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The behavior of proteins is closely related to the protonation states of the residues. Therefore, prediction

and measurement of pKa are essential to understand the basic functions of proteins. In this work, we

develop a new empirical scheme for protein pKa prediction that is based on deep representation

learning. It combines machine learning with atomic environment vector (AEV) and learned quantum

mechanical representation from ANI-2x neural network potential (J. Chem. Theory Comput. 2020, 16,

4192). The scheme requires only the coordinate information of a protein as the input and separately

estimates the pKa for all five titratable amino acid types. The accuracy of the approach was analyzed with

both cross-validation and an external test set of proteins. Obtained results were compared with the

widely used empirical approach PROPKA. The new empirical model provides accuracy with MAEs below

0.5 for all amino acid types. It surpasses the accuracy of PROPKA and performs significantly better than

the null model. Our model is also sensitive to the local conformational changes and molecular interactions.
Introduction

Basic features and the behavior of proteins, such as folding or
ligand binding, heavily depend on the environmental condi-
tions like the local protein environment. Titratable amino acids
like aspartic acid (Asp) or histidine (His) are essential in many
biological processes1–5 and can be either protonated or depro-
tonated depending on the local environment. Thus, determi-
nation of the ionization states via pKa predictions is
a prerequisite to understand the protein function. Determina-
tion of pKa values via experimental procedures is challenging
and the most reliable results for proteins can be obtained only
with NMR titrations.6 This predicament enforces the pKa

predictions in proteins by means of theoretical applications.7

There is a tremendous amount of work on theoretical pKa

calculations in the literature. These approaches can be classi-
ed into three categories as (i) microscopic methods,8,9 (ii)
macroscopic methods which establish continuum electro-
statics,10 and (iii) knowledge-based methods that rely on
empirical parameters.11,12

Among the three classes of theoretical pKa calculations,
microscopic methods such as quantum mechanical (QM) or
quantum mechanics/molecular mechanics (QM/MM)
approaches are considered the most reliable ones to compute
pKa values of small molecules.8,13 Themost traditional approach
with QM methods is to employ thermodynamic cycles by
of Science, Carnegie Mellon University,

andrisayev.com

tion (ESI) available. See DOI:

74
computing protonation/deprotonation free energies in the gas-
phase and in solution.14–23 However, these calculations do not
always provide reliable pKa values due to reasons such as the
instability of the species in the gas-phase or large conforma-
tional differences between the gas-phase and in solution.17,24 In
the case of the proteins, QM approaches are impractical simply
due to the system size and can only be achieved with model
systems consisting of the local protein environment of the
residue of interest. Nevertheless, the size of the model and the
choice of the local environment can alter the theoretical pKa

values.25 A more practical microscopic method to compute pKa

values is the hybrid quantum mechanics/molecular mechanics
(QM/MM) approach, in which the titratable residue is modeled
at a quantum level. At the same time, the remaining media is
treated with molecular mechanics.26–28 Molecular dynamics
(MD) based methods such as free energy perturbation29,30 and
constant pH molecular dynamics (CPHMD) simulations31–41 can
provide reliable pKa values for protein residues. Combining
enhanced sampling techniques with CPHMD simulations can
also improve the accuracy of pKa predictions.34,42–47 Neverthe-
less, the need for fast and reliable approaches to predict pKa

values of protein residues can render the microscopic methods
impractical due to the exhaustive computation time.

Macroscopic methods rely on either the numerical Poisson–
Boltzmann equation (PBE)10,48–51 or the Generalized Born (GB)
technique with analytical approximations to electrostatic ener-
gies.52,53 These methods model the proteins as a homogeneous
medium with a low dielectric constant while the environment
(solvent) is modeled with a high dielectric constant. The PBE
based methods and their variations54–60 can allow modeling the
accessibility of the solvent to the titratable residues61,62 and
© 2022 The Author(s). Published by the Royal Society of Chemistry
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multiple ionizable residues within the proximity.63,64 Even
though there are different suggestions for the dielectric
constant of proteins that varies from 4 to 80,65–73 the appropriate
value depends on the polarity of the surrounding residues and
the exibility of the protein.74,75 This issue can be addressed by
taking the exibility of the protein into account via techniques
that involve ensembles of conformers.54,76–82 An example of such
an approach is the Multi-Conformation Continuum Electro-
static (MCCE) method which has been shown to successfully
predict pKa values of several protein residues with different
force elds.70,83–85

Empirical methods are based on statistical tting of envi-
ronmental descriptors and parameters to the three-dimensional
structures of proteins. Their sufficiently accurate predictions for
most cases combined with their low computational cost make
them widespread and favorable. There are a variety of empirical
tools with comparable accuracies,86–88 but PROPKA11,12 is the
most widely used for protein pKa predictions. Conceptually,
PROPKA computes the change of the amino acid pKa value from
water to a protein environment. In this tool, the environmental
perturbation is expressed as the sum of perturbation contri-
butions from a protein environment.

