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Accelerating colloidal quantum dot innovation
with algorithms and automation

Neal Munyebvu, a Esmé Lane, a Enrico Grisan b and Philip D. Howes *a

Quantum dots (QDs) have received an immense amount of research attention and investment in the

four decades since their discovery, and fantastic progress has been made. However, they are complex

materials exhibiting distinctive behaviors, and they have been slow to proliferate in real-world

applications. QDs occupy an intermediate state of matter, being neither bulk nor molecular materials.

Their unique and useful properties arise exactly because of this, but massive challenges in product and

device stability and reproducibility also follow as a consequence. Chief amongst the many challenges

faced in bringing QD-based devices to market are managing heavy-metal content and device instability.

In this review, the possibility of using emerging data-driven methodologies from artificial intelligence (AI)

and machine learning (ML) to expedite the translation of QDs from the lab bench to impactful energy-

related applications is explored. These approaches will help us go from scarce and patchy knowledge of

highly complex parameter spaces to accurate and broad ’maps’, intelligently targeted synthesis and

advanced quality control.

1 Introduction

The advent of nanoscale manipulation of semiconductors has
long been expected to provide a step change in technology.1

Inorganic semiconductor nanoparticles (quantum dots, QDs)
show remarkable properties, and have attracted an immense
amount of research attention and investment over the last
thirty years. Indeed, the value of the global QD market reached

a Division of Mechanical Engineering and Design, School of Engineering, London

South Bank University, 103 Borough Road, London SE1 0AA, UK.

E-mail: howesp@lsbu.ac.uk
b Division of Computer Science and Informatics, School of Engineering, London

South Bank University, 103 Borough Road, London SE1 0AA, UK

Neal Munyebvu

Neal Munyebvu obtained his
MChem in Chemistry from the
University of Southampton
(Southampton, UK) in 2016
where he conducted a research
project with the UK National
Crystallography Service (South-
ampton, UK). Following this, he
spent time in the chemical
engineering sector focused on the
support and development of
automated batch and flow
chemical reactor systems. In
2021, he joined the group of

Dr Philip D. Howes at London South Bank University (London,
UK) where his research interests include the batch to flow
conversion of chemical syntheses, reaction automation, conti-
nuous flow technology development, and the use of algorithms to
accelerate nanomaterial development.
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$3.5 billion in 2019, and is projected to surpass $8.5 billion by
2026.2 Despite this, it has sometimes been difficult not to feel
that they have been slow to reach their potential in the forty
years since their discovery.

Interest in inorganic semiconductor nanoparticles began in
research during the 1980s, as it emerged that particles in the
range of 2–10 nm diameter exhibit intriguing properties that
are distinct from the bulk behavior of the materials.1,3 These
nanoparticles became known as quantum dots (QDs), although
the term has subsequently expanded to include a plethora of
other material classes, for example carbon QDs,4 silicon QDs,5

and noble metal QDs.6 Inorganic semiconductor QDs possess
many attractive optical and electronic properties, the most
prominent being their size-dependent emission. In the regime
where the QD radius is smaller than the Bohr excitonic radius,
quantum confinement gives rise to a bandgap that varies as a
function of particle size.7 Therefore, the bandgap can be readily
and precisely tuned across and beyond the visible spectrum – a
useful property for many applications.

The useful and distinct properties of QDs emerge because
they sit in a size regime that is between the bulk and the
molecular. A combination of spatial confinement and surface
effects means that the characteristics of semiconductors trans-
late into many new but complex ‘nanoscale’ phenomena that
have taken many years to elucidate. Further, precisely engineer-
ing nano-materials by controlling their size, shape, structure
and composition (both internal and surface) as well as the
subsequent impact on their physical properties and stability is
simply quite demanding. Combining these two factors with the
numerous different possible QD compositions, synthetic path-
ways, purification techniques and processing conditions, it is
apparent that the field faces severe challenges.

The archetypal QDs stem from the II–VI semiconductor class
(e.g. CdSe, ZnS, HgTe), but over time the breadth of composi-
tions has grown to encompass all the major semiconductor
classes. An important concept in QDs is shelling, where pro-
tective layers are grown over cores to preserve their structural
and compositional integrity (e.g. CdSe/ZnS, CdSe/CdS/ZnS).
One of the most recent and impactful classes is the metal
halide perovskites,8 which emerged in the mid-2010s,9,10 and
have attracted huge attention in research with many examples
of application in optoelectronics.11,12 Further, there are well
established research lines looking to move away from heavy
metal-containing QDs in search of less toxic alternatives.13,14

Altogether, this means that there is a vast wealth of options
when investigating and optimizing QD compositions for differ-
ent applications, which brings significant challenges and
opportunities in research.

It is testament to the many interesting properties of colloidal
quantum dots (CQDs) that they have been investigated for so
many different applications. Although they have been used in
many biological studies,15 it is their deployment in energy-
related applications, and in particular optoelectronics, that has
garnered the most attention and traction.16 CQD photovoltaics
(PVs),17–19 photodetectors20–22 and LEDs23–25 are key examples
of optoelectronic applications,26 and there is much excitement
and anticipation that these devices will go on to make a
significant positive impact in their applications. CQDs strongly
absorb energy, typically light, then manipulate and transform it
in various useful ways, for example the conversion of light
energy into electrical energy in photovoltaic or photodetector
devices, the conversion of electrical energy into light in a light-
emitting device (LED), or the conversion of light energy into
chemical bonds in photocatalytic devices.27
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The bottom-up colloidal synthesis of QDs, yielding CQDs, is
adaptable to high-throughput experimentation (HTE). Bottom-
up chemical synthesis allows precision control of CQD growth
and is very popular and effective for many applications.
Grinding-based approaches, including both wet milling28 and
dry milling,29 have merged as convenient and effective ways of
making CQDs, but these methods are not readily adaptable to
HTE. The original and most well-established approach to CQD
synthesis is the hot-injection method.30,31 However, when
attention turned to production scale up in the early 2000s,
synthesis methods were sought that achieve better reproduci-
bility. This gave rise to the ‘heat-up’ method, where the reaction
precursors are combined in a single vessel, and nanoparticle
nucleation and growth is initiated by controlled heating.32

Knowledge gained from the early days of hot-injection has
been critical in informing the heat-up approach, and there
have been many examples of CQD syntheses being adapted
from hot-injection to the heat-up method.33

A major advantage in the commercial application of CQDs in
devices is their solution processibility.12 Small ‘lab-scale’ films
(i.e. o1 cm2) are readily obtainable by simple methods such as
drop-casting or spin-coating with a ‘layer-by-layer’ approach.
For large-scale manufacturing, there is very active research into
scale-up strategies, which currently include inkjet printing,
spray coating, slot-die coating and blade coating.19 Critically,
the last three are compatible with roll-to-roll fabrication, which
allows low-cost and large-scale production of electronic devices
on flexible substrates.

With the number of considerations required at each stage of
the workflow, it is clear experimentation using traditional flask-
based techniques would take many years to explore this large
parameter space and to properly elucidate and translate to tech-
nological applications. Thus, new approaches that accelerate this
voyage of discovery will be key in translating promise into reality.

Our current age of innovation and discovery has been
labelled the ‘Fourth Industrial Revolution’, where artificial
intelligence (AI) is being used to process and exploit unprece-
dented volumes of data (‘big data’) to both speed up and
advance our approach to R&D and industrial exploitation.34

Machine learning (ML) is a particularly successful AI metho-
dology, and is already achieving significant impact in molecu-
lar and materials science,35 where experimental, computational
and property data is being compiled and processed to elucidate
multiscale processing-structure–property relationships with
levels of performance and complexity that would be impossible
for human operators to achieve alone.36

In this review, an extended discussion of the main chal-
lenges in CQD development is presented, followed by an
evaluation of how data-driven and high-throughput experi-
mental approaches can be applied to overcome these chal-
lenges. We contend that the field is approaching a tipping
point where QDs will emerge and proliferate, and that this will
in part be powered by new data-driven approaches that are
emerging as part of Industry 4.0. Beyond this point, QDs will
progress from being perpetually promising to showing impact-
ful and increasingly diverse applications.

