0.90¢ 20.17 — 52

ZU-16-Co (TIFSIX-3- 1 298 373 1.55% 34.74 — 53

Co)

mmen-Mg,(dobpdc) 1 298 343 3.00¢ 67.24 — 54

en-Mg,(dobpdc) 1 298 343 3.20° 71.72 — 54

en-Mg,(dobpdc) 1 298 403 3.10¢ 69.48 ~—22.5 (near-zero coverage) 55
~—49--51
(~0.13-2.0 mmol g~* CO,
loading)

Mg,(dobdc)(N,Hy)ys 1 298 403 4.35¢ 97.50 —90 (Vvirial) —118 (Clausius- 56

This journal is © The Royal Society of Chemistry 2023
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Activation
CO, partial Temperature temperature Uptake Uptake
pressure (mbar) (K) (K) (mmol g7) (em®g™")  AH,qs (k] mol™) Ref.

SIFSIX-3-Cu 40 298 323 2.36° 52.90 —54 (~0.25 mmol g™ CO, 46
loading)

SIFSIX-3-Zn 40 298 323 2.19¢ 49.09 ~—45 (near-zero coverage) 46

UTSA-16 50 298 363 0.95¢ 21.29 —39.7 (near-zero coverage) 39 and 40

Zn,(Atz),0x (MeOH) 50 293 373/353 1.10% 24.66 —40.8 (near-zero coverage) 41 and 42

Zn,(Atz),0x (H,0) 50 283 423 2.70% 60.52 ~—55 (near-zero coverage) 43

JLU-MOF56 50 298 303 0.25 5.60 ~30 (near-zero coverage) 57

JLU-MOF57 50 298 303 0.09“ 2.02 ~—32.5 (near-zero coverage)

Cu-F-pym 50 298 393 0.53 11.88 ~—30 (near-zero coverage) 58

UTSA-280 50 298 383 0.85¢ 19.05 —42.9 (near-zero coverage) 59

SIFSIX-3-Ni 50 293 413 2.45¢ 54.91 — 50

ZU-36-Ni (GeFSIX-3- 50 298 373 2.60% 58.28 ~—55.5 (near-zero coverage 45

Ni)

ZU-36-Co (GeFSIX-3- 50 298 373 2.65% 59.40 ~=39.1 (near-zero coverage) 45

Co)

Zn(ZnOH),(bibta), 50 300 373 3.00¢ 67.24 ~—42 (near-zero coverage) 51
~=71 (~2.0 mmol g~ CO,
loading)

Pyrazine- 50 298 393 6.60 147.93 —48.4 (near-zero coverage) 52

functionalized Co-

MOF-74

Co-MOF-74 50 298 393 5.20% 116.55 — 52

ZU-16-Co (TIFSIX-3- 50 298 373 2.75¢ 61.64 — 53

Co)

mmen-Mg,(dobpde) 50 298 343 3.40° 76.21 — 54

en-Mg,(dobpdc) 50 298 343 3.60° 80.69 — 54

en-Mg,(dobpdc) 50 298 403 3.50% 78.45 ~—22.5 (near-zero coverage) 55
~—49--51
(~0.13-2.0 mmol g~* CO,
loading)

Mg,(dobdc)(N,Hy)rs 50 298 403 5.10° 114.31 —90 (Virial method) 56
—118 (Clausius-Clapeyron)

SIFSIX-3-Ni Lab atmosphere, 296.55 413 0.18¢ 4.03 — 50

49% RH
MIL-101(Cr) 10 vol% CO, (0.1 298 473 0.48 10.78 — 60
atm)
100 ppm SO,,
100 ppm NO, 10%
RH

“Data extracted from the original publication, and may be approximate.