Recent studies with machine learning (ML) algorithms for pKa
estimations of transition metal complexes have provided new
empirical schemes.89,90 These approaches combine the pattern
recognition capabilities of ML algorithms with the atomistic and
molecular features that are obtained with a QM tool. However,
this scheme can only be practical for proteins if molecular
descriptors are obtained with low computational cost, such as
neural network potentials (NNPs). Over the last decade, NNPs
have been shown to provide accuracy approaching that of QM
calculations and comparable computational cost with all-atom
Fig. 1 Protein pKa prediction with neural network features obtained wit

© 2022 The Author(s). Published by the Royal Society of Chemistry
force elds. These potentials, such as ANI91–98 and AIMNet,99 can
learn the electronic environment of an atom in conjunction with
the many-body symmetry functions that arise from the coordi-
nates.100,101 Using this learned information and combining it with
the structural ngerprints that depend on the coordinates, NNPs
can predict target molecular properties such as energy and forces.
Thus, NNPs can be utilized to obtain information that stems from
the atomic environment, and this information can be used to
train ML models for protein pKa estimations.

In this context, we developed an empirical scheme for
protein pKa predictions that employs ML algorithms for ve
amino acid types (ASP, GLU, HIS, LYS, and TYR). We rely on
representation learning, i.e., learning representation of the data
by automatically extracting useful information when the ML
model is trained. We used ANI atomistic neural network
architecture that learns molecular representation end-to-end,
i.e., directly from atomic coordinates. This molecular repre-
sentation reduces the dimensionality of a molecular structure
into a compact vector format that encodes important quantum
mechanical information.
Methods

Our model provides predictions via the atomic environment
and the learned electronic information that is obtained with
a widely used NNP, ANI-2x.96 The workow for protein pKa

prediction is depicted in Fig. 1. In the present work, each amino
acid type is treated separately to improve the accuracy by
ensuring different molecular features for different amino acid
types. Models are trained and tested over hundreds of experi-
mental pKa values, and the accuracy is also compared with the
widely used PROPKA12 tool. The presented approach performs
h ANI-2x. Each amino acid type has its own predictor.

Chem. Sci., 2022, 13, 2462–2474 | 2463
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signicantly better than null models and improves the current
empirical methods for pKa estimations.

Reference data for training

The pKa model is trained and tested with two datasets. The rst
dataset is obtained from the PKAD database.102 This dataset
consists of over 1500 experimentally measured pKa values of
residues on both wild type (WT) and mutant proteins. The
second dataset consists of 337 entries that were extracted from
the primary literature.103–127 Mutation of a residue on a protein
can cause signicant conformational changes that alter the
amino acids' electronic environment in proximity to the muta-
tion site. However, not all mutant proteins have crystallographic
structures deposited to the databanks. Extensive conforma-
tional sampling must be performed to account for the confor-
mational alteration due to the mutations. Since conformational
sampling is out of the scope of this study, all mutant protein
entries were excluded from datasets. Our model is trained only
for WT proteins. This selection results in training and test
datasets containing entries from 186 WT PDB structures. The
distribution of the pKa values in training and test datasets can
be found in the ESI (Fig. S.1).† For this initial proof of principle
model, only ve titratable residues (GLU, ASP, LYS, HIS and
TYR) are selected as targets for pKa predictions.