2 What are the challenges in making
QDs for real applications?
2.1 Expansive reaction and compositional parameter space

QD properties change as a continuous function of their size,
shape, composition and surface structure. This means that a
single ‘type’ of QD (e.g. cesium lead bromide) can yield a wide
range of behaviors and characteristics. Efficient synthesis of
high-purity CQDs depends on a variety of factors: precursor and
ligand concentration; solvent and anti-solvent or carrier gas
selection; rate and order of reagent addition, as well as reaction
conditions (time, temperature, pressure, use of dry or inert
environment, and extent of solution stirring). Independent
variation of any one of these factors can alter the size, shape
and composition of the resultant nanoparticles and hence their
macroscopic properties. This is an advantage in that it allows
precise tunability of properties and wide ranging applications.
However, it also presents distinct challenges especially with
regards to product reproducibility as even small changes in
precursors or reaction conditions can yield large shifts in
properties. An example is the conversion of Cs4PbBr6 to
CsPbBr3 upon addition of excess ligand (oleic acid and oleyl-
amine) to stabilize.37 This has a marked impact on the struc-
ture, converting from 0D nanoparticles to 3D nanosheets, and
hence the photoluminescence (PL).37,38

Another challenge presented by CQDs is the fact that, as
multiple output variables vary continuously as a function of
many input variables (see Fig. 1), the reaction parameter space
is extremely large and challenging to navigate. Practically, this
means mapping the resultant particle composition, size, shape,
structure, absorption and emission characteristics, etc. to the
choice and concentration of precursors, choice and concen-
tration of ligands, choice and blends of solvents, reaction
temperature, reaction time, and more. Clearly, exploring this
parameter space with a one-factor-at-time (OFAT) approach is

Fig. 1 An overview of the main variables involved in bottom-up colloidal
QD synthesis. Enclosed in the dashed line are the input and output
variables that can be readily controlled and measured in an automated
high-throughput experimental (HTE) approach, allowing real-time
synthesis and characterization and the possibility of closed-loop
experimentation.
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not going to be sufficient. Even using a more sophisticated
approach such as design of experiments (DoE),39 quite drastic
simplifications and assumptions have to be made and still a
large experimental data set needs to be acquired. In all, this
means that it is practically impossible to comprehensively map
the reaction parameter space, leaving much latent potential in
the discovery and optimization of QD materials. This brings to
mind the question that, during the decades of development in
this field, what have we missed along the way? Associating
multiple output variables with multiple/many input variables is
an extremely demanding task for a human experimenter, and
often leaves vast regions of the parameter space unexplored.
This can be compounded when standard syntheses are perpe-
tuated by the presumption that they have been optimized,
when in fact they often have not.

The popular hot injection approach to QD synthesis exem-
plifies some of the difficulties in QD science. These syntheses
involve multiple complicated mechanisms, including molecular
decomposition, monomer formation and coordination, particle
nucleation, and crystal growth. The complicated interplay
between these, their strong dependence on reaction conditions,
and the many input and output variables (Fig. 1), makes it
difficult to develop an in depth understanding and difficult to
produce reaction models.

The above discussion has only considered the reaction
variables and product characteristics. But of course for device
applications, we need to consider how the QDs perform in the
device (in situ), where they have been exposed to the rigors of
processing and are required to maintain operational perfor-
mance and stability for long time periods. If we include the
metrics of QD device performance into our data set (an absolute
necessity), then it is apparent that mapping device performance
back to the initial materials and reaction choices is an extreme
challenge.

2.2 Toxic components

Heavy metals are commonly used in CQDs. For example, the
most successful CQDs in solar cell applications to date are
those based on lead, as either lead chalcogenides (e.g. PbS) or
lead halide perovskites (e.g. CsPbI3).19 For photodetectors,
mercury and lead QDs are common,40 and for LEDs, there is
a long history of using cadmium-based QDs.26 On the face of it,
it seems that given the toxicity of such heavy metals,41 we
should strive to limit their use in devices. It is undeniable that
heavy metal toxicity presents a problem throughout the product
life cycle, from mining and processing through to manufacture,
use and disposal. Further, there are restrictions on the use of
heavy metals in electrical and electronic equipment,42 which
will impact the proliferation of heavy metal-based QD-
containing devices. However, there are also good arguments
that the use of lead can be safely managed, and that its benefits
outweigh its risks.43

Regardless, great advances have been made in the field of
CQD synthesis with low toxicity and earth-abundant constituent
elements.44,45 For example, ternary I–III–VI2 QDs (e.g. CuInSe2,
AgInS2) offer many of the key advantages (e.g. widely tunable

luminescence (ca. 470–1200 nm) and broad absorption), whilst
offering additional properties such as large global Stokes shift and
plasmonic character.46 Further, their near-infrared absorption
onset allows excellent harvesting of solar photons. However,
understanding of the synthesis routes and optoelectronic pro-
perties of I–III–VI2 QDs is somewhat immature versus other QD
systems. Therefore, we must further our understanding and
translate promise into real applications. Meanwhile, studies
pursuing heavy-metal-free perovskite QDs have focused on repla-
cing lead with tin, germanium, antimony, bismuth, palladium,
copper, indium and silver, with varying levels of success,45 with
products typically being of a lesser quality than lead-based ones.
Despite this, there is significant evidence that there is great
potential waiting to be unlocked in this research space,14,47 given
more time and better experimental approaches to explore the vast
material and reaction parameter space involved.

2.3 Surface chemistry and instability

The percentage of atoms in a solid that are positioned at or
near a surface increases dramatically as dimensions approach
the nanoscale (o100 nm). This means that surface effects
become significant or even dominant in nanoparticles. This
poses both advantages (e.g. in nanocatalysis48) and disadvan-
tages (e.g. in nanoparticle instability49). In the QD device
context, the interfaces between QDs in films, and between
QDs and adjacent layers in devices, are key areas that require
careful engineering. For QDs, instabilities such as through
oxidation, photocorrosion and thermal degradation, are a big
problem, both during synthesis and processing, and in device
operation. For commercial applications, QD devices need to
operate in ambient conditions, at elevated temperature, and
often under exposure to UV (e.g. in QDPV). This is critical,
because the rationale for pursuing QD devices does not rest
solely on peak performance or efficiency, but also on the
lifetime of the device. Accordingly, a huge amount of research
attention is being focused on the understanding and engineer-
ing of QD surface chemistry.50 Surface defects raise the surface
energy through the increased number of dangling bonds,
raising the materials sensitivity to its surroundings. The
increased number of dangling bonds introduces mid-gap elec-
tronic states (known as trap states) which can capture an
excited electron, encouraging non-radiative electron–hole
recombination and decreasing the photoluminescence quan-
tum yield (PLQY).51 To counteract the impact of surface defects,
passivation of the inorganic centre via selected ligand coordi-
nation or through shelling is required.38,52

QD ligands are normally designed with a QD-coordinating
ligand head group (such as carboxylates, amines and thiols), an
alkyl bridging group and a functionalized tail group.51,53 Aside
for their impact on electronic effects, the coordinating ligands
act to shield the metal centre from outside attack, both steri-
cally by use of a long alkyl tail and through the relief of surface
energy. This has the benefit of preventing impurity adsorption
however can also prevent carrier transport in some applications.53

Compact, ordered and highly-stable QD films are vital for device
realization. QDs are typically synthesized using long chain ligands
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(e.g. oleylamine), which are necessary for modulating and stabiliz-
ing particle growth. However, when these QDs are cast into films,
these long ligands act as insulating layers that inhibit charge
transport in to or out of the QDs. This can be alleviated by
exchanging the long ligands with short ones e.g. short chain
thiols,17,54,55 metal halides,56,57 or even atomic ligands (e.g.
halides58), but this is not generally to the benefit of QD stability.
For example, during the ligand exchange process, sites left vacant
by outgoing long ligands might not be fully replaced with short
ligands, which allows oxygen to occupy vacancies, introducing
detrimental mid-gap trap states.

Nevertheless, QD-based devices have reached commerciali-
zation, and many more are moving towards it. These will
inevitably have an increasing impact over time. However, we
do not want to be in a position where there is vast latent
potential in the QD field that is not being tapped because we
lack the ability to effectively explore the experimental options
and the related parameter spaces. There are big opportunities
for significant gains through QD surface and ligand engineering,
and it is vital that we look for better ways of exploring this space.