atoms in H,O was also found to account for 74% of the total
CO, uptake capacity.*® Similarly, Vaidhyanathan et al*“*?
and Banerjee et al.*® reported on a series of solvothermally
synthesized ultramicroporous zinc-based aminotriazolate/
oxalate (Atz/Ox) MOFs (Zn,(Atz),Ox (solvent)). Specifically,
Zn,(Atz),0x (MeOH) was observed to possess pore channels
with apertures of 3.50 x 4.00 A along the g-axis, 3.90 x 2.10 A
along the b-axis, and narrow slit-shaped pores (3.00 x 1.60 A)
along the c-axis, respectively. The primary amino-groups on
the aminotriazolate ligands were found to protrude into the
cube-shaped pore cavities (4.00 x 4.00 x 4.00 A) along the
a-axis. The high CO, uptake capacity of the framework
(~1.1 mmol g™* at pco, = 50 mbar, 293 K) was found to be due
to both pore-size effects as well as from CO,-amine inter-
actions. This was also indicated by the relatively low AH,qs of
CO,, ~—40.8 k] mol™" at near zero-coverage.’"** Similarly,
Zn,(Atz),0x (H,0) was shown to possess the same oxalate-pil-
lared structure as Zn,(Atz),0x (MeOH) with comparable pore

1844 | Dalton Trans., 2023, 52, 1841-1856

channels and apertures — 5.35 x 5.35 A along the g-axis, 6.40 x
6.40 A along the b-axis, and 5.80 x 5.25 A along the [0 1 1]
direction, respectively (Fig. 1a).**> However, unlike Zn,(Atz),0x
(MeOH), the water-solvated Zn,(Atz),0x (H,0) framework was
observed to undergo a subtle CO,-induced structural
rearrangement at pco, = 200 mbar, 273 K (Fig. 1b). This gate-
opening effect was observed alongside the appearance of new
adsorption sites (denoted as site I and site II) in the frame-
work, which could be separated by their AH,4s. The AH,qs pre-
gate opening (i.e. corresponding to site I) was shown to
increase from —46 kJ mol™" to —32 kJ mol ™" post-gate opening,
where CO, adsorption occurred on site II. The AH,q4s for the
two sites mainly corresponded to amine-CO, (site I) and CO,—
CO, (site II) interactions.*®

Liu et al. also reported on two isomorphic triazolate-based
ultramicroporous MOFs, namely, JLU-MOF56 ([Ni,(p,-Cl)
(BTBA),-DMF]-CI-3DMF) and  JLU-MOF57  (([Co,(p,-Cl)
(BTBA),-DMF]-CI-3DMF, where BTBA'~ = 3,5-bis(triazol-1-yl)

This journal is © The Royal Society of Chemistry 2023
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(a) Three-dimensional structure of Zn,(Atz),Ox showing the ultramicroporous channels along a-, b- and c-axis, and (b) CO, sorption iso-

therms of Zn,(Atz),Ox at different temperatures.*® Reproduced with permission, Copyright 2015 Royal Society of Chemistry.

benzoate, DMF = N,N-dimethylformamide).””  Both
JLU-MOF56 and -57 featured channels with dimensions of 3.50
x 3.40 A, 8.50 x 2.80 A, and 3.50 x 3.40 A along the a-, b-, and
c-axis as well as internal cages 14 A in diameter. Despite the
presence of uncoordinated N-atom sites, the CO, uptake
capacities of JLU-MOF56 (0.25 mmol g™" at pco, = 50 mbar,
298 K) and JLU-MOF57 (0.09 mmol g~" at pco, = 50 mbar,
298 K) were relatively low at low CO, concentrations. This was
attributed to the significantly larger dimension of the cages in
the framework as compared to the kinetic diameter of CO,
(3.30 A).>” Navarro et al.®* and Shi et al.*® investigated the CO,
sieving properties of an ultramicroporous MOF possessing
appropriately sized channels as well as surface functionalities,
namely, Cu-F-pym ([Cu(F-pymo),(H;0); 5], where F-pymo =
5-fluorpyrimidin-2-olate)). Cu-F-pym exhibited a 3D structure
with GIS-related framework topology and possessed helical
channels in the ab-plane with an aperture of 2.90 A along the
c-axis.®! Selective adsorption of CO, (~0.53 mmol g™" at pco, =
53 mbar, 298 K) was observed on Cu-F-pym at ambient temp-
eratures (i.e. 293 K) despite the narrow pore aperture. This was
attributed to a thermal expansion of the Cu-F-pym framework
which enabled the diffusion of CO, through the structure.®!
Pore-size tailoring has also been achieved using small non-
functionalized linkers. An example of such was presented for
the  ultramicroporous = MOF  UTSA-280 ([Ca(C40,)
(H,0)]-xH,0),>>°* which utilizes squaric acid to form a 3D
framework structure with cylindrical 1D channels (3.20 x
4.50 A and 3.80 x 3.80 A apertures) along the c-axis. The
adsorbed CO, molecules were found, according to grand cano-
nical Monte Carlo (GCMC) simulations, to interact with the
organic linker as well as the coordinating water molecules in
the pore channels through van der Waals and electrostatic
interactions, giving rise to a AH,qs of CO, of ~—42.9 k] mol™*
from the combined host-guest interactions.>”