Data curation

Crystallographic structures of 187 WT proteins are obtained
from the PDB. A owchart for data preparation prior to the
training can be found in the ESI (Fig. S.2).† In conventional PDB
les, the crystallographic structures can involve entries other
than proteins and nucleotides, such as ligands, mobile coun-
terions, metal ions, or water molecules. It is important to state
that the presence of a co-factor or a ligand can alter the pKa of
residues within a protein. However, any entry other than
proteins and nucleotides is removed from PDB structures due to
two reasons. First, the number of atomic species that are
dened in a neural network potential (NNP) is currently limited
to nonmetals. This limitation prevents inclusion of HETATM
entries that can have atomic species that NNP does not dene.
Second, the conditions in the experimental procedures for pKa

determination and the crystallographic data preparation can be
different. PDB entries correspond to constrained structures
obtained using either X-ray or neutron diffractions, requiring
specic strategies to achieve crystallographic packing. For
example, many PDB entries tend to contain mobile counterions
due to the packing procedures and these ions mainly do not
exist in experimental pKa determinations.

Aer the clean-up of PDB entries, missing heavy atoms and
H atoms are added with the tleap module of AmberTools21 128

using the ff14SB force eld for proteins129 and BSC1 force eld
for DNA.130 For titratable protein residues, standard protonation
states are assumed. To prevent any possible steric clashes aer
the addition of missing atoms, very short gas-phase minimiza-
tions (250 steps of steepest descent followed by a conjugate
gradient up to 500 steps in total) are performed using the sander
module of AmberTools21.128
2464 | Chem. Sci., 2022, 13, 2462–2474
Descriptor calculations

Minimized structures are used as inputs for NNP to compute all
descriptors. A detailed description of ANI neural network
potential and corresponding descriptors can be found else-
where.96,100 Briey, in ANI-type NNPs, the environment of the
atomic species in the given coordinate system is transformed
into atomic environment vectors (AEVs) that contain radial and
angular contributions (see Fig. 1). Since the pKa of amino acids
in proteins are sensitive to the neighborhood environment,
naturally, AEVs were chosen as candidates for pKa descriptors.
This representation includes structural information on both
bonded and non-bonded interactions of any given atom within
the default ANI cutoff distance (rcut ¼ 5.2 �A). In addition to
AEVs, neural network embeddings were chosen as learned
representations. Therefore, 2nd and 3rd layers of atomic neural
network embeddings are selected as additional descriptor
candidates.
Feature importance and training

We observed that many features in the overall descriptor were
redundant or highly correlated. To eliminate the redundant
features, a three-step ltering procedure is adopted. First,
noninformative features (values of 0.0) for all reference data are
removed. Second, correlation of the features is computed, and
highly correlated features (correlation coefficient > 0.95) are
eliminated. Third, a recursive feature elimination (RFE)131

process is performed using a random forest regressor (RF)132

algorithm as implemented in the scikit-learn package.133 RFE is
a technique that allows dening the least important features
using an importance ranking, and it has been shown that ML
models benet from it.134 The pseudo-code for RFE is depicted
in Fig. 2. In each recursive step of the procedure, the feature
importance is measured, and a desired number of features are
kept (F†) by removing less important ones. The new feature list
is used to perform training with RF using 1000 decision trees. A
nal set of features (F‡) is dened by the local model that has
the best coefficient of determination for predictions over out-of-
bag samples. Aer obtaining the nal set of features, a 10-fold
cross-validation (CV) is performed with RF using same settings
for training in the feature elimination process.
Molecular dynamics simulations and clustering

Two different ionization states of ASP26 (neutral: ASH, and
negatively charged: ASP) on human thioredoxin conformer
(PDB ID: 3TRX) are considered. Topology and coordinate les
are built with the default ionization states for residues in the
ff14SB force eld for proteins129 using the tleap module of
AmberTools21.128 The samples are neutralized using Na+

counter ions: 4Na+ for the sample containing neutral ASP, and 5
Na+ for the sample containing negatively charged ASP. To
provide salt concentration, 5 Na+ and 5 Cl� counter ions are
added to the samples. Waters in the original crystal structure
are deleted, and the samples are solvated using TIP3P water
molecules135 with a distance between the solute and the edge of
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Pseudo-code for feature selection with recursive feature elimination (RFE).
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the box being 12 Å, which results in an average box dimension
of 66.8 Å � 69.7 Å � 62.3 Å.