3 How can we approach data-driven
discovery?
3.1 Adapting for flow and microfluidics

In parallel with the development of bulk- or flask-based QD
synthesis approaches, many researchers have looked at adapt-
ing CQD synthesis to the flow chemistry approach, particularly
using microfluidic engineering.59 Microfluidics relates to the
study and manipulation of fluids at the micro-scale, and in the
chemical sciences context it is often referred to as flow chem-
istry. The general benefits of flow include enhanced reaction
control and highly efficient use of materials.60 A major benefit
is enhanced thermal and mass transport in miniaturized reac-
tion volumes. This is key in CQD synthesis, where narrower
distributions in temperature and mass throughout reaction
volumes lead directly to lower nanoparticle size polydispersity
and thus improved color purity.61,62 Further, microfluidic systems
can allow the use of more extreme reactions that are practically
problematic at larger scales (high pressures, volatile solvents, etc.),
due to the possibility of making closed systems with precise and
modular reaction control.

However, while microfluidics offer many opportunities in
CQD synthesis, there are barriers to overcome. In particular the
need for short, fast syntheses restricts the number of attainable
CQDs simply because not all will be adaptable to this metho-
dology. Further, while the hot-injection and heat-up methods
can be utilized in this framework, they are limited by their
scalability and sustainability. When adapting flask to flow, fast
room-temperature syntheses are a highly desirable starting
point. A 2017 work by Yang et al. details such a synthesis.37

Cs4PbBr6 and CsPbBr3 were produced by harnessing super-
saturation recrystallisation (SR) as a natural descendent of
the arrested precipitation technique.37 As with the archetypal
method, SR harnesses the difference in solubility of the metal

precursors and the target product to induce precipitation.
However the method has evolved to incorporate the differing
solubilities of the precursors using a multi-solvent:antisolvent
system. Recrystallisation is initiated by fast injection of the
solvated precursors into excess antisolvent inducing sudden
supersaturation of the ions and rapid nucleation. The utilisa-
tion of solvent effects to overcome the kinetic (precursor
dispersion and migration) and thermodynamic (solvent order-
ing effects) barriers to CQD formation offers a practical and
potential more sustainable alternative to high temperatures
and pressures usually required.

Microfluidic reactor-based systems can be designed to be
extremely versatile and modular, with the ease of system
construction from smaller components and tailoring to specific
applications. A relatively low-cost and simple system can use a
variety of off-the-shelf components and custom technologies.
Fig. 2 shows a schematic of the basic microfluidic requirements
for an effective CQD synthesis and analysis platform. Fluid
delivery components are used to transport precursors through
the system and control the flow rate. For liquids—syringe
pumps, pressure pumps and peristaltic pumps are commonly
used. Whilst for gases, gas cylinders connected to mass flow
controllers can be used for fine adjustment. For mixing, a
microfluidic mixer is employed. This can be simple mixing
junction (T-Piece, cross-piece), connected to a length of tubing,
or a chip-based microfluidic device which can be easily fabri-
cated to different designs and geometries depending on the
desired application. Niculescu et al. present a review of current
microreactor technology and fabrication techniques, alongside
a comparison of available materials and their features as used
for a variety of applications.63

Inline detection (e.g. UV-Vis absorption spectroscopy) allows
for live measurement and monitoring of particle properties.
Taking spectroscopic measurements inline yields information
of reaction kinetics, whilst taking end-point measurements
provides a snapshot of QD character that can either be logged
as part of a larger scale multidimensional parameter screen or
can be fed back into a control algorithm to then influence the
next set of reaction parameters in a closed-loop experiment.
Although inline measurements will typically be PL and absor-
bance spectroscopy due to the relative ease of these techniques,
there have been many demonstrations of other techniques such

Fig. 2 Basic set-up for a flow reactor system for CQD synthesis consist-
ing of fluid delivery, a reaction zone and collection. This can be typically
made up of low cost components. Both off-the-shelf and custom made
systems have been reported in the literature.
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as X-ray-based compositional and structural measurements.59,64

Sample collection can be done manually, or by using automated
collectors to eliminate the need for user intervention. Fraction
collectors are common, and allow the collection of products into
multiple vials in a single run or to generate libraries of materials.
More sophisticated systems can be designed using precursor
refill devices to enable a series of different experiments, sample
loops which allow use of smaller volumes of precursors during
development, back-pressure regulation and inline purification
(e.g. liquid–liquid separators).

Automated microfluidic reactors combine the multiple
operations that are followed in CQD synthesis into a simplified
series workflow. For example, using a syringe pump precursors
are pre-prepared in syringes, which then deliver the solutions
into the reactor. Changing flow rates provides ready control
over precursor ratios (and therefore reaction stoichiometry),
ligand concentration and composition, as well as solvent dilu-
tions and combinations. In closed-loop formats, an algorithm
can be used to either drive the reaction towards a desired
outcome, or to drive it into areas of the parameter space that
has high uncertainty and/or low coverage.

Note that the automation aspect involves running the reaction
itself (i.e. heating and mixing of precursors). Although reaction
precursor workup needs to be performed manually as with flask-
based synthesis, researchers can derive hundreds of experimental
results from a single batch with the automated microfluidic
approach, making it very material efficient. Further, it should be
noted that inline spectroscopy yields data on the as-synthesized
particles. Given that CQDs will nearly always require washing and
purification steps to remove excess ligands and unreacted pre-
cursors, and maybe change the solvent in which the CQDs are
dispersed, one needs to consider any potential change in properties
during purification, and whether a clear correlation can be drawn
between those and the characteristics of the as-synthesized pro-
ducts. In the future, it is likely that the purification and solvent
exchange steps, plus other downstream processes, will increasingly
be incorporated into the reactor workflow, thus closing this gap.

3.2 Big data and high-throughput experimentation

High-throughput experimentation (HTE) aims to create and
process samples at a rate that significantly surpasses a manual
operator and will typically encompass the use of highly para-
llelized systems, robotic apparatus, and/or automated fluid
handling. This allows for more efficient collection of larger
volumes of data than what is possible using the traditional
iterative approach to experimentation, ultimately allowing
researchers to solve challenges more rapidly than using tradi-
tional approaches.

As materials science establishes itself in the realm of big
data, HTE enables researchers the ability to generate signifi-
cantly more results in the same amount of time; the increased
volume, variety, and velocity of the data means that data-
processing becomes too large or complex to be dealt with by
traditional methods. This paves the way for the use of machine
learning (ML), where algorithms can be trained for data inter-
pretation, experiment prediction and experiment planning

purposes. However, a clear point that should be emphasised
from the outset is that the difficulty level in converting to HTE
varies extremely widely depending on the exact nature of the
process being automated. It is vital to establish whether the
investment in capital and time to employ HTE is worth the
eventual output from the studies. Fortunately with CQDs,
conversion to HTE is relatively accessible, and there have been
many excellent demonstrations in the literature to date.59,61

Several studies looking at the development of microreactor-
based systems that can perform HTE in the literature have
already been developed. In 2017, Epps et al. developed a
modular microfluidic system that was designed specifically to
explore the large parameter space of such nanoparticles.65 This
system allows researchers to screen different material composi-
tions to explore the large parameter space, specifically mana-
ging this by performing multiple characterizations within a
single experiment. By using a translational flow cell, the reactor
can monitor and track progress of a reaction along its reactor
length by taking inline optical measurements at up to 40
unique points along the reactor within a single experiment.
In this study, they explored nanocrystal growth within a flow
reactor running at specific mixing timescales (flow velocities)
and could acquire up to 30 000 spectra per day, corresponding
to 15 000 experimental conditions.65 This type of study demon-
strated the sheer scale of the potential parameter space, and
how such interesting engineering design choices could further
expand data generation capabilities.

A recent study by Lüdicke et al. explored the development of a
flow reactor capable of performing HTE to study the performance
of automated solid phase purification of QDs.66 This sophisticated
system is capable of synthesizing and immediately analyzing
material inline, as it is produced, by optical measurements
(Fig. 3). Then automatically purifying collected material and per-
forming a secondary characterization. Alongside fast and efficient
data capture and collection, this type of system allows researchers
to quickly screen the nanomaterials both as-synthesized and post-
purification without the time-consuming manual handling typical
for the purification-step of these types of material.

Beyond examples looking directly at semiconductor nano-
particles, a review from Zhou et al. explores microfluidic-based
high throughput platforms capable of synthesizing a range of

Fig. 3 Lüdicke et al.66 built a flow reactor platform consisting of CdSe/
ZnS synthesis and purification, with fully integrated reactor control.
Reprinted with permission from ref. 66.
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nanomaterials,67 highlighting works that, with thoughtful
design, can be transferred across fields. Throughout the rest
of this review, the main examples highlighted incorporate
systems performing HTE, or have the potential to be expanded
further to allow for such a platform.