Hybrid ultramicroporous materials (HUMs) have garnered
great attention in the last decade due to their unique structural

This journal is © The Royal Society of Chemistry 2023

properties. It is important to note that HUMs may not strictly
be classified as MOFs, nevertheless, they will be included in
this discussion for comparison. The prototypical HUM struc-
ture can broadly be described as 2D square sql nets composed
of metal-organic units interconnected by pillaring inorganic
anions (e.g. [SiFg]*”, [TiFs]*~, [NbOFs]>", and [GeF¢]*", see
Fig. 2).*>*7%3%4 The inherent structure of HUMs provides them
with narrow and highly ordered pore channels that are deco-
rated with polarizing atoms.?””®* A comparison between the
HUM SIFSIX-3-Ni and TEPA-SBA-15 (tetraethylenepentamine-
functionalized mesoporous silica SBA-15) as well as Zeolite-
13X was made by Kumar et al.>'° The authors showed that
SIFSIX-3-Ni had superior CO, uptake capacity (0.18 mmol g™)
as compared to Zeolite13X (0.03 mmol g') at 1 bar pure CO,
with 49% RH (296.55 K). However, the performance of the
HUM was observed to be worse than TEPA-SBA-15 (3.59 mmol
¢™") under the same conditions. On TEPA-SBA-15, chemisorp-
tion of CO, accounted for its high CO, uptake, especially in
the presence of water.’® Fine-tuning of the CO, uptake pro-
perties in SIFSIX-3-M was further attained through the incor-
poration of different metal cations into the metal-organic unit
of the structure. Bhatt et al.** observed a narrowing of the
square channels in SIFSIX-3-Cu (d...p = 6.483(1) A) when com-
pared with SIFSIX-3-Ni (dg..p = 6.694(1) A) and SIFSIX-3-Zn
(dp..r = 6.784(1) A), due to a reduced distance between adja-
cent [SiFs]>~ units. The narrowing of the channel resulted in
an enhanced adsorbate-adsorbent interaction at low CO, con-
centrations. This enhanced interaction was also indicated by a
decrease in the AH,qs from —45 kJ mol™ on SIFSIX-3-Ni to
—54 kJ mol™" on SIFSIX-3-Cu. As further reported by Bhatt
et al. the substitution of the pillaring anion from [SiFg]”~ to
[NbOF;]>~ was also found to decrease the distance between the
pendant fluorine moieties due to an increase in the bonding
distance for Nb-F (dyb_r = 1.899(1) A) as compared to Si-F
(dsice = 1.681(1) A). An increase in volumetric CO, uptake at
Dco, = 0.4 mbar by 15 to 340% was subsequently observed for

Dalton Trans., 2023, 52,1841-1856 | 1845
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NbOFFIVE-1-Ni (1.3 mmol g~ at 298 K) over SIFSIX-3-Cu
(~1.25 mmol g™* at 298 K), SIFSIX-3-Ni (~0.39 mmol g~*
298 K), and SIFSIX-3-Zn (~0.14 mmol g~' at 298 K). The
increase in CO, uptake was attributed to a further decrease in
distance between pendant F---F moieties in NbOFFIVE-1-Ni
(dp...r = 3.210(8) A) compared with SIFSIX-3-Cu (dg...p = 3.483(1)
A) and SIFSIX-3-Ni (dy...p = 3.694(1) A).