Simulations are performed using the CUDA version of
AMBER20's pmemd module.128,136,137 A time step of 1.0 fs is used
along with Berendsen temperature coupling138 and SHAKE
algorithm139 for the bonds involving hydrogen atoms. The
particle mesh Ewald summation (PME) technique140 is
employed using a cutoff distance of 8 Å. We carried out an 11-
step equilibration procedure141 that consists of harmonic
restraints on protein residues and its reduction in each step at
10 K, which is followed by the gradual heating of samples to 300
K with a gradual harmonic restrain reduction at 300 K. A 50 ns
long production simulation is performed using equilibrated
samples for both samples. Production trajectories are used to
cluster the frames using a hierarchical agglomerative (bottom-
up) approach as implemented in the cpptraj module of
AMBERTools21.128 Clustering is performed using the root mean
square method as the distance metric for the carboxyl group of
the ASP26 side chain (ASH26 in the case of neutral ASP). It is
nalized when the minimum distance between the clusters is
larger than 1.5 Å. The best cluster representatives are selected
using the lowest cumulative distance to all the other frames in
the same cluster.

Results and discussion

There has been a surge of approaches looking to learn a repre-
sentation that directly encodes information about mole-
cules.142,143 The idea behind representation learning is to learn
a mapping that embeds molecular structures as points in a low-
dimensional vector space.144 The goal is to optimize this
mapping so that relationships in the embedding space reect
the similarities between objects. Aer optimizing the embed-
ding space, the learned embeddings can be used as feature
inputs for downstream machine learning tasks. The key
distinction between representation learning and traditional
descriptor calculations is how they treat the molecular structure
problem. Descriptors treat this problem as a pre-processing
© 2022 The Author(s). Published by the Royal Society of Chemistry
step, using domain knowledge and hand-craed rules to
extract molecular information. In contrast, representation
learning treats this problem as a machine learning task, using
a purely data-driven approach to learn embeddings that encode
a molecular structure.

The pKa of an amino acid on a protein can be affected by
different environmental features such as amino acids in prox-
imity or solvent access. The surrounding amino acids can be
encoded through so-called atomic environment vectors (AEVs)
which can be obtained with popular atomistic neural network
potentials like ANI.96 Even though the presence of the solvent
cannot be modeled with the current ANI-2x implementation,
the gas-phase electronic-structure contributions can be
addressed with neural network embeddings. These embeddings
would provide information regarding the electronic environ-
ment of the titratable residue.

To show the utility of the representation learning, we rst
performed a simple exercise. We extracted 3D structures for 171
natural and non-natural amino acids from the SwissSidechain
database.145 Fig. 3 shows a 2D t-distributed stochastic neighbor
embedding (t-SNE)146 projection of atomic embeddings for
oxygen and nitrogen atoms based on the 3rd (top) layer neural
network. Naturally, oxygen and nitrogen atoms show two
distinctly different clusters corresponding to each element.

Inside the oxygen cluster, titratable groups like sidechain
carboxyls, aliphatic and aromatic alcohols are spread out. This
is possible due to the very different environments modulated by
non-natural amino acids. We hypothesized that the difference
in embedding vectors should reect the acid–base properties of
these groups too. Therefore, these embedding vectors could be
used as descriptors for empirical pKa prediction. For the sake of
completeness, we will consider all possible descriptors, i.e.,
AEV, and 2nd and 3rd layer neural network embeddings obtained
with the ANI-2x model as an initial set of descriptors.

To assess the performance of ML models with ANI-2x
descriptors, the available pKa data are divided into training
and test subsets. Different ML algorithms were tested, and the
Chem. Sci., 2022, 13, 2462–2474 | 2465
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Fig. 3 t-Distributed stochastic neighbor embedding (t-SNE)maps depicting the similarity of 3rd layer neural network embeddings for oxygen and
nitrogen atoms located on structures from the SwissSidechain database.145 The backbones of the corresponding structures ensure a zwitterion
form with NH3

+ (backbone-amine) and COO� (backbone-carboxyl) as backbone groups.
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accuracies were analyzed. Results obtained with different
procedures are depicted in the ESI (see Fig. S.3).† We observed
that linear regression (LR) and support vector machines (SVMs)
with linear kernel yielded similar results. Training with the RF
provided more accurate results with MAEs of about 0.5, while
the inclusion of recursive feature elimination (RFE) improved
the accuracy even further. RFE resulted in a feature space of
about 10 to 100 descriptors for amino acids. We observed that
the features belong to the side chains and the features that
belong to the backbone atoms are selected as important
descriptors. This can be related to the learned inductive
(through-bond) effects. Feature elimination revealed that even
though most of the descriptors from the initial feature list are
eliminated, all the feature classes are preserved in the nal
feature list. These results indicate that pKa predictions require
the information regarding the atomic environment of titratable
residues and electronic information encoded by the neural
network embeddings of the NNP.

