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Tin dioxide (SnO5), the most stable oxide of tin, is a metal oxide semiconductor that finds its use in a number
of applications due to its interesting energy band gap that is easily tunable by doping with foreign elements
or by nanostructured design such as thin film, nanowire or nanoparticle formation, etc., and its excellent
thermal, mechanical and chemical stability. In particular, its earth abundance and non-toxicity make it
very attractive for use in a number of technologies for sustainable development such as energy
harvesting and storage. This article attempts to review the state of the art of synthesis and properties of
SnO,, focusing primarily on its application as a transparent conductive oxide (TCO) in various
optoelectronic devices and second in energy harvesting and energy storage devices where it finds its use
as an electron transport layer (ETL) and an electrode material, respectively. In doing so, we discuss how
tin oxide meets the requirements for the above applications, the challenges associated with these
applications, and how its performance can be further improved by adopting various strategies such as
doping with foreign metals, functionalization with plasma, etc. The article begins with a review on the
various experimental approaches to doping of SnO, with foreign elements for its enhanced performance
as a TCO as well as related computational studies. Herein, we also compare the TCO performance of
doped tin oxide as a function of dopants such as fluorine (F), antimony (Sb), tantalum (Ta), tungsten (W),
molybdenum (Mo), phosphorus (P), and gallium (Ga). We also discuss the properties of multilayer SnO,/
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Accepted 25th June 2021 metal/SnO, structures with respect to TCO performance. Next, we review the status of tin oxide as
a TCO and an ETL in devices such as organic light emitting diodes (OLEDs), organic photovoltaics (OPV),
and perovskite solar cells (including plasma treatment approaches) followed by its use in building

integrated photovoltaic (BIPV) applications. Next, we review the impact of SnO,, mainly as an electrode
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material on energy storage devices starting from the most popular lithium (Li)-ion batteries to Li—sulfur
batteries and finally to the rapidly emerging technology of supercapacitors. Finally, we also compare the

performance of doped SnO, with gallium (Ga) doped zinc oxide (ZnO), the main sustainable alternative

to SNO, as a TCO and summarize the impact of SnO, on circular economies and discuss the main
conclusions and future perspectives. It is expected that the review will serve as an authoritative reference
for researchers and policy makers interested in finding out how SnO, can contribute to the circular
economy of some of the most desired sustainable and clean energy technologies including the detailed

experimental methods of synthesis and strategies for performance enhancement.

1. Introduction

Metal oxide semiconductors are a class of materials which find
their ever-expanding use in our life because of their interesting
tunable energy band gap, excellent chemical and mechanical
stability, etc. With the advancement of technologies enabling
the production of metal oxides in the form of thin films,
nanoparticles, nanowires and nanorods, their use has only
grown over the years from semiconductor electronics to
sensors, optoelectronics, catalysis, energy harvesting and
storage devices."®* An interesting application of semi-
conducting metal oxides originates from the fact that some
metal oxides can be doped with foreign elements such that they
exhibit electrical conductivity comparable with that of metals.
Thin films of such oxides allow light to pass through with
negligible absorption, making such films highly desirable as
electrodes for optoelectronic devices requiring materials which
can both be transparent to light and conduct electricity like
metals. This has led to the development of transparent
conductive oxides (TCOs) which are integral to most optoelec-
tronic and photovoltaic devices of recent times. Thin films of
conducting transparent metal oxides such as SnO, and ZnO
(zinc oxide) are finding applications in many consumer elec-
tronic products, especially in flat panel displays, touch screen
panels, photovoltaic devices, low-emissivity glasses, energy-
saving windows, and energy storage devices.*'*'>71*3 A trans-
parent conducting film is a thin layer of electrically conductive
material with low absorption (or high optical transmittance) in
the visible range and is the basic requirement for any of the
above devices.”® Conductivity and transparency can be
customized to expand their utility in a large number of appli-
cations.>?® Apart from transparent conducting thin films,
oxide/metal/oxide multilayer structures are also extensively
studied for enhancing their optical transmittance and electrical
conductivity to meet the demands as TCOs."***** Fig. 1 shows
different transparent oxides and their applications for photo-
voltaic devices, touch screens, flat panel displays, and energy
saving smart windows. However, only a few metal oxides doped
with specific elements exhibit a satisfactory performance as
a'TCO such as indium (In)-doped SnO, (ITO), fluorine (F)-doped
Sn0,, aluminium (Al)-doped ZnO, gallium (Ga)-doped ZnO, etc.,
although each of these have their own limitations.