Zhang et al.® reported the use of [GeFg]*~ units to slightly
reduce the M-F distance (dge_r = 1.83 A) in the inorganic
anions in ZU-36-Ni as compared to NbOFFIVE-1-Ni. The for-
mation of an isostructural Co-based HUM, ZU-36-Co, was
additionally investigated to assess the pore size and CO,
uptake capacities in these ZU-36 frameworks. A shortening of
the bond distance between the metal cation and the pyrazine
linker in the square lattice of ZU-36-Co (dni-pyrazine = 2.12 f&)
was achieved in ZU-36-Ni (dyi.pyrazine = 2-08 A). The decreased
metal cation - pyrazine distance led to an enhanced CO,
uptake capacity in the low-pressure range for ZU-36-Ni
(1.07 mmol g™* at pco, = 0.4 mbar, 1.55 mmol g™" at pco, =
1 mbar CO,, 298 K) and corresponded to an over 200%
increase from ZU-36-Co (0.30 mmol g™' at pco, = 0.4 mbar,
0.75 mmol g™" at pco, = 1 mbar CO,, 298 K). The CO, uptake
capacity of ZU-36-Ni was found to be slightly lower than other
HUMs such as SIFSIX-3-Cu (1.24 mmol g™* at pco, = 0.4 mbar,
1.75 mmol g™" at pco, = 1 mbar CO,, 298 K) and NbOFFIVE-1-
Ni (1.30 mmol g™" at peo, = 0.4 mbar, 1.68 mmol g™" at pco, =
1 mbar CO,, 298 K). The difference in CO, uptake may be
related to the more optimal F---F distances in SIFSIX-3-Cu and
NbOFFIVE-1-Ni than in ZU-36."> Similarly, Kumar et al*’
investigated another HUM structure that was isoreticular with
SIFSIX-3-M, namely TIFSIX-3-Ni. The authors utilized [TiF¢]*~
anionic pillars to further tailor the sorption properties of the
SIFSIX-3-M framework. The M-F bond distance in TIFSIX-3-Ni
(dri_r = 1.81 A) was found to be similar to Zu-36-Ni (dge_r =
1.83 A) and NbOFFIVE-1-Ni (dnp_r = 1.899(1) A). The corres-
ponding CO, uptake capacity at pco, = 0.4 mbar of TIFSIX-3-Ni
(~1.15 mmol g~" at 298 K) was not found to differ significantly
from NbOFFIVE-1-Ni (~1.23 mmol g™* at 298 K) or ZU-36-Ni

1846 | Dalton Trans., 2023, 52, 1841-1856

(1.07 mmol g~ at 298 K).** The presence of tight CO, binding
sites was also observed in this framework, as indicated by a
low AH,qs which was compared to other HUMs - TIFSIX-3-Ni,
~—49 k] mol™" (at 0.1 mmol g~ CO, loading), NbOFFIVE-1-Ni,
~—=54.9 k] mol™ (0.1 mmol g~' CO, loading), ZU-36-Ni,
—55.5 k] mol ™" (at near-zero loading),*> SIFSIX-3-Cu, ~—53.0 k]
mol™" (0.1 mmol g~ CO, loading).**°