First, the model accuracy was accessed with k-fold cross-
validation. To compare the accuracy of our model, pKa values
for the whole training dataset are also predicted with PROPKA
3.1.12 The results obtained with the MLmodel, PROPKA, and the
null model for GLU, ASP, and HIS are depicted in Fig. 4 (see ESI
Fig. S.4† for LYS and TYR). It was found that the coefficients of
determination (r2) for all amino acid types are above 0.6 with the
MLmodel (except for LYS, r2 ¼ 0.31) while mean absolute errors
(MAEs) for all amino acid types are below 0.5 pKa units. In the
case of PROPKA, predictions have r2 < 0.3 and MAE > 0.6 with
GLU and ASP being the most reliable predictions. Interestingly,
PROPKA yields similar or less reliable results relative to the null
model ( dpKa ¼ pKa ), especially for HIS, LYS and TYR. These
2466 | Chem. Sci., 2022, 13, 2462–2474
results might be due to the PROPKA computation scheme
which considers the shi of the pKa value for the amino acid
from water to protein (DpKwater/protein

a ),11 while the MLmodel is
trained directly for pKa values in the protein environment using
a relatively larger training set. The number of dpKa

error
. 1:0 is

computed for all amino acid types (Nerror > 1.0) for experimental
pKa (pK

exp
a ) values that are 1.0 unit below/above the pKa value of

the corresponding amino acid in water (pKwater
a ). The results are

depicted in Table 1. We see that the Nerror > 1.0 with the ML
model is about twice smaller than with PROPKA for all amino
acid types. These results indicate that MLmodel predictions are
more reliable for all amino acid types that have a water to
protein pKa shi which is at least 1.0 unit (jDpKwater/protein

a j$
1.0).

The ML models were also evaluated with the external test
dataset of pKa values from 33 different proteins that do not
appear in the training data. Results for GLU, ASP and HIS amino
acids are depicted in Fig. 5 (LYS and TYR test results can be
found in ESI Fig. S.5†). We found that ML models for all amino
acid types provide predictions with MAE < 1.0, where GLU and
LYS yield better predictions (MAE < 0.5) relative to the other
amino acids. The higher MAE values, especially in the case of
ASP are related to outliers that have very high/low experimental
pKa values for the corresponding amino acid (high jDpKwater/

protein
aj).

A similar evaluation was performed with DelPhiPKa147 using
the external test set. Only 23 proteins were completed due to the
extended run time over one week. Calculations are performed
using default runtime parameters that are provided by the
DelPhiPKa program. The RMSE/MAE values for predictions of
281 pKa values with DelPhiPKa (present work) are computed as
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 The accuracy of the predictions of experimental pKa values for (a) 10-fold cross-validation predictions with the ML model for GLU, (b) 10-
fold cross-validation predictions with the ML model for ASP, (c) 10-fold cross-validation predictions with the ML model for HIS, (d) GLU using
PROPKA, (e) ASP using PROPKA, (f) HIS using PROPKA, (g) GLU with null model, (h) ASP with null model, (i) HIS with null model.
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1.03(0.76)/0.74(0.56), 1.17(0.60)/0.90(0.45), 1.38 (0.88)/
0.96(0.67), 1.33 (0.49)/1.06(0.40), and 0.98 (0.87)/0.82(0.76) for
ASP, GLU, HIS, LYS and TYR respectively. It should be noted
that all calculations are performed sequentially on a linux
computer with the runtime of �127 s/residue for DelPhiPKa
Table 1 Number of experimental pKa values that are 1.0 pKa unit lower or
that are above 1.0 pKa unit (Nerror > 1.0)

Amino acid pKa range Ne

GLU pKa < 3.5 & pKa > 5.5 68
ASP pKa < 2.8 & pKa > 4.8 93
HIS pKa < 5.5 & pKa > 7.5 85
LYS pKa < 9.5 & pKa > 11.5 16
TYR pKa < 9.0 & pKa > 11.0 28

© 2022 The Author(s). Published by the Royal Society of Chemistry
and�0.2 s per residue for the MLmodel presented in this work.
These results indicate that the ML model not only provides
more reliable results but also runs about 500 times faster.