Tin dioxide as a transparent conducting oxide (TCO) has
received huge research attention and been reviewed by several
researchers due to its widespread application.”*>*** The review
articles have mostly discussed about the challenges and
opportunities of ITO. It has both low electrical resistivity and
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facile patternability>** that make it well suited for displays.
However, it lacks temperature stability and resistance to
chemical attack.' Although the amount of indium is limited in
the earth's crust, the human population is prone to its toxicity.**
The low-rate self-compensation effect makes it more chal-
lenging to obtain binary oxide semiconductors having a p-type
conductive behavior.”” These challenges provide an impetus to
seek an alternative to ITO, which has high electrical conduc-
tivity and comparable visible transmittance. To the best of our
knowledge, there are no review articles which mainly focus on
the metal doped SnO, for transparent electrodes. Considering
the demands of the transparent electrode for opto-electronic
devices and renewable energy generation/storage, a more
comprehensive review on SnO, is needed to provide a better
representation and guidance of the relevant state-of-the-art
research and development.

Furthermore, an advantage of tin dioxide is that it can form
oxides of different valences, which provide it with the extraor-
dinary ability to take part in catalysis and charge storage reac-
tions. Tin dioxide (SnO,) is the most stable oxide of tin that
finds its use not only as a TCO but also in a number of appli-
cations for sustainable development such as sensors, catalysis,
energy harvesting and storage due to its earth abundance, non-
toxicity and wide band gap. Naturally, a large number of

Fig. 1 Schematic diagram of various transparent conducting oxides
and applications,**~*° presented with permission and copyright.

This journal is © The Royal Society of Chemistry 2021
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research papers including some good review articles have
already been published covering various aspects of tin oxide.
For example, Das et al.>® published a comprehensive review of
tin oxide, its structure and use as a gas sensor. Jenifer et al.>
reviewed the recent advancements in tin oxide-based thin-film
transistors for large-area electronics. Al Hamdi et al>
reviewed tin dioxide as a photocatalyst for water treatment. The
bulk electron mobility of SnO, is ~240 cm® V~ " s'.%* Sn0, has
a wide optical bandgap (3.6-4.0 eV) and a high transmittance
over the entire visible regime, which indicates that when it is
used in an optoelectronic device its absorption losses can be
minimised.*® This wide bandgap is helpful, especially in engi-
neering the energy levels for tandem photovoltaic devices. Other
significant advantages of the SnO, layer include chemical
stability and UV-resistance properties which make SnO, an
efficient electron transport layer (ETL), especially in the case of
perovskite solar cells. Earlier studies on SnO, reveal that by
alloying with metal oxides or doping with metals, its electronic
properties can be selectively tuned to obtain a better optoelec-
tronic device performance.>**® As many as three reviews have
been published within the last three years on the use of tin
oxide as the ETL in perovskite solar cells (PSCs),”**”%® in
accordance with the growing interest of researchers on tin oxide
as the ETL. The recent development of SnO, as an anode for dye
sensitized solar cells and its impact on the device performance
have also been discussed in detail.>** The readers are also
suggested to consult other relevant references regarding SnO,
as the ETL in organic solar cells, PSCs, and quantum dot
LEDs.%*%8

Deng et al.® reviewed the development of SnO, and gra-
phene nanocomposites as anode materials for lithium ion
batteries. However, it is clear that there is not a single review
that encompassed the growing applications of SnO, as the TCO
and the ETL in optoelectronic and photovoltaic devices and as
an electrode in energy storage devices. In fact, the recent
developments on tin dioxide based supercapacitors and Li-
sulfur batteries have never been reviewed to date. The review by
Deng et al®® only focused on the tin dioxide-graphene
composite as an anode material, but a review of tin oxide based
composites (not only with graphene) for anode, cathode and
separator is missing.