The impact of increasing the length of the organic molecule
in the metal-organic unit in SIFSIX-3-Cu was further investi-
gated by Shekhah et al.*® through the substitution of pyrazine
in SIFSIX-3-Cu by dipyridylacetylene. This approach resulted in
the formation of the isoreticular HUM SIFSIX-2-Cu-i. The
authors reported a decrease in CO, uptake capacity at pco, =
0.4 mbar for SIFSIX-2-Cu-i (0.07 mmol g™* at 298 K) when com-
pared to SIFSIX-3-Cu (1.24 mmol g~ " at 298 K) and SIFSIX-3-Zn
(0.13 mmol g~" at 298 K). The decrease in CO, uptake was
attributed to an increase in pore size from 3.5 A in SIFSIX-3-Cu
to 5.15 A in SIFSIX-2-Cu-i. This enlargement of the average dis-
tance between the CO, molecules and the fluorine atoms in
the channels of SIFSIX-2-Cu-i further led to a significantly
increased AH,qs for CO, of ~—32 kJ mol™" as compared to
SIFSIX-3-Cu (—54 kJ mol™').*® It is therefore clear that the
AH,q4s in MOF sorbents play a crucial role in their performance
to capture CO,. Many sorbents generally exhibit relatively low
enthalpies of adsorption (<—50 k] mol™") in the absence of
ultramicropores or active functional groups. Thus leading to
their poor performance at adsorbing CO, at low-concen-
trations. Various routes for improving the affinity between CO,
molecules and a framework has been presented in the pre-
vious section, however, a compromise is generally required in
order for these materials to be utilized in real-world appli-
cations. TSA processes were proposed by Lively et al.®® to be
more thermodynamically efficient as compared to PSA pro-
cesses when utilizing sorbents with lower enthalpies of adsorp-
tion (ie. <—50 KkJ mol™") for dilute steams containing
~100-1000 ppm CO,. The PSA process, on the other hand, was
found to have low efficiency even for sorbents with relatively
low CO, affinity (i.e. AH,qs >—35 k] mol™"). Although sorbents

This journal is © The Royal Society of Chemistry 2023
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with low enthalpies of CO, adsorption were found to be more
suitable for trace CO, capture in TSA processes, it is important
to note that a too low AH,qs will significantly increase the
regeneration costs.

CO,, sorption on high-energy sorption sites

Coordinatively unsaturated or open metal sites in MOFs have
additionally been used to tune the CO, uptake capacity at low
CO, concentrations. Strong interactions between such sites
which exhibit electrostatic fields enable them to interact with
the n-orbitals of polarizable guest molecules such as CO,. The
interaction between CO, and these high-energy adsorption
sites is pivotal for low-concentration CO, capture.®®®” Notably,
MOFs such as M-MOF-74 (e.g. M = Mg*", Fe*", Co*", zn*",
Ni**), HKUST-1, and MIL-101 have been proposed for CO,
capture at low CO, concentrations. Liu et al.®® investigated the
CO, capture performance of MIL-101(Cr), a mesoporous MOF
containing Cr(m) with open metal sites. This MOF was
observed to have a CO, uptake of 0.48 mmol g_1 at 298 K and
10% RH from a gas stream containing 100 000 ppm (~pco, =
0.1 bar) CO, as well as 100 ppm SO,, 100 ppm NO.*® Kumar
et al.*” investigated the sorption properties of Mg-MOF-74 and
HKUST-1 and compared them with TIFSIX-3-Ni and
NbOFFIVE-1-Ni. At pco, = 0.4 and 1 mbar, the CO, uptake
capacities of Mg-MOF-74 (0.14 mmol g~' at 0.4 mbar,
0.33 mmol g~' at 1 mbar, 298 K) and HKUST-1 (no uptake at
0.4 mbar, 0.13 mmol g~* at 1 mbar, 298 K) were significantly
lower as compared to the HUMs. The AH,qs for Mg-MOF-74
(~—41.5 k] mol™* at 0.1 mmol g~ CO, loading) and HKUST-1
(~=23 kJ mol™ at 0.1 mmol g~' CO, loading) further con-
firmed that the presence of open-metal sites in these frame-
works can create strong binding sites for CO, as compared to
conventional physisorption-based interactions. On the other
hand, the narrow pore structure of HUMs,***”%* such as those
found in NbOFFIVE-1-Ni,** still offers higher energy CO, sorp-
tion sites (AH,qs ~—54.9 k] mol™') than the open-metal sites
on some MOFs.