Two test set cases are selected to investigate the underlying
reason for the errors in certain predictions: GLU7 predictions
higher than the pKa in water (Nexp) and the number of prediction errors

xp Nerror > 1.0
ML Model Nerror > 1.0

Propka

12 21
27 35
20 55
7 8
0 8
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Fig. 5 Test set predictions with ML models trained with descriptors obtained with ANI-2x.
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for hen egg white lysozyme conformers and ASP26 predictions
for recombinant human thioredoxin conformer (Fig. 6). The
hen egg lysozyme white (HEWL) test set comprises seven
different crystallographic structures with multiple conformer
congurations for the GLU7 residue (Fig. 6a). In all HEWL
conformers, there is at least one positively charged residue
within 5 Å of GLU7; ARG5 in all conformers, LYS1 in every
conformer except 1 E8L, and Arg14 for all conformers except 1
E8L, 1LSA, and 4LYT. It is observed that GLU7 in three
conformers (1AKI, 1LSA, and 4LYT) is in close proximity to
LYS1, promoting a H-bond interaction (Rside chain

GLU7–LYS1 < 3.0 Å). In
the other four HEWL conformers, there is no H-bond interac-
tion between these residues since GLU7 is rotated to the
opposite direction of the LYS1 residue. Interestingly, the
prediction errors for the conformers with GLU7–LYS1 side
chain interaction are lower than 1.0 while the prediction errors
for the conformers that do not contain this interaction are
higher than 1.0 pKa unit. The prediction errors for the same
residue with CPHMD simulations were reported to be approxi-
mately 0.8 and 1.3 with the explicit solvent and implicit solvent
respectively.45 These results indicate that the model is highly
sensitive to the conformational states of the residues and
provides similar results with CPHMD simulations.

Another test case is the ASP26 on recombinant human thi-
oredoxin (PDB IDs: 3TRX and 4TRX). Here we see prediction
errors of more than 4.0 pKa units for both conformers. The pKa

of this residue is reported as 9.9, which indicates that this
Fig. 6 Three-dimensional representations of (a) hen lysozyme conform
conformer in the test set (gray), most populated conformer obtained afte
the most populated conformer obtained after molecular dynamics simu
within parentheses.

2468 | Chem. Sci., 2022, 13, 2462–2474
residue is in the neutral form. Thus, the effect of different ASP26
states (charged and neutral) on thioredoxin is investigated with
conformers obtained from molecular dynamics (MD) simula-
tions. Since there is no distinctive conformational difference
between two thioredoxin crystallographic structures, simula-
tions were performed only with 3TRX. Aer 50 ns long MD
simulations, the trajectories are clustered to nd the most
populated cluster and its representative (Fig. 6b). These repre-
sentatives (negatively charged ASP: MD-ASP26, neutral ASP:
MD-ASH26) are then used to predict the pKa values of ASP26. In
the case of the neutral ASP residue in the MD-ASH26 conformer,
the proton on the side chain is removed before the pKa

prediction since the model is trained with negatively charged
ASP. It is observed that the ASP26 conformation does not alter
drastically, but the conformations of three surrounding resi-
dues (SER28, LYS39, GLU56) are affected with different ioniza-
tion states of ASP. In both test set and MD-ASP26 conformers,
LYS39 and GLU56 share a hydrogen bond, while this interaction
does not exist in the MD-ASH26 conformer.

Additionally, the hydrogen bond interactions between ASP26
and SER28 in both test set and MD-ASP26 conformers are not
observed in MD-ASH26. Instead, SER28 in MD-ASH26 forms
a hydrogen bond interaction with GLU56. Predictions with the
ML model reveal that the error increases with the MD-ASP26
conformer (error ¼ 6.18) and reduces more than 1.5 units
with the MD-ASH26 conformer (error ¼ 2.53) relative to the test
set conformer. These results point out the conformer sensitivity
ers in the test set with their PDB IDs. (b) thioredoxin (PDB ID: 3TRX)
r molecular dynamics simulations with protonated ASP26 (purple), and
lations with ASP26 (green). Prediction errors for all cases are depicted

© 2022 The Author(s). Published by the Royal Society of Chemistry
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of the ML model and possible discrepancies between the crys-
tallographic and the experimental conformers that cause the
prediction error.