3.3 Automation, algorithms and artificial intelligence

To reiterate the problem, QD researchers face the critical
challenge of translating the immense promise of these materials
from fundamental science through to valuable and positive real-
world impact. The major challenges involve discovering and
optimizing materials with high performance in applications, that
are stable for long periods of time, and to accomplish this using a
range of elements that minimize negative impacts when consid-
ered in the context of device use, full product life cycle and
environmental impact assessment. The key difficulty is the huge
parameter space to be navigated here, including many reaction,
processing and performance variables with complex interactions.
Although four decades of research in QDs has seen immense
progress, we know there is so much latent potential waiting to be
unlocked.

Faced with this challenge, and a pressing need to accelerate
innovation in the energy field, it is prudent to look for tools that
augment our R&D capabilities. The combination of automation
and algorithms, and their application to the experimental
sciences, does just that.68 Automation allows significant acce-
leration of experimentation and data collection, while algo-
rithms facilitate rapid and efficient experimental control and
data analysis. This dramatically improves our powers of pre-
diction, discovery, characterization and optimization.

Materials science is currently entering the realm of artificial
intelligence (AI)-driven experimentation, with ML gaining par-
ticular traction.69,70 ML is a field of AI that involves designing
and building algorithms and/or models that learn patterns by
processing training data, and then to make predictions given
new input data. It can yield sophisticated algorithms that are
able to predict properties or reveal hidden features in data sets.

ML algorithms can also be classified into supervised and
unsupervised learning. Supervised learning takes in labelled
input data and attempts to map output variables back to known

inputs. For example, you might use tabulated QD synthesis data
as your input (precursor concentration, reaction stoichiometry,
temperature, etc.), and attempt to map an output variable such
as PLQY back to those to reveal what combination of input
variables maximizes PLQY. Supervised algorithms are used for
experiment prediction and such platforms are trained with data
containing previously known inputs and their associated out-
puts (Table 1). Common algorithms here include artificial
neural networks (ANNs),71 decision trees (DTs),72 and support
vector machines (SVMs).73 In contrast, unsupervised learning
takes unlabelled input data and attempts to reveal intrinsic
relationships within it that are not previously understood or
expected. For example, you might use QD spectral data as your
input (e.g. PL spectra), and see how an algorithm clusters them,
or if it identifies outliers, through which you can understand
non-obvious trends or differences in your data based on
spectral features.74 Common algorithms used here include
principal component analysis (PCA) for dimensionality
reduction,74 K-means clustering for identifying regularities in
the input data75,76 or clustering QDs based on specific output
properties such as size and shape.77,78 Deep neural networks
(DNNs), or autoencoders can also be used for more sophisti-
cated dimensionality reduction challenges, feature learning,
and also to predict materials that have a specific property based
on a trained ML model.79

Additional approaches include reinforcement learning (RL)
algorithms that utilize a trial and error style approach to gain
feedback, typically in the form of a reward function to learn
from the consequences of the model’s decisions.80 Whilst
active learning (AL) is a special case of supervised learning that
can intuitively identify and request datapoints from the next set
of experiments that the model expects to give the most suitable
results based on the original training dataset.81

In the context of QD synthesis, optimization algorithms are
used for experiment planning. Here, the inputs are the QD synth-
esis data (reaction stoichiometry, temperature, residence time,
etc.) alongside the reaction data (QD size, PLQY, PL full-width-
half-maximum (FWHM)). Such algorithms aim to optimize
desired material properties, by suggesting new experiment
conditions based on the properties observed as a result of

Table 1 Overview of prediction algorithms, used to predict nanoparticle properties based on experimental parameters, and optimization algorithms,
used to suggest new experiment parameters to optimize QD properties

Prediction algorithms Optimization algorithms

Basic principle Uses labelled input data and attempts to
map output variables against the selected input(s)

Inputs are continually optimised against
a desired property (e.g. PLQY)

Inputs Experiment parameters Previous experiment parameters
e.g. precursor concentration, ligand
concentration, stoichiometry, temperature, etc.

e.g. Stoichiometry = 1 : 1, temperature = 40 1C,
reaction time = 6 min, PLQY = 40%

Outputs QD properties Next experiment parameters
e.g. size, FWHM, PLQY, yield e.g. stoichiometry = 1 : 2, temperature = 20 1C,

reaction time = 6 min

Example algorithms Support vector machines Bayesian optimization
Decision trees/random forests Genetic algorithms
Neural networks SNOBFIT
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previous experimental parameters (Table 1). Examples of algo-
rithms here are Bayesian Optimization (BO),82 Genetic Algo-
rithms (GA)83 and SNOBFIT (Stable Noisy Optimization by
Branch and FIT).84

A key point is that the algorithm needs to be fed with
enough training data to ensure the efficacy of the model that
it builds. Consequently, pairing ML with HTE presents an
attractive option. ML is particularly well-suited to translating
complex and unintuitive high-dimensional parameter spaces to
a single or small numbers of understandable and applicable
outputs. Interested readers can find more information on these
algorithms in some excellent published reviews.36,69,85–92

In summary, the major thrust of the ML approach here is to
reduce time to discovery, and to expedite the transition of
impactful discoveries from the lab and into the real world. In
the context of QD devices, and our pressing need to bring energy-
efficient products to market, we can see the attraction of bringing
AI into the fold. The idea is to plan smart experiments based on
predictions derived from past knowledge, theoretical simulation,
and modelling. To execute efficient experiments that yield rich
data on the target parameter space, analyze that data in a smart
way that maximizes utility, and feedback the information gained
into our knowledge bank to inform future experiments and
applications. Ultimately, the goal is an overarching methodology
that brings all this data together in a coherent workflow (Fig. 4).

4 How can data-led strategies help us
overcome the challenges of producing
QDs for commercial applications?
4.1 Constantly evolving microfluidic synthetic strategies

The benefits and challenges of using microfluidics specifi-
cally for nanoparticle synthesis are well documented in the

literature.93,94 Microreactors inherently require smaller volumes
of reagents, minimizing the handling of potentially hazardous
materials and reducing solvent waste—important in both devel-
opment and scale up. Additionally, microfluidic processes can
be easily sealed from the atmosphere, or incorporate inert gas
flow to reduce exposure to air or moisture—useful for toxic or
air-sensitive materials. Relative to the alternative flask-based
processes, microfluidics enables efficient heat transfer and
mass transport within the reactor, allowing for mixing, heating
and/or cooling of reagents to be reduced to milliseconds in a
microreactor, reducing the reaction time and providing a facile
route to manipulate particle properties against specific input
variables.95 Ma et al. designed a precise temperature controllable
microreactor for the rapid synthesis of AgInS2 QDs. They found
that an increase of temperature from 30 1C to 70 1C, resulted in a
direct increase in particle size, shifting the fluorescence peak of
the synthesized QDs from 590 nm to 720 nm.96 Liu et al.
combined a microreactor with a spinning platform (microfluidic
spinning technique) to produce CdSe QDs for white light emit-
ting diodes. This unique method successfully enabled synthesis
of the QDs at a process temperature of 110 1C, 190 1C lower than
the temperature used in the hot injection technique.97 Yang et al.
used ultrasonic radiation to create droplets within a microreac-
tor to improve the quantum yield of ZnO QDs. From this they
found that the flow rate, ultrasonic power and temperature were
influential in the PL properties of the synthesized QDs, resulting
in QDs with a QY of 64.7% using this method.98 These works
demonstrate that with smart design, a relatively simple system
can easily investigate the effect of a wide range of specific input
variables on the QD properties, and with a shorter reaction time
and less aggressive conditions than the corresponding flask-
based reactions.

Upon reaching steady-state conditions within a microreac-
tor, reagents are exposed to the same conditions through the
flow path between each experimental run, limiting the effect of
uncontrolled ‘mixing zones’ and temperature gradients on the
polydispersity and improving the reproducibility of the obtained
QDs. Different configurations of reactors can also be linked
together for more complex reactions, or to control different
stages of particle formation. Baek et al. describe a multi-stage
approach where they were able to reliably screen four different
types of core/shell QDs. In this work, they used up to six
microreactors for a single QD type, with five specific designs
for different aspects of the synthesis mechanism: mixing; aging;
sequential growth; shell formation; annealing.99

There have been many elegant demonstrations of colloidal
particle synthesis in microfluidic reactors.100 Reviews from
Niculescu et al.93 and Chen et al.101 summarize the variety of
techniques centered around microfluidics that are used in the
synthesis of functional nanomaterials, highlighting how this
field has introduced several novel methods for the synthesis of
a wide range of nanoparticles, alongside various additional
papers focusing specifically on QD synthesis.61,62,102 The pio-
neering work in this specific area was published in 2003, which
demonstrated the feasibility of synthesizing CQDs in both
chip-based103 and tube-based104 microfluidic flow systems.