Post-synthetic modification of MOFs for CO, capture

The introduction of functional groups, commonly through
post-synthetic modifications, offers several advantages for
increasing the binding interaction with CO,. Typical functional
groups include basic groups such as primary and secondary
amines, polarizing halogen atoms, and larger hydrocarbon
chains. Not only can these functional groups facilitate Lewis
acid-base reactions (i.e. chemisorption-based adsorption pro-
cesses), they can also increase the presence of strong electro-
static interactions, and possibly introduce steric effects to
enhance adsorbate-adsorbent van der Waals interactions. As
such, numerous studies on functionalized MOFs for trace CO,
capture have been carried out. For example, Bien et al.’' uti-
lized a mild ligand exchange procedure to introduce nucleo-
philic sites in [Zn(ZnO,CCHj,),(bibta);] (bibta®>~ = 5,5-bibenzo-
triazolate) to produce [Zn(ZnOH),(bibta);], as presented in the
schematics shown in Fig. 3.>' The post-synthetic modification
resulted in significantly enhanced CO, uptake. The CO,
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Fig. 3 (a) Synthesis structure of the Zn(ZnOAc), SBUs. (b) Synthesis of
Zn(ZnOH)y(bibta)s and mechanism of reversible CO, fixation.>
Reproduced with permission, Copyright 2013 American Chemical
Society.