Final ML models are trained using both the training and the
test datasets following the same procedure for feature elimi-
nation and tests with 10-fold cross-validation. The accuracy of
the predictions is compared with PROPKA and the null model.
All results are depicted in Fig. 7. The RMSE values for all amino
acid types are computed below 1.0 with ML models, while
PROPKA predictions, except for ASP, yield higher RMSE values
than the null models. Our model is found more accurate for
GLU, ASP, HIS, and LYS residues relative to DelPhiPKa bench-
marks without salt concentration. When the salt concentration
is included in DelPhiPKa benchmarks, accuracies for LYS and
ASP are comparable. Both benchmarks use a different dataset
consisting 752 residues on 82 proteins.147 A similar pattern is
observed for MAE values. Final MLmodels predict experimental
pKa values with MAEs below 0.5, while MAEs obtained with
PROPKA predictions are substantially higher.

Interestingly, PROPKA have MAEs similar to or even worse
than the null models. To our knowledge, the model presented
in this work is the rst empirical model that performs statisti-
cally signicantly better than the null model for all titratable
residues. Finally, the coefficient of determination for pKa

predictions with ML models is at least twice as large as that of
PROPKA for all amino acid types.

Exploring the high dimensional pKa training and test data in
terms of similarity is impossible without dimensionality
reduction. Thus, t-SNE146 is used to reduce the high dimen-
sional data by transforming it into two-dimensional similarity
maps. Such visualization allowed us to align similar residues
and cross-reference themwith the corresponding pKa values. 2D
t-SNEmaps for GLU and HIS amino acids are given in Fig. 8 (see
Fig. S.6† for LYS and TYR amino acids). Generally, residues with
high or low experimental pKa values are separated except for
some outliers, and residues on the same class of proteins form
small clusters together. For instance, GLU7 from hen egg-white
lysozyme (HEWL) and turkey egg-white lysozyme (TEWL) form
Fig. 7 Comparison of the final model with PROPKA and null models.

© 2022 The Author(s). Published by the Royal Society of Chemistry
clusters ai (Fig. 8a). Among these clusters a5 involves entries
from both species (TEWL PDB IDs: 1LZ3, 135L and HEWL PDB
IDs: 1LSA, 1LSE, 1LYS). Clusters are shown with bi on Fig. 8a
correspond to the GLU35 residues on HEWL and TEWL
proteins. Other examples of such clusters correspond to GLU2
residues on bovine Ribonuclease A (cluster c, Fig. 8a), and
GLU73 residue on Barnase (clusters di, Fig. 8a). A similar
pattern is observed with HIS amino acid (Fig. 8b). Residues in
the same class of proteins form small clusters such as cluster
a for GLU162 on Bacillus agaradhaerens family 11 xylanase,
cluster b for HIS36 on myoglobin from sperm whale and horse,
and clusters ci for HIS72 on bovine tyrosine phosphatase.

As mentioned before, pKa models are sensitive to
conformers, and t-SNEmaps show some outliers. An example of
such cases can be seen in Fig. 9, which depicts the t-SNE map
for ASP amino acids. For instance, ASP26 in recombinant
human thioredoxin conformer in the test set (PDB ID: 3TRX) is
an outlier (arrow a on Fig. 9) on the t-SNE map. This point is in
proximity to ASP67 on the tenth type III cell adhesion module of
human bronectin (PDB ID: 1FNA, pKa ¼ 4.2), ASP77 on fungal
elicitor (PDB ID: 1BEG, pKa ¼ 2.61), and ASP28 on black rat cell
adhesion molecule CD2 (PDB ID: 1HNG, pKa ¼ 3.57). The
experimental pKa of ASP26 on human thioredoxin is 9.9 while
its neighbors have pKa values all below pKa ¼ 5.0, which results
in a high prediction error. The positions of residues from MD
simulations (MD-ASH26: neutral ASP and MD-ASP26: negatively
charged ASP) are shown with arrows b and c on Fig. 9. The t-SNE
map shows that the MD-ASH26 conformer (arrow b) is neigh-
boring with thioredoxin from E.coli (PDB ID: 2TRX, pKa ¼ 7.5).
In contrast, the MD-ASP26 conformer (arrow c) is a neighbor to
bovine ribonuclease A ASP14 (PDB ID: 3RN3, pKa ¼ 2.0). The
error of pKa prediction increases with the MD-ASP26 conformer
and decreases with the MD-ASH26 conformer. These observa-
tions point out that the descriptors obtained from ANI-2x NNP
can effectively predict the pKa of an amino acid by describing its
environment. The prediction errors are closely related to the
differences in the crystal and the experimental conformers.
Chem. Sci., 2022, 13, 2462–2474 | 2469
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Fig. 8 t-Distributed stochastic neighbor embedding (t-SNE) maps depicting the similarity of descriptors after recursive feature elimination for (a)
GLU residues, (b) HIS residues. Each data point is colored using the color code corresponding to the experimental pKa values.