In view of this, herein, we attempt to review tin dioxide as
a material with a different perspective from what has been
reviewed already, i.e., a material that has enormous potential
for sustainable energy applications focusing on its three major
uses as a TCO, ETL and electrode, all of which strongly
contribute to circular economies. The review not only tries to
sum up and correlate the previous reviews on individual
applications of SnO, but also tries to cover new topics such as
the impact of SnO, for separator modification in Li-ion batteries
and for mitigation of the shuttling effect by trapping poly-
sulphides in Li-sulfur batteries. The review is organised as
follows. We begin by highlighting the challenges of tin oxide as
a TCO and how they are overcome by doping with different
metals as well as related computational studies with special
focus on earth abundant metals for sustainable applications.
Various approaches used by researchers to synthesize SnO, and

This journal is © The Royal Society of Chemistry 2021

View Article Online

Journal of Materials Chemistry A

doped SnO, are also reviewed, and the TCO performances of
doped tin oxide as a function of dopants such as fluorine (F),
antimony (Sb), tantalum (Ta), tungsten (W), molybdenum (Mo),
phosphorus (P), and gallium (Ga) are compared. The SnO,/
metal/SnO, structures with respect to TCO performance have
been discussed. Next, recent advances in the use of tin oxide as
the TCO and ETL in organic light emitting diodes (OLEDSs),
organic photovoltaics (OPV), perovskite solar cells (including
plasma treatment approaches) and building integrated photo-
voltaic (BIPV) applications are reviewed. This is followed by
a comprehensive review of the impact of SnO,, mainly as an
electrode material for energy storage devices starting from the
most popular Li-ion batteries to Li-sulfur batteries and finally to
the rapidly emerging technology of supercapacitors, which have
not been reviewed previously. Finally, we summarize the impact
of SnO, on circular economies to conclude this review.

2. Tin oxide as a transparent
conductive oxide (TCO)

2.1 Electronic properties of doped SnO,

The electrical and optical properties of TCO materials are
determined by their electronic structure. Mishra et al”
computed an energy-momentum (E-k) diagram for pure stoi-
chiometric SnO, and Sb-doped SnO, along several directions in
k space indicated by points of high symmetry within the first
Brillouin zone. This band structure was computed using the
augmented-spherical-wave (ASW) band-structure method for
a rutile structure with a unit cell comprising two SnO, units.
The band structure of SnO, is characterized by a single
conduction band that is derived from Sn 5s-orbitals. The Sn-
like s character was deduced from the partial density of states
function. The conduction band valley is relatively deep with the
conduction band minimum (CBM) located at the I' point. The
free electron-like dispersion can be readily seen in the 4
direction (I'-X) and the A direction (I'-M).” The pronounced
dispersion near the I" point results in a large curvature for the E-
k relation and a small effective mass for conducting electrons.
The experimental effective electron mass of conducting elec-
trons in SnO, is in the range of 0.23-0.3m, (depending on the
direction), where m, is the electron mass in free space.” This
low effective mass in turn results in a higher electron mobility
for conducting electrons in SnO,. By contrast, the valence band
which is derived from Sn and O atomic orbitals shows much
less dispersion and as a result the holes in SnO, are generally
heavy. The fundamental band gap of 3.7 eV for SnO, is direct
and occurs at the I" point.

Both intrinsic point defects (oxygen vacancies) and extrinsic
defects (dopants) introduce localized states in the band struc-
ture of SnO,. Kilic and Zunger showed that oxygen vacancies in
non-stoichiometric SnO, give rise to a shallow defect level at 113
meV below the CBM.” For Sn interstitials, the corresponding
defect level is at 203 meV above the CBM.”* Thus, both these
point defects are electrically active and can contribute electrons
to the conduction band. The electronic structure of SnO, can be
modified by a high dopant concentration. Mishra et al

J. Mater. Chem. A, 2021, 9, 16621-16684 | 16623
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computed the theoretical band structure of SnO, doped by ~8
at% of Sb (Sn3SbOg) by considering a supercell consisting of two
primitive unit cells stacked in the ¢ axis direction with one Sn
atom substituted by a Sb atom.”® The cationic dopants form an
impurity Sb 5s band within the band gap of SnO, that has free
electron-like dispersion, and this can directly contribute to the
conductivity of SnO,. Electrons can also be excited to the next
higher band derived from the Sn 5s orbitals. The CBM remains
at the I' point and the band gap is reduced to 2.9 eV. This
theoretical calculation shows that Sb and possibly other
dopants can alter the band structure of the host SnO,. One
important consequence of the strong dispersion near the CBM
of SnO, is that the Burstein-Moss (B-M) effect is readily
observed in doped SnO,.” The B-M effect refers to an increase
in the optical band gap in a semiconductor (relative to the
fundamental band gap) with increasing dopant density. When
the electronic states near the CBM are filled, additional energy
is needed to excite electrons from the valence band to the
conduction band. The B-M effect is more apparent in semi-
conductors with low effective electron mass.