Fig. 4 Pre-requisites for designing a high quality data collection system,
bringing together the ideas of microfluidics, high-throughput experimen-
tation and automation using optimization algorithms.
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4.2 Towards big data with high-throughput experimentation

Early work in the high-throughput synthesis of QDs was con-
ducted by the team of Chan et al. at the Lawrence Berkeley
National Laboratory, who in 2010 reported a custom-built
automated workstation, capable of performing up to 8 parallel
batch reactions to synthesize CQDs.105 This sophisticated sys-
tem uses a variety of features to enable automated HTE
including a liquid handling robot, heated needles for phase
control, a vial gripper to manipulate solid objects and an
automated balance to record mass. The work performed in this
study specifically aimed to assess how well the system could
reproduce particle properties between different batches, show-
ing a 0.2% coefficient of variation in the mean diameters across
particles generated in the different reactors. This was an
excellent representation of how using automation could lower
the requirements of human handlers in producing reliable,
reproducible batches of QD material—vital for manufacturing.
One additional highlight of this work was that the researchers
demonstrated how they were able to screen various different
reaction parameter data to optimize properties specifically for
emerging QD applications.105 As shown in later works, the
concepts used in this work could be easily transferred to
upgrade a basic flow reactor system to enable greater auto-
mation performance.

In the last two decades, there has been steady progress in
the development of automated microfluidic flow reactors,
which offer the possibility of combining HTE with real-time
data logging and analytics. In 2012, the Maeda group published
two papers on the application of ML, specifically NNs, as a tool
to make sense of data sets on the CdSe QDs amassed using a
microreactor with inline PL and absorption spectroscopy.106,107

An automated microreactor was used to perform CQD synth-
esis, working through a combinatorial experiment set of six
reactions conditions (reaction temperature, reaction time, Cd
concentrations, Se/Cd ratio, amine concentrations, and amine
type), yielding a dataset of 3387 experiments. Using PL and
absorption spectra collected inline after the reaction endpoint,
an automated script extracted PL peak wavelengths, PL FWHM,
PL peak area, absorption peak wavelength, and absorbance of
absorption peak, which were then used to calculate particle
diameter, reaction yield, and PLQY.106 They then trained 1600
separate NNs and combined them to form an ensemble NN
(ENN), which was used to perform NN-based data interpolation
for mapping multidimensional condition-property landscapes.107

The result was basically a navigable multidimensional parameter
space that could be explored in search of optimal properties (i.e.
maximizing PLQY and reaction yield, minimizing FWHM). Fig. 5
shows an example of how these parameters vary as a function
of reaction temperature and time, for a given surface ligand
(dodecylamine).

Alongside inline measurements, in situ and online monitor-
ing techniques can be seamlessly coupled to a high-throughput
microfluidic platform. A good example of how such techniques
are used in the growth of core–shell QDs in microreactors was
performed by Yashina et al. who developed a two stage micro-
fluidic platform coupled with real-time optical detection for

CuInS2/ZnS synthesis. In stage one they grew CuInS2 core QDs
and monitored the emission spectra produced, followed by a
second stage injection of precursors to grow the ZnS shells and
the resulting emission spectra was monitored, all within a
single workflow.108 With this they could observe and analyze
the effect of shell formation inline—offering a clear route to
exploring CQD surface effects by simply altering solvent choice,
precursors, and reaction conditions.

A review by Li et al. offers insight on the different types of
inline sensors and measurement techniques currently used in
the field of microfluidics that have the potential for utility in
the CQD synthetic process.109 For CQD synthesis, PL spectro-
scopy, UV-vis absorbance spectroscopy and X-ray absorbance
spectroscopy are highly practical and relevant techniques,110

which can be performed on CQDs without post-synthesis work-
up. Incorporating effective monitoring and sensing techniques
into the CQD workflow allows for efficient quality control, as
well the ability to identify by-products or contaminants.

4.3 Advanced data analysis and prediction

One of the primary advantages of ML techniques, is that they
can help map complex parameter spaces and uncover relation-
ships within relatively large datasets which cannot be easily
done by human researchers. In the context of QD research,
there have been some excellent studies demonstrating the
utility of ML in advancing understanding and performance of
QDs. An early study by Singulani et al., published in 2008,
demonstrated the utility of ML in QD development.111 Here, the
authors applied an artificial neural network (ANN) and a

Fig. 5 A study of CdSe QDs by Orimoto et al.107 An NN model of a 3D
parameter space, where the output variables of (a) PLQY, (b) PL wave-
length (nm), (c) FWHM (nm), and (d) reaction yield (RY, %), varying as a
function of temperature (1C) and reaction time (s). The red arrow indicates
the point corresponding to the highest PLQY. Reprinted with permission
from ref. 107. Copyright 2021 American Chemical Society.
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genetic algorithm (GA) to associate the height of epitaxially-
grown InAs QDs with the synthesis parameters. In the epitaxial
approach, QDs are formed by epitaxial deposition of semicon-
ductor heterostructures (by e.g. molecular beam epitaxy (MBE),
or metalorganic vapor phase epitaxy (MOVPE)) where there is a
lattice mismatch between layers.112 The resultant strain sees
‘islands’ or material form, which are QDs. In this work, the
growth of InAs on top of InGaAlAs was studied. Considering six
reaction variables (including the indium flux in the reactor,
growth temperature, deposition time, aluminium and indium
content of the substrate), they demonstrated that with even a
relatively sparse data set (67 parameter sets), the correlation
between their model and experimental data exhibited a mean
average percentage error of only 8.3%. Fig. 6a shows the
correlation data for the whole data set, whilst Fig. 6b shows a
parameter map of QD mean height varying as a function of
deposition time and aluminium content. It is obvious how such
a parameter map would be a real benefit when optimizing this
QD fabrication process.

A paper from the Sargent group recently demonstrated
ML-based optimization of PbS QDs,82 specifically targeting
the minimization of particle size dispersity, which is a key
challenge in order to improve the open-circuit voltage in
QDPVs. The model was based on BO implemented using a
neural network (NN). By analyzing a large data set compiled
from historical records of PbS QD synthesis in their lab (2300
syntheses collected over 6 years, see Fig. 7a), the group first
used their model to make predictions about which parameter
combinations should achieve the desired reduction in polydis-
persity (closed circles in Fig. 7a), with an associated uncertainty
level. Then following these predictions, they performed addi-
tional experiments whose data was incorporated into the model
to allow further iterative improvements (open circles in Fig. 7a).
In the end, they observed that oleylamine addition was key in
reducing size and polydispersity, and that use of a high Pb : S
ratio at a lowered injection temperature, and addition of metal
chlorides (Fig. 7b) allowed for a successful reduction in PbS QD
size polydispersity (55 meV at 950 nm and 24 meV at 1500 nm)
which were both improvements over the previously reported
bests. This study is a great example of how employing ML
allows a broad and readily interpreted overview of trends in a
very large experimental data set.

Given that the exciton energy (and therefore absorption and
PL emission) varies as a function of QD diameter, it is extremely
important to be able to exert precise control of final diameter of
synthesized products. Using historical data extracted from
published works on the hot-injection syntheses of CdSe, CdS,
PbS, PbSe, and ZnSe QDs, Baum et al. applied ML algorithms to
identify the most important variables in defining the final
diameter of QDs.72 The database was assembled using data
on injection and growth temperature, reaction time, metal salt
precursors, solvents, ligands, and associated concentrations.
The group looked at both random forest and gradient boosting
algorithms, concluding that the reaction duration, tempera-
ture, and metal precursor types were the dominant factors.
Although this study did not provide any definitive answers for
QD optimization, it does present an interesting case study for
the application of ML to historical literature data, which could
prove to be an extremely powerful technique for the better

Fig. 6 A study of epitaxially-grown InAs QDs by Singulani et al.111 (a) A
comparison of an NN prediction for QD mean height with the obtained
AFM experimental data. (b) A parameter map showing the output variable
InAs QD height (nm) as a function of deposition time (s) and aluminium
content of the InGaAlAs substrate. Reprinted from ref. 111, Copyright 2008,
with permission from Elsevier.