Fig. 9 t-Distributed stochastic neighbor embedding (t-SNE) maps
depicting the similarity of descriptors after recursive feature elimina-
tion for ASP residues. Conformers for 3TRX (test set conformer,
conformer obtained from MD simulations with negatively charged
ASP26, and neutral ASH26 side chains) are shown with arrows. Each
data point is colored using the color code corresponding to the
experimental pKa values.
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Conclusion

The presented work demonstrates the capabilities of neural
network potentials to provide pKa descriptors for knowledge-
based methods. The learned representation can be used to
describe the chemical environment of amino acids in proteins.
As the neural network potentials emerge as an alternative to the
all-atom potentials, reliable pKa descriptors can be obtained
faster with their employment. The ML model presented in this
work is the rst empirical model that performs signicantly
better than the null model for all titratable residues with
a runtime of �0.2 s per residue. The code and models are
available at https://github.com/isayevlab/pKa-ANI.

A new empirical scheme for pKa prediction of amino acids in
proteins uses an ML model with descriptors calculated on ANI-
2470 | Chem. Sci., 2022, 13, 2462–2474
2x NNP. The quantum mechanical information, which depends
on the local chemical environment, is obtained from the top
layers of neural network embeddings. These descriptors are
used for training with the RF model to predict pKa values. It is
found that the adoption of RFE slightly improves the accuracy
and yields the number of features ranging from 25 to 100 in the
nal model.

The accuracy of the pKa estimations is accessed via 10-fold
CV, and the results are compared with the null models and
PROPKA predictions. It is found that the model presented in
this work performs better than the null model and PROPKA.
The RMSE of the pKa predictions is below 0.7 except for HIS
(0.72) with both the initial and the nal models. The MAEs for
all amino acid types are found below 0.5, again for the initial
and the nal models. In the case of PROPKA, the calculated
RMSEs are over 1.0 except for GLU and LYS residues which are
still over 0.7. The computed MAEs for PROPKA predictions (all
above 0.6) show that PROPKA performs almost on par – if not
worse – with the null model.

Further evaluations with an external test set not included in
training data show a slight increase in RMSEs and MAEs.
Among the external test set, two cases are selected to explore the
principal reason for errors. The conformational differences of
GLU7 on HEWL structures and their respective prediction
errors indicate that the ML model is sensitive to the confor-
mational differences. The latter case involves representative
structures for ASP26 on recombinant human thioredoxin that
are obtained with MD simulations (both with neutral and
ionized ASP26 side chain). The pKa predictions with these
representatives conrm the conformational sensitivity of the
ML model. Conceptually, a protein pKa predictor should be
sensitive to conformational alterations. Two test cases demon-
strate the capability of the MLmodel in distinguishing different
conformational states. Therefore, the errors obtained with the
presented models are closely related to the conformational
discrepancies between the crystal (xed) and experimental
(exible) structures.

As with any model, the present approach has limitations.
Some of them, such as the absence of Cys and Ser, can be
overcome by adding more training data, and mining pKa values
© 2022 The Author(s). Published by the Royal Society of Chemistry
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from the primary literature. Future work will aim to extend the
present model for coenzyme and cofactor effects. The current
ANI descriptor has only biogenic elements and has not
parametrized for metals, therefore all HETATM entries in PDB
les are ignored. There is a set of limitations that would require
the development of a new approach, for instance inclusion of
the ionic strength or different solvents into NN descriptors.
Data availability

The code and ML models are available at https://github.com/
isayevlab/pKa-ANI.
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J. Mach. Learn. Res., 2011, 12, 2825–2830.

134 V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan
and B. P. Feuston, J. Chem. Inf. Comput. Sci., 2003, 43, 1947–
1958.

135 W. L. Jorgensen, J. Chandrasekhar, J. D. Madura,
R. W. Impey and M. L. Klein, J. Chem. Phys., 1983, 79,
926–935.
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