In Fig. 2a, a comparison of conduction band alignments that
have been reported in the literature is shown. Zr-doping enables
up-shifting the energy level with improved band alignment
which in turn increases the built in potential.”® For multivalent
Sb-doping in a high concentration, the conduction band does
not up-shift, but due to the oxidation of Sb, the carrier
concentration improved.” On the other hand, Mg-doping
lowers the CBM compared to un-doped SnO, due to the
reduction in free electron density in Sn0O,.”® The Li-dopant in
SnO, acts as an acceptor and lowers the energy levels of SnO, as
Li* ions substitute Sn**.*® In the case of poly(vinylpyrrolidone)
(PVP)-doped SnO,, the defect density decreases inside SnO, and
the electron extraction is more effective due to conduction band
lowering.”” Y-doped SnO, can also elevate the conduction band
which leads to improved charge carrier transport.”® La and Zn
dopants are also very suitable for SnO, which can uplift the
CBM and facilitate the electron extraction and transport with
less energy loss.””® In the case of Ga-doping into SnO,, the
conduction band shifts upward with an increment of electron
density and a decrement of deep traps.®* Ta>* doping inside the
SnO, lattice can increase the oxygen vacancy and thus the
conductivity can be increased with free carrier concentration.®
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Fig. 2
using pulse laser deposition, presented with permission and copyright.”
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It is also worth noting that the oxide thickness plays an
important role in energy band gap engineering. Ke et al
demonstrated a thickness induced metal-insulator (MI) tran-
sition for epitaxially grown Sb-doped SnO, on sapphire
substrates by pulsed laser deposition.” A critical thickness is
essential for the metallic conductivity in SnO,:Sb thin films
(Fig. 2b). The broadening of the energy band gap as well as the
enhancement of the impurity activation energy is attributed to
the quantum confinement effect.

2.2 Metal-doped tin oxide for improved transparency and
conductivity

The key challenges for SnO, are its high resistivity and bulk
defects which can trap carriers and reduce device efficiencies.
As a result, selection of a suitable dopant and process design is
very important to reduce bulk defects and to increase its elec-
trical conductivity. The conductivity of SnO, significantly
depends on three critical parameters: (1) the dopant, (2)
synthesis procedure, and (3) thickness of the oxide layer.®*** In
order to increase the conductivity and achieve a better perfor-
mance, a different dopant may be required. Visible trans-
mittance, conductivity, and stability of the dopant in SnO, are
very important properties for any alternative to ITO. To the best
of our knowledge, a comprehensive review on SnO, has been
published by Das et al,* and there are limited reviews that
focus on doped SnO, towards energy harvesting and storage.
Aluminium doped ZnO (AZO) and FTO are some of the other
commercially available transparent conductive materials. FTO
exhibits high chemical resistance, excellent thermal stability,
high work function (4.9 eV), strong hardness (6.5 Mohs),***
and high optical transparency (T > 80%),***° which make it the
material of choice as TCOs for different applications. FTO has
been used as a window layer in photovoltaic devices, passivation
layer for energy-saving smart coatings, transparent conductor
for display and flexible devices, electron transport layer, gas
sensors, photodetectors, protective coatings, organic light-
emitting diodes, and materials for the circular economy.**-*”
Even though FTO is a promising candidate for the trans-
parent conductor and electron transport layer, both the
conductivity and mobility of FTO are still not comparable with
those of ITO. Some of the key challenges affecting the perfor-
mance and its electrical conductivity of the SnO, film are the (a)

4.50
o Experiment Vacuum Level

Sa25F -~ -Fitting = 4.53ev
Q
Q 95eV 35y S
& s00} ! 356V §
g WW//
29%8p § E,=3.45+1.80158 (/7). "%
>
2350 5. :
c i -
w

3.25 L 1 X L 7

0 50 100 150 200 250

(b)