Fig. 7 A study of PbS QDs by Vozny et al.82 (a) The parameter space, with
input variables of Pb precursor volume and injection temperature, and an
output variable of bandgap wavelength (nm) on the colour scale. Filled
circles are the original pre-ML data, and open circles are subsequent ML-
guided experiments. (b) A scatter plot showing the effect of oleylamine and
chlorides on bandgap energy and particle polydispersity, showing the
correlation between the experimental data (red points) and predictions
made by the NN model. Reprinted with permission from ref. 82. Copyright
2019 American Chemical Society.
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exploitation of past research. Here, it was apparent that a key
reaction variable was identified by ML that could have been
easily overlooked by a human investigator.

Another report on the use of ML in QD synthesis was
published by the Banerjee group.73 Here, they were interested
in predictive control of layer thickness of 2D CsPbBr3 nano-
particles, to see whether they could model layer thickness as a
function of reaction variables, and also to provide some funda-
mental insight into the reaction itself. A specific interest was to
see if they could do this with a relatively sparse data set
(74 samples). Support vector machine (SVM) classification was
used to differentiate between bulk and quantum-confined QDs,
then a regression model was used for the prediction of thickness
of the QDs in the quantum-confined regime, given an arbitrary set
of reaction conditions. Estimations were shown to correlate well
with predictions. The authors presented an interesting study of
how layer thickness varies as a function of alkylamine ligand
chain lengths, ligand concentration, and reaction temperature,
where they used the SVM regression to map this parameter space
(Fig. 8). Visual analysis clearly reveals relationships that would
have been hard to identify in lower-dimensional or lower-
resolution plots. For example, at a constant temperature of
82 1C, longer chain lengths at higher concentrations yield thin
nanoplatelets (ca. 2–3 layers), whereas short chain lengths at lower
concentration yield much thicker (ca. 7 layers) products, which
was explained by the fact that the stabilization of the thicker
platelets results from increased diffusion coefficients of mono-
meric species, facilitating faster crystal growth.

A paper published by Fu et al. demonstrated the use NN-
based modelling and simulation to analyze data on CuInS2/ZnS

QDs, studying PLQY and emission peak position as a function
of seven reaction parameters.113 Based on a data set of 94
experiments, the authors demonstrated a good correlation
between their model and the experimental data of over 90%.
Through a combination of a Monte Carlo-based method and
gradient-based local optimization, they extracted a final
‘optimal’ reaction parameter set, which included fixing
1-dodecanethiol (DDT) as the capping ligand, with a CuInS2

core reaction temperature of 240 1C, with a final prediction that
a PLQY of 90% is feasible for an emission peak between 600–
650 nm. Although this work is somewhat limited in its applica-
tion, it does nicely demonstrate how ML modelling can be used
to guide data analysis.

The above studies clearly show the potential of using ML to
navigate complex parameter spaces. However, they possess two
basic drawbacks: data sets that are either relatively small
(typically less than 100 samples), or take a very long time to
compile. The low-sample-number studies tend to emphasize
the fact that they achieve good correlation between their model
and their experimental data set despite having relatively small
data sets. This demonstrates the interpolative abilities of ML
algorithms, essentially allowing mapping of a complex para-
meter space. However, it is well known that the true power of AI
and ML comes with big data, whereby complex questions can
only be answered upon processing/analysis of thousands or
millions of samples. But, compiling such large data sets by the
traditional chemical synthesis approaches is simply too time-
and resource-intensive. To bypass this, it is necessary to rethink
the way in which we conduct QD discovery, characterization
and optimization, and the field of microfluidics enabled HTE
can take us towards the big data ideal.

4.4 Combining algorithms for reactor control and data
analysis

Although relatively few studies demonstrating QD synthesis in
microfluidic reactors have used real-time reactor control and/or
algorithm-based control and analysis, this field is beginning to
hit its stride and we are seeing some high impact work emer-
ging. The first demonstration of algorithm-controlled rapid
synthesis optimization was published in 2007, where inline
PL spectroscopy was used to feed data into a control algorithm
that could drive the reactor toward a target product (specifically,
obtaining maximum emission intensity at a specified wave-
length).114 This work demonstrated the potential of using
an algorithm for target-oriented nanoparticle synthesis in
microfluidics.

Later, the deMello group demonstrated the use of a meta-
modeling algorithm based on Universal Kriging for the con-
trolled synthesis of CdSe and CdSeTe QDs.115 Here, the reaction
parameter space was scanned (changing stoichiometry and
reaction time), with the FWHM, PL emission maximum
and intensity being extracted for each QD reading. Kriging
was then used to achieve data interpolation, yielding a model
that could accurately predict the reactor output at arbitrary
points within the chosen parameter space. This work was
extended by the same group, when Bezinge et al. developed

Fig. 8 A study of 2D CsPbBr3 nanoparticles by Braham et al.73 A set of
contour plot slices of the support vector machine (SVM) regression. The
output variable (layer thickness) varies as a function of three input variables
(concentration ratio alkylamine:Pb, diffusion coefficient of the different
lengths of n-alkylamine ligands (C4, C8, C12, and C18), and temperature).
Temperatures shown are (a) 50 1C, (b) 82 1C, (c) 120 1C, and (d) 1501C.
Reprinted with permission from ref. 73. Copyright 2019 American
Chemical Society.
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an automated microfluidic reactor for controlled synthesis of
quinary (Cs/FA)Pb(I/Br)3 and senary (Rb/Cs/FA)Pb(I/Br)3 perovs-
kite QDs.116 This time, the algorithm was incorporated within
the reactor control loop, allowing real time modelling and
navigation of the reaction parameter space. Given an arbitrary
target emission wavelength, the reactor scans a sparse array of
points in the parameter space (varying the stoichiometry),
models the data, then starts iteratively testing and re-modelling,
eventually producing a list of reaction conditions that will yield
QDs with the desired emission wavelength. Such closed-loop
experimentation is extremely powerful when it comes to both
fundamental studies (e.g. mapping parameter spaces to guide
materials discovery and optimization) and for applied synthesis
(e.g. for product quality control during flow manufacture).

The combination of algorithmic control of closed-loop QD
synthesis experiments and ML algorithms for data analysis and
modelling has culminated in the development of advanced
autonomous ML-driven closed-loop systems that show extra-
ordinary potential in QD development and commercial
translation.

A recent publication by Fong et al. describes an intelligent
closed-loop automated 5-pump reactor system incorporating an
inline small-angle X-ray scattering (SAXS) device for automated
inline X-ray results to predict and control palladium nano-
particle size.117 The system is capable of performing over 50
unique syntheses over 24 hours, accelerating R&D, and selects
recipes using a joint BO with Gaussian process regression. With
this approach, the system will be capable of tackling various
colloidal particle synthetic challenges where the generated
material can be detected using SAXS, accelerating discovery.

An interesting approach by Mekki-Berrada et al. used a two-
step ML process to optimise silver nanoparticle formation.
Their approach allowed for prediction of the full UV-Vis absorp-
tion spectra, rather than a specific output feature, enabling
investigation of a high dimensional space without handling
multiple individual output parameters.118 They used flow-
based HTE to generate an initial spectral dataset, then trained
and applied a Gaussian process-based BO to suggest input
parameters for subsequent experiments. The difference
between the actual spectra generated from the suggested para-
meters and the target spectra—calculated as a loss func-
tion—was evaluated by the optimization algorithm to select
the next experimental parameters. To more efficiently sample
the parameter space the trained BO algorithm was used to train
an offline deep neural network (DNN) alongside the fully
resolved absorption spectra from the real experiments. Once
introduced into the HTE loop, the trained DNN successfully
extended the prediction capabilities of the system, whilst also
giving the researchers fundamental insight on the chemical
synthesis. Additionally, using SHAP (SHApley Additive exPlana-
tions) analysis, they could also identify and rank the most
influential input parameters for predicting the absorption
spectra.118 This work offers a clear demonstration of how
researchers can exploit the limitations of individual algorithms
by merging techniques to more intelligently explore and exploit
the wide parameter space.