uptake capacity of the modified [Zn(ZnOH),(bibta);] was
2.20 mmol g~ (0.4 mbar, 300 K), which was a significant
improvement as compared to the negligible uptake on [Zn
(ZnO,CCH3),(bibta);] under the same conditions. The chemi-
sorption of CO, in [Zn(ZnOH),(bibta);] was further confirmed
by the low AH,qs for the MOF (=71 k] mol ™" at ~2.0 mmol g™*
CO, loading) thus indicating that CO, fixation likely occurred
via a reversible Zn-OH/Zn-O(COOH) route (Fig. 3).>" Hu et al.”?
also successfully obtained a pyrazine-functionalized Co-
MOF-74 by post-synthesis modification. The effective pore size
of the Co-MOF-74 was reduced from 11-12 A down to <7 A,°® at
the same time, Lewis basic sites were introduced from the
non-coordination N-atoms on the pyrazine molecules. CO,
uptake for the pyrazine-functionalized Co-MOF reached
1.26 mmol g~' (0.4 mbar at 298 K), which was significantly
higher than its non-functionalized counterpart (~0.65 mmol
¢~ " at 0.4 mbar and 298 K). The uptake capacity on the functio-
nalized MOF was however slightly lower as compared to other
high-performing MOFs such as TIFSIX-3-Ni (~1.1 mmol g~" at
298 K)*' and ZU-16-Co (~1.05 mmol g ' at 298 K).*?
Correspondingly, the AH,q4 of the pyrazine-functionalized Co-
MOF-74 was higher (-48.4 k] mol™" at zero loading) than other
frameworks with highly tailored pore structures (e.g
NbOFFIVE-1-Ni, —54.9 k] mol™* at 0.1 mmol g CO,
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loading)*” or chemisorption-based sorbents (e.g. [Zn
(znOH),(bibta);], —71 kJ mol™* at ~2.0 mmol g ' CO,
loading).>*>* The moderate AH,q4s of the functionalized MOF
was however noticeably lower than the AH,q5 of typical physi-
sorbents, but not as low as the AH,45 of chemisorbents. This
gives pyrazine-functionalized Co-MOF-74 an advantage over
other sorbents with respect to energy costs for regeneration.
Similarly, MOFs with coordinatively unsaturated sites have
commonly been used to post-synthetically introduce amine
moieties. Lewis acid-base reactions between the CO, mole-
cules and the accessible amine groups (e.g. primary or second-
ary amines) on the pore surfaces generally lead to the for-
mation of carbarmic acid followed by ammonium carbamate
in the presence of humidity.>>®® Notable examples include
M-MOF-74, Mg,(dobpdc) (dobpdc*~ = 4,4"-dioxido-3,3-biphe-
nyldicarboxylate), and MIL-101(Cr).”° Park et al grafted
various diamines on to the pores of Mg,(dobpdc) to increase
the CO, binding affinity.> Linear and branched diamines with
ethylene and propylene linkages were introduced post-
synthetically onto Mg,(dobpdc) (Fig. 4, 5a, and b). The
CO, uptake capacity of N-isopropylethylenediamine-appended
Mg,(dobpdc) (mmen-Mg,(dobpdc)) and ethylenediamine-
appended MOFs at 400/1000 ppm were approximately 2.30/
3.00 mmol g~ and 2.50/3.20 mmol g™, respectively, at 298 K.
The bulky N-isopropylethylenediamine introduced steric hin-
drance through the branched isopropyl-substituent, which
may have kinetically restricted the CO, diffusion and the acces-
sibility of the amine sites thus resulting in a slightly lower CO,
uptake.>* Similarly, Lee et al.>® observed that the CO, uptake
of ethylenediamine-appended Mg,(dobpdc) (en-Mg,(dobpdc))
was 2.83 mmol g~ at 0.39 mbar, 298 K, which was 1.4 times
higher than the N-isopropylethylenediamine-functionalized
counterpart of the MOF (mmen-Mg,(dobpdc) at 2.00 mmol g~*
(0.39 mbar, 298 K). The higher uptake capacity of en-
Mg,(dobpdc) as compared to mmen-Mg,(dobpdc) at low CO,
pressures was hypothesized by Lee et al>* and McDonald
et al.>* to be related to two factors: (1) the higher accessibility
of the primary amine moieties in en-Mg,(dobpdc), and (2) due
to a large increase in entropy connected with the reorganiz-
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OH pwave
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O 2.420°C
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O 65 min
COOH
OH
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Fig. 5 (a) Chemisorption species post-CO, adsorption in IRMOF-74-1lI-
(CH2NH,),.3% (b) Representative structure of the metal—organic frame-
work Mg,(dobpdc). Green, red, gray, and white spheres represent Mg, O,
C, and H atoms, respectively. (c) Depiction of cooperative CO, insertion
into a row of Mg?*—diamine sites to form ammonium carbamate chains
along the pore axis.2® Reproduced with permission, Copyright 2017
American Chemical Society.

Mg, (dobpdc)
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ation of the secondary amines required for chemisorption of
CO,. These two factors led to preferential CO, adsorption onto
low-energy sites (i.e. not associated with amine groups) and
weak amine sites. The AH,qs between ~1.25-2.0 mmol g’1 CO,
loading was estimated to range from —49 to —51 k] mol™" and
corresponded well with the enthalpy of formation (AH) of car-
barmic acid (=52.8 k] mol™"). Additionally, a pressure-induced
phase change was also observed in mmen-Mg,(dobpdc), giving
rise to a sharp increase in CO, uptake at ~0.2 mbar (298 K).
This phenomenon was attributed to a cooperative CO, adsorp-
tion process wherein the deprotonation of the metal-bound
amine by an adjacent non-coordinating amine moiety trig-
gered a nucleophilic addition of CO,. The resulting formation
of a carbamate-ammonium ion pair in turn had a destabilizing
effect on the metal-bound amine on the neighboring mole-
cule. This destabilization, in turn, initiated the adsorption of

2.100 °C
in vacuo
6h

3. CO,

mmen-Mg,(dobpdc) + CO,

(Left) Schematic of synthesis of Mg,(dobpdc) and (middle) the amine-functionalization process to produce mmen-Mg,(dobpdc