Thickness (nm)

(a) Impact of doping elements on conduction band offsets. (b) Thickness-dependent energy band gap of epitaxially grown Sb doped SnO,
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carrier mobility and (b) electron density.”>*****° With the
increase of the doping concentration, changes in electronic
properties such as the modification of the bandgap, increased
carrier concentration and widening of the bandgap by filling
low energy levels in the conduction band are observed. As
a result of this, the Fermi level shifts up towards the conduction
band, causing an increase in the carrier concentration.>**°
Several reports have discussed the electrical properties of SnO,,
doped SnO,, and SnO, based multilayer structures.'”**** Li et al.
reported nickel-coated FTO (Ni/FTO) through sputtering of Ni
layers onto commercially available FTO glass and successive
pulsed laser annealing under an external magnetic field (0.4 T)
to enhance the electrical performance of FTO.'* Similarly, Chen
et al. demonstrated a non-thermal dual-plasma synthesis for
antimony doped SnO,, Sb-SnO, (ATO) nanocrystals with
a uniform composition and a conductivity of 0.1 S cm™ " over
a high surface area." While these methods show an increase in
performance, the morphology is affected due to the presence of
pinholes after thermal treatment. The lanthanum (La) dopant is
a very promising alternative capable of alleviating SnO, crystal
aggregation and it provides a platform with full coverage and
helps to form a homogeneous film.** Furthermore, the La
dopant reduces the band offset of the SnO, layer with increased
electron extraction and suppressing charge recombination and
thus enhances the power conversion efficiency from 14.24% to
17.08% for perovskite-based solar cells.?

In modern technology, SnO, based TCOs play a central role
in optical and electronic applications. The performance of these
devices depends critically on the dopant and the properties of
SnO,. Apart from indium (In), doping of tin oxide can be real-
ized with various elements, such as antimony (Sb), fluorine (F),
niobium (Nb), tungsten (W), phosphorus (P), strontium (Sr),
tantalum (Ta), lanthanum (La), lithium (Li), gallium (Ga),
molybdenum (Mo), and cobalt (Co) as these dopants provide
precise control over its electrical and optical proper-
ties.71,81,1017104113130 - A]] these dopants are discussed in this
section. For example Sb and F are the most suitable dopants for
Sn0O,,3*101-104114 wherein Sb substitutes Sn atoms and F substi-
tutes O atoms.® Sb is an effective dopant because the Sb®" and
Sn** ions are of similar radii. In the case of Sb doped tin oxide
(ATO), it has high transparency (~80%) and low resistivity
(~107 Q cm), good mechanical hardness, and environmental
stability.*® One key feature of ATO is that its carrier density
increases monotonically with Sb doping within the range of 10*°
cm ?* while the dopant activation efficiency decreases from
60% to 20%. The room temperature Hall mobility of ATO ranges
from 6 cm® V™' s7' to 24 em* V' s

FTO is a stable TCO"*>"** that has low electrical resistivity due
to the high carrier density.* It can strongly adhere to any
substrate making it suitable for device integration.'® However,
its electrical conductivity is not as high as niobium (Nb)-doped
tin oxide (NbTO) films.""” Niobium is an exceptional dopant for
SnO, as the ionic radius of Nb®* (0.064 nm) matches that of Sn**
(0.069 nm), which enables the substitution of Nb>* for Sn** in
the SnO, crystal lattice structure.'*® If SnO, is concurrently
doped with Nb and F to replace the Sn** and O*>~ in the SnO,
lattice, respectively, its Hall mobility and carrier generation will

This journal is © The Royal Society of Chemistry 2021
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be further enhanced, making it suitable for high efficiency
devices.*® The substitution of Nb*>* for Sn*" and the integration
of F~ are beneficial in improving the overall performance. The
synergistic effect of Nb and F co-doped SnO, films results in
improved optoelectronic properties compared to those of F or
Nb-doped SnO, films."® Nitrogen is another low-cost and
environmentally friendly dopant for SnO,. The nitrogen dopant
reduces the optical energy threshold and enhances the film
conductivity.'*

Recently, molybdenum (Mo) and tungsten (W) doped SnO,
have been studied by Huo et al."*®* The Mo-doped and W-doped
SnO, films show an average transmittance of ~60% over
a wavelength range between 300 and 2500 nm, which is ~2
times higher compared to ITO films."*® Tungsten is an impor-
tant cation dopant for the SnO, based transparent conductive
material. The electronic and optical properties of SnO, can be
enhanced by replacing Sn** through W°®*.>* Moreover, W®" has
the highest valence state among the common doping elements
to generate more free electrons." Doping with W is also very
helpful to generate more charge carriers and maintain the
structural ability of SnO,."** Thus, W doped SnO, might solve
the problems related to SnO, based anode materials for lithium-
ion batteries due to its unique characteristics.”” Doping of
strontium (Sr) in SnO, further widens its potential in improving
the photocatalytic activity, iteration of the electronic structure,
and enhancement of vital physical and chemical properties.**”
Studies influencing the third-order nonlinear optical properties
of Sr-doped SnO, were limited, and further elucidation is
required for its applications in various optical devices."” In
another study, Bannur et al. observed a third-order nonlinear
absorption mechanism for Sr:SnO, films, which is attributed to
free carrier absorption induced two-photon absorption."”” The
third-order nonlinear absorption co-efficient (8.¢) shows one
order of improvement (0.14 x 10~ ecm W™ t0 3.91 x 10~ " cm
W), which indicates the competency of grown films in
nonlinear optical device applications.**

He et al. demonstrated the optical and structural properties
of Ta-doped SnO, monocrystal films grown on MgF, (110)
substrates. The Ta dopant for SnO, takes the form of Ta®*
ions.”® Ta-doped SnO, films are of importance due to the high
work function of 5.2 eV, with an average transmission over
87%."** Ta doping for SnO, films show reduced resistivity and
improved Hall mobility.*® The highest Hall mobility of 74.2 cm?
v~! s is attained for the 5 at% Ta doped SnO, film, and the
least resistivity 2.5 x 107* Q cm is attained at 6 at% Ta
doping.**® It is worth noting that a Ta-doped SnO, transparent
conductive oxide has been demonstrated as a selectively solar
transmitting coating for the high temperature concentrating
solar power technology.**®

Apart from the above-discussed materials, SnO, can also be
doped using aluminium>™** to achieve p-type conductivity,*
along with annealing at an elevated temperature of 450 °C. In
such a process, the electron concentration decreases with
aluminum doping due to substitution effects. Gallium (Ga) is
another promising p-type dopant for SnO, since it can substi-
tute Sn atoms with less lattice deformation compared to Al and
In.”” The doping of Ga is quite effective in the context of the role
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of SnO, in perovskite-based devices. Ga-doped SnO, is used as
an efficient electron transport layer in planar perovskite solar
cells (PSCs)® because of its better band alignment with the
perovskite absorption layer for efficient electron extraction.®
Besides, Ga doping reduced the trap state density in SnO,,
leading to a lower recombination and negligible hysteresis.** All
these combined to deliver an improved efficiency. Several other

View Article Online

Review

dopants in SnO, that can also improve the PSC performance will
be discussed below in the section ‘Impact of SnO, on PSCs’.
Cobalt (Co) is also a good substitute for noble metals as the
dopant for SnO,. Co ions can easily replace tin ions in SnO,
without destroying the lattice structure because of the
compatible ionic radii.”*® Also, the Co dopants can enter the
tetragonal rutile type SnO, and suppress the grain growth.'*®

Fig.3 Calculated partial charge densities of (a) FO* and (b) Fi~ in the down and across directions, respectively. The Sn (gray) and O (black) atoms
are depicted using a stick model for clarity, while the F atoms are colored red (FO) and pink (Fi) corresponding to the defect color. Charge
densities of 0.001 and 0.02 eV A~! were used for panels (a) and (b), respectively,2? presented with permission and copyright. The preferred
adsorption configurations of (c) propylamine (PA), (d) ethylenediamine (EDA), (e) triethylamine (TEA), and (f) monoethanolamine (MEA) on the
ATO (110) surface. The bond distances are given in A. Color codes: O-red, Sn-gray green, Sb-cyan, C-gray, N-blue, and H-white,’°¢ presented
with permission and copyright. The partial charge densities at the CBM of SnO, for TaSn (g), SbSn (h), and FO (i). The densities highlight the fact
that Sb and F both hybridize with the CBM, thus having a detrimental effect on the band curvature with increased doping concentrations, and that
Ta does not undergo this same effect,’*” presented with permission and copyright.
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The doping in SnO, results in the modification of optical and
electronic properties that are needed for various applications.

2.3 Design of doped SnO, for TCO applications:
computational modeling

The computational screening approach for dopants of SnO,
comprises an efficient and reliable calculation of its bandgap,
effective mass, binding energy, and the formation
energy.'>'*%1317133 In recent times, computational screening
approaches have shown immense potential in identifying suit-
able dopants of SnO, to increase the inherent electrical and
optical properties. Towards this end, Cheng et al. investigated
the first-principles-based computer screening system in search
of suitable dopants or co-dopants for SnO, to develop new SnO,-
based transparent conducting oxide systems.'” Based on
computer simulations, it is found that the best candidates for
SnO,-based TCO materials are FTO, ATO, phosphorus (P) doped
SnO, PTO (P-doped SnO,) and FPTO (F and P co-doped SnO,)."*

In another interesting work, Swallow et al. investigated the n-
type FTO (n > 10*° cm™?) deposited onto soda-lime glass via
atmospheric pressure chemical vapor deposition (APCVD) to
reveal inherent self-compensation, which limits the mobility,
achievable free electron density, and higher conductivity.”> By
using DFT energy calculations, it is determined that the inter-
stitial fluorine in the —1 charge state might be the lowest
formation energy acceptor defect for degenerately doped FTO,
as shown in Fig. 3a and b.*> Hence, they provided new confir-
mation of fluorine interstitial as the defect responsible for FTO
falling well short of the theoretical ionized impurity scattering
with a limited mobility of >100 em® V' s7'.22

ATO is more advantageous due to its low cost and abun-
dance. ATO thin films also display excellent electronic and
optical properties comparable to those of ITO films and thus
ATO is emerging as a promising alternative to ITO. Borgatti et al.
elucidated the origin of the satellite structure observed in the Sn
4d core-level photoemission spectrum (PES) of ATO by
comparing the experimental measurements to results obtained
from ab initio many-body perturbation theory."** They estab-
lished that such a satellite structure is produced by the coupling
of Sn 4d core electrons to the plasma oscillation of the free
electrons observed in the material through doping.*** Moreover,
within the same theoretical framework, the enrichment of the
asymmetric tail from the valence band photoemission spectrum
of doped SnO, was also explained."* These results reveal that to
capture the satellite structures for narrow-band materials and to
identify properly the underlying electronic structure excitations,
it is vital to go beyond the homogeneous electron gas (HEG)
electron-plasmon coupling model and to perform material-
specific ab initio calculations.’* The GW (where G is the one-
particle Green's function and W is the screened coulombic
interaction) approximation (GWA) for the self-energy and the
cumulant (C) expansion of the Green's function were incorpo-
rated into the first-principle GW + C scheme to interpret the
electron correlation in PES spectra. In this perception, the
results for ATO imply that the GW + C theory can be a very
promising approach for the interpretation of electron

This journal is © The Royal Society of Chemistry 2021

View Article Online

Journal of Materials Chemistry A

correlation features for PES of several conductive oxide mate-
rials.”®* Kim et al. investigated the electronic structure of pure
and doped SnO, nanocrystals within a range of 1.3-2.4 nm
diameter. Herein, strong quantum confinement effects were
observed and the electron binding energy for Sb doped nano-
crystals decreases with the size.'*

In another study, Chen et al. investigated an instant post-
synthesis strategy for aqueous colloidal dispersions of nano-
crystals, using ethylenediamine (EDA), propylamine (PA),
monoethanolamine (MEA), and triethylamine (TEA).**® By using
DFT calculations, they found strong attractive interactions
between amines and ATO surfaces via N-Sn and especially N-Sb
bonding interactions, as shown in Fig. 3c—{."*® The energies of
amine adsorption on the Sb site vary from 0.95 eV to 3.28 eV,
following the order of TEA < PA < EDA < MEA, which is at least
0.2 eV higher than the corresponding adsorptions of the Sn
site.’*® This implies stronger adsorption of amines on Sb sites
than on Sn sites. The proposed strategy improved the perfor-
mance of electrochromic devices such as good reversibility, fast
response, and high optical modulation.”*® Williamson et al.
demonstrated that tantalum (Ta) is a resonant donor in SnO,
using a combination of hybrid DFT calculations, IR reflectivity,
and hard X-ray photoelectron spectroscopy.*® It is reported that
Ta is a superior dopant to both fluorine and antimony (Fig. 3g—
i), with the capacity to yield higher conductivity, mobility, and
better IR transparency as compared to FTO and ATO."*” These
findings imply that Ta-doped SnO, has the potential for large
surface area applications with low-cost TCO substrates.*”

Ganose et al. used DFT to show that incorporation of lead
(Pb) into SnO, reduces the bandgap through lowering of the
conduction band minimum, thereby increasing the electron
affinity.> The electron effective mass at the conduction band
minimum decreases alongside the bandgap, demonstrating an
improved charge carrier mobility.> Moreover, the calculated
optical absorption properties show that the alloys maintain
their transparency in the visible spectrum. These properties
make SnO,:Pb a more efficient n-type transparent material and
an ideal candidate for use in TCO applications.**

Phosphorus (P)-doped SnO, (SnO,:P), PTO, films were
synthesized by an aerosol assisted chemical vapor deposition
route with excellent optical and electrical properties.> A data
generator was used to build computational models of P as
a dopant for SnO, and showed that phosphorus acts as
a shallow one electron n-type donor allowing improved
conductivities. P does not suffer from self-compensation issues
associated with other dopants, such as F. This synthetic route
opens up the possibility of using a common element to dope
SnO, films for transparent conducting oxide applications.®

3. Design of doped SnO, for TCO
applications: different experimental
approaches

As discussed in the previous section, the conductivity of un-
doped SnO, is significantly improved by doping with various
dopant elements such as F,'*'** Mn,'*>**® Ta,'**'” and Sb.'**'**
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Tin oxide thin films are usually deposited using solution-based
deposition and vacuum-based deposition techniques. Solution-
based deposition methods offer numerous benefits over
vacuum-based deposition techniques; e.g. simpler processing,
better scalability, and lower manufacturing cost.”**'*® On the
other hand, thin films grown using solution-based techniques
have porous surface morphologies, and their electrical proper-
ties are relatively poor compared to those of vacuum-based
techniques. Several solution-based approaches such as the
sol-gel process, hydrothermal synthesis, chemical bath depo-
sition, successive ionic layer adsorption and reaction, and spray
deposition are widely reported for doping SnO, films. To this
end, Pasquarelli and co-workers have thoroughly reviewed
several solution-based film deposition processes, as elucidated
in Fig. 4."° In this review article, we discuss the doping of SnO,
using solution and vacuum based techniques. Synthesis of high
quality doped SnO, is much sought-after. The impact of
dopants on its surface morphology and optical and electronic
properties is discussed in detail.

3.1 Sol-gel and spin coating

Due to its simplicity, sol-gel based processes have gained
popularity, and the sol-gel deposition of doped SnO, films is
already well established."*>'**> A facile approach has been re-
ported to control the morphology of doped and pure SnO, films
by a sol-gel dip-coating process.*** The root mean square (RMS)
roughness value of SnO,:Sb thin films was found to be 1% of
film thickness, which makes them suitable for optoelectronic
applications. The authors reported a resistivity of ~10~> Qm for
the 5 mol% Sb-doped SnO, films. An average transmittance of
>80% (in the UV-vis region) was found for all these films. The
bandgap energy of SnO,:Sb varies in the range of 3.69-3.97 eV
with an increase in Sb doping concentration.™®

Shi et al. studied the effect of fluorine concentration on FTO
films by the improved sol-gel method.”** The surface
morphology, optical properties, and electrical properties of
films were investigated for different fluorine concentrations.
The grain size increases with an increase in ¥ concentration, as
shown in Fig. 5a—f. The particle shape changes from a rod-like

16628 | J. Mater. Chem. A, 2021, 9, 16621-16684

structure to a pyramid with an increase of F concentration.
This is particularly beneficial for energy conversion devices. The
visible transmittance and sheet resistance significantly depend
on the F concentration (Fig. 5g and h). The sheet resistance for
un-doped SnO, films is 450 Q sq~'. However, the sheet resis-
tance decreases from 450 Q sq ' to 14.7 Q sq ' with the