At the time of writing this review, the most advanced
systems that combine high-throughput QD synthesis/proces-
sing with advanced algorithms for both reactor control and
data analysis are those of the Abolhasani group.119 Their many
developments recently culminated in a publication detailing
an ‘Artificial Chemist’, which uses an ML-based control system
to guide an automated and highly-efficient fluidic reactor
for metal halide perovskite QD synthesis.71 The system is
composed of a precursor formulation module (seven syringe
pumps with refill systems, and two inline passive micromixers),
a flow reaction module, and an inline QD characterization
module (PL and absorption), all driven by an ML-based algo-
rithm. In the initial report, they used the system to perform
bandgap tuning of pre-synthesized CsPbBr3 perovskite QDs
through halide exchange.120 In terms of variables, the system
is able to vary flow rates (therefore dosing) of the reaction
precursors (a mixed ZnI2/ZnCl2 solution, and a ZnBr2 solution),
oleic acid and oleylamine, which then allows optimization of
PLQY and FWHM of QDs of any desired peak emission wave-
length in the visible range. The overall aim is to accelerate the
process of synthetic route discovery and optimization, whilst
moving towards viable approaches for continuous manufactur-
ing of CQDs with precisely-tuned optoelectronic properties.121

A key point is that this intends to move away from user-driven
experiment selection in the materials discovery and optimiza-
tion phase, instead opting to give the automated reactor the
ingredients it needs, and the product targets it needs to hit, and
time to let it learn independently in a closed-loop process.
Following this, a further vision for this system is to use archived
experimental data as a guide for future manufacturing, and
real-time quality control. This could, for example, help to
overcome problems with batch-to-batch variability in precur-
sors, or in ambient conditions, thus making the QD synthesis
more robust.

Although HTE and inline reaction data provides a wealth of
information on the as-synthesized products, the ultimate test of
QDs is how they perform in a device, and how stable they are
over time. Device performance and stability testing cannot be
conducted rapidly, as device fabrication is typically complex,
and stability studies necessarily require extended time frames.

Before application to devices, QDs must be processed post-
synthesis—this can involve separation, purification and appli-
cation of QDs to the target material. Currently, QDs are typically
washed and purified separate from the reactor system and
then applied to devices via variety of different methodologies
including spin-coating,122 inkjet printing,123 spray coating,124

and blade coating,125 as typical examples. Bridging this gap
between synthesis and application, current research is explor-
ing how altering the structural properties of QDs affect the
stability and efficacy when applied, to ensure developments in
production methods can meet industry requirements.126

ML can also be employed in this space. Sun et al. used HTE
to generate PV thin films made up of 75 unique perovskite-
based compositions and performed structural analysis, sup-
ported by a neural network algorithm, to intuitively classify the
different compositions.127 From their work, they found that
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their algorithm had a 90% accuracy in distinguishing the
crystal dimensionality (0D, 2D or 3D), at a rate over 10 times
faster than a human analyst. The interesting aspect of this work
is how such algorithms can speed up analysis of a wide
parameter set to allow researchers to confidently identify more
effective compositions. Here, the researchers used this plat-
form to investigate lead-free perovskite materials appropriate
for the thin films and successfully identified four suitable
compositions. Being able to tune compositions to avoid toxic
or heavy-metal dependent materials is important for overcom-
ing a key challenge for wider commercial application.

In a recent study by Hartono et al., a supervised learning-
based ML framework was used to optimize the capping layer
deposited on a methylammonium lead iodide (MAPbI3) film,
aiming to improve the environmental stability of a perovskite
solar cell.128 The capping layer was formed by the deposition of
halide salts, of which they investigated a set of 21 combinations
of organic molecules and halide anions, assessing the stability
of the final films under accelerated aging conditions. They used
random forest regression and SHAP values to find which
features exhibited strongest correlation with improved stability,
which suggested that minimizing the number of hydrogen-
bonded donors, and maintaining a small topological polar
surface area of the organic capping layer molecules should
yield improved stability. They then used this information to
guide their choice of capping, eventually demonstrating an
improved stability versus the previous standard capping layer
choice. The key point here is the possibility of deriving design
rules with the aid of ML, given a small data set.

4.5 Building larger integrated systems

Another option for correlating long term device performance
with synthesis and processing parameters is to develop more
sophisticated systems that extend the scope of HTE beyond
purely the synthesis and into the processing and physical end
states relevant to the downstream application. We want to build
automated systems that can directly probe the phenomena that
are critical in device operation (e.g. cycling stability), rather
than making indirect assessment based solely on more-readily
measured properties (e.g. PLQY, colloidal stability). Such ‘self-
driving laboratories’ are likely to play a big part in driving
innovation forwards across the materials sciences.129

When thinking about flow chemistry and microfluidics, the
field of organic synthesis and medicinal chemistry has been
thoroughly examined using this technology, alongside the
centuries of parameter and compound data in comparison to
the relatively newer field of QD particle synthesis. As such, it is
useful for us to understand how flow chemistry has been used
in other fields to accelerate our approach. Taking inspiration
from conventional organic synthesis, another example of how
automated QD manufacturing could be approached in the
future comes from an interesting project from Coley et al.130

The team combined the concepts of flow chemistry, HTE and AI
to produce a robotic platform which could be used for data-
driven synthesis planning and experimentation for more intel-
ligent synthesis of organic compounds. The output was a fully

flexible system, capable of incorporating a variety of plug and
play components including pumps, fluid lines reactors and
separators. A six-axis robotic arm and fluidic switchboard is
used to select and arrange these reaction components for a
specific synthesis (Fig. 9), and this is done ‘on-demand’ based
on the parameters defined by the NN, which has been trained
using millions of previously published reactions. The key take-
away is that if a process can be performed in flow and guided by
AI principles, theoretically this process can be applied to such a
system, opening the door for many opportunities to adapt
existing methods for CQDs.

Two publications from the Zhu group recently demonstrated
the possibility of embedding a microfluidic reactor into a larger
workflow, which included sample collection and robot-arm-
controlled sample transfer to a circular diochroism (CD) spec-
trometer (Fig. 10a). Centred around their ‘materials accelera-
tion operation system’ (MAOS), they have applied this system to
the synthesis of both CdSe,131 and CsPbBr3 perovskite QDs.84

The system was developed with the vision of allowing users to
perform experiments remotely, for the automatic execution of
pre-planned experiments, and the incorporation of AI-based
quality control, all aiming at increased safety and efficiency.
At the heart of this is a microfluidic reactor for QD synthesis, in
the vein of what has been discussed above. For reaction input
variables of temperature and precursor concentration, the
system used a SNOBFIT based reinforcement learning algo-
rithm to guide real time navigation of a 3D parameter space,
looking to maximize CD intensity (Fig. 10b). Regarding the
study of CsPbBr3 perovskite nanoplates, they used their system
to investigate optical chirality, where the products exhibiting
maximized CD signal were investigated offline by transmission
electron microscopy (TEM), which they then extended into a
quantum mechanical theory for semiconductor nanoplates
with temperature-dependent chirality. The work is a good
demonstration of an extended workflow with an automated
microfluidic reactor at its core.

Two recent publications nicely exemplify the potential of
automated HTE with ML-based control for optimizing thin film

Fig. 9 A study by Coley et al.130, where an AI-driven automated flow
chemistry system using a microfluidic reactor platform was embedded in a
larger system, including a robot arm for configuring the system between
each run. From ref. 130. Reprinted with permission from AAAS.
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materials for solar cells. Although these studies did not use
QDs, it is evident that they represent a direction in which the
QD field could move, in order to extend data sets beyond
as-synthesized product characterization and towards the collec-
tion of downstream data where the QDs are tested in scenarios
that are closer to the final operational conditions. Langner et al.
demonstrated how HTE could be used in the fabrication and
characterization of optoelectronic thin films, targeting optimi-
zation of multicomponent polymer blends for organic photo-
voltaics (OPVs).132 Their automated film formation system
allowed the fabrication of up to 6048 films per day, and used
a BO algorithm to analyze data and design new experiments in
a closed-loop experimental format. As a demonstration, they
studied four-component OPV blend (two polymers and two
small molecule additives, Fig. 11a), tuning those four concen-
tration ratios as input variables, with photostability as the
output variable. Films were cast in 96 well plates by a dispen-
sing robot (Fig. 11b), then absorption spectra were collected
before and after one sun intensity illumination for 18 hours.
Interestingly, they compared their ML algorithm directly with a
simple grid-based parameter scan (Fig. 11c), and found that the
ML approach was ca. 33� faster at identifying the most stable
blends. The methodology also uses only a fraction of the
precursor required in standard manual methods, highlighting
the economic and efficiency gains of the automation with ML
approach.

MacLeod et al. reported a modular robotic platform
(Fig. 12a) driven by a BO algorithm for the optimization of hole
mobility in an organic hole transport material commonly used
in perovskite PVs (specifically spiro-OMeTAD).133 The sophisti-
cated system can autonomously measure and mix precursor
solutions, deposit them as thin films on rigid substrates by
spin-coating, anneal each film, then image them to detect
morphology defects and impurities, and characterize the film
optical and conductivity properties. The data are processed live
by the algorithm, which then designs new experiments in a
closed-loop format. Each sample took 20 minutes start to
finish, and the final data set comprised two 35-sample cam-
paigns. With annealing time and dopant concentration as their
input variables, they sought to maximize hole mobility in the
films (Fig. 12b). An important detail of this study is that while
they were looking to optimize hole mobility, they did not
directly measure hole mobility in the films, because valid hole
mobility measurements necessitate the fabrication of multi-
layer films, which is too complex and time-consuming in the
context of this HTE workflow. Instead, they used a diagnostic

Fig. 10 A study of CsPbBr3 perovskite QDs by Li et al.84 (a) The automated
system, showing the automated microfluidic reactor embedded in a larger
system, including a robot arm for sample handling. (b) The SNOBFIT
guided parameter space search, where the output variable (CD intensity)
is varying as a function of two input variables (precursor concentrations
and reaction temperature). The plot shows how the system had to navigate
a parameter space containing a local maximum to eventually find a global
maximum. Reprinted with permission from ref. 84.

Fig. 11 A study of organic photovoltaic (OPV) thin films by Langner
et al.132 (a) The three polymer donors and the two small molecule
acceptors studied, where the open and closed squares indicate the two
sets of four that were studied. (b) The automated system for ink formula-
tion, deposition, film formation and characterization. (c) The process
workflow showing the two approaches used (HTE grid-based versus
ML-guided). Reprinted with permission from ref. 132.

Fig. 12 A study of organic hole transport materials by MacLeod et al.133 (a)
The self-driving modular robotic system that automates the experimental
workflow. (b) A parameter map showing the output variables (pseudo-
mobility (dimensionless) and annealing time (s)). The plot shows how the
system had to navigate a parameter space containing a local maximum to
eventually find a global maximum. Reprinted with permission from ref. 133.
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quantity, pseudomobility, which could be readily measured in
single layer films using a four-point probe conductivity
measurement and UV-Vis-NIR spectroscopy and is proportional
to hole mobility. This illustrates the point that autonomous
HTE often requires the monitoring of accessible properties that
then act as proxies for inaccessible properties. This is an
intrinsic limitation of the approach, as many processes and
measurement techniques simply cannot be sufficiently adapted
in duration and/or complexity to make big data accessible.

5 Conclusions

This review paper has aimed to provide a bridge between the
world of traditional quantum dot (QD) chemistry and the
frontier of big data and artificial intelligence. We have looked
at why QDs present an R&D challenge that is primed for
revolution with advanced experimental methodologies and
analytical approaches, and we have seen a set of examples that
nicely illustrate the potential in this field. We have seen that
microfluidic reactors and larger robotic systems provide tools
that can translate traditional flask chemistry QD synthesis
approaches into high-throughput and data-rich automated
experiments, and that machine learning (ML) can provide an
algorithmic framework for advanced navigation of complex
multidimensional parameter space. This scale of analysis will
allow for the rapid discovery and development of new safer
materials and greener synthetic routes which will help us to
tackle challenges with toxic components and processing. We
have also explored how current research is exploring the
potential of synthesized QDs directly on thin films specifically
to evaluate device performance—here ML algorithms can also
be used to examine performance against the wider QD para-
meter space, with particular attention on examining surface
effects. We believe future research will involve flow reactor-
based end-to-end manufacturing systems that incorporate
ML-centered analysis and quality control of QD technologies,
such as PV thin films, into an overall workflow, and that this
will be a key part of accelerating QD-based device development.

However, it is important to acknowledge that there is
significant barrier to entry for both the reaction automation
and the ML tasks. The required skillsets are not generally part
of a natural sciences education, and those are typically the
people working in the QD development space. Additionally, there
is a time and capital consideration in developing automated
ML-enabled systems, especially when exploring beyond the R&D
scale. Therefore, truly interdisciplinary working, with chemical
and mechanical engineers, and data scientists, amongst others, is
what is going to push the frontier forward in this field.

Nevertheless, we can all push our disciplinary limits, and the
microfluidics space can be relatively accessible. Although
microfluidics can require expensive and specialized facilities
to fabricate custom fluidic chips, from polydimethylsiloxane
(PDMS), glass, polytetrafluoroethylene (PTFE), etc., it does not
have to. A big part of the beauty of the approaches described for
colloidal quantum dot (CQD) synthesis herein is that that the

reactors are most often built from commercially available parts
(e.g. solvent-resistant tubing, HPLC fittings, heated stages, etc.).
This gives these systems a ‘plug-and-play’ sensibility, and in
fact means that there is a low physical/economical barrier-to-
entry. Although, running chemistry in flow does present dis-
tinct challenges, and requires some patience,60 these can be
overcome with practice. Similarly with AI and ML, the more
sophisticated algorithms are an extreme challenge, but signifi-
cant gains can be made with even relatively simple algorithms,
for example using freely available ML tools for multidimen-
sional regression and parameter space visualization. To help
intelligently guide ML research, introductory and best practice
guides for incorporating ML practices have been published as
researchers consistently look to improve standardization in this
space, particularly in data management and reporting.134,135

However, given the relatively low proliferation of even well-
established and accessible design of experiments (DoE) meth-
odologies in materials science, the transition to AI and ML will
take time, emphasizing the prioritization of interdisciplinary
working.

Beyond the scientific and technological interest of employ-
ing emerging technologies for advanced automation and ana-
lysis, the approach is also attractive from a moral perspective.
We have a duty to maximize the utility of the resources that we
consume in doing research. We not only want to find the best
CQD formulations, but we want to find the most environmen-
tally friendly and sustainable ways of producing and processing
them. Further, we are facing global challenges in energy
management in attempts to mitigate catastrophic climate
change.136 It is an absolute necessity that we accelerate the
translation of clean and efficient energy conversion technolo-
gies. This review paper has covered many very promising proof-
of principle studies concerning QDs in this direction, moving
HTE and ML towards applications that accelerate the impact of
QDs in the real world. Further, although the ideas discussed
herein focus on QDs, these are in fact just a portion of the
much larger revolution in materials science. The opportunity is
clearly there for us to make significant and likely revolutionary
gains, and we must make the most of it as a global and
multidisciplinary research community.

Conflicts of interest

The authors have no conflicts of interest to declare.

Acknowledgements

PDH would like to acknowledge support from the Royal Society
of Chemistry via a Research Enablement Grant entitled ‘Ligand
Engineering of Heavy-Metal Free Quantum Dots for Solar Cells’.

Notes and references

1 A. L. Efros and L. E. Brus, ACS Nano, 2021, 15, 6192–6210.

Materials Advances Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
av

qu
st

 2
02

2.
 D

ow
nl

oa
de

d 
on

 0
5.

08
.2

02
4 

06
:1

9:
45

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ma00468b


© 2022 The Author(s). Published by the Royal Society of Chemistry Mater. Adv., 2022, 3, 6950–6967 |  6965

2 Quantum Dots Market Size & Share|Industry Report,
2021–2026|Markets and Marketst, https://www.marketsand
markets.com/Market-Reports/quantum-dots-qd-market-694.
html (accessed 07/07/2022).

3 A. I. Ekimov and A. A. Onushchenko, J. Exp. Theor. Phys.
Lett., 1981, 34, 345–349.

4 G. Liu, X. Wang, G. Han, J. Yu and H. Zhao, Mater. Adv.,
2020, 1, 119–138.

5 S. Zhao, X. Liu, X. Pi and D. Yang, J. Semicond., 2018,
39, 061008.

6 J. Zheng, P. R. Nicovich and R. M. Dickson, Annu. Rev. Phys.
Chem., 2007, 58, 409–431.

7 L. E. Brus, J. Chem. Phys., 1984, 80, 4403–4409.
8 J. Shamsi, A. S. Urban, M. Imran, L. De Trizio and

L. Manna, Chem. Rev., 2019, 119, 3296–3348.
9 L. C. Schmidt, A. Pertegás, S. González-Carrero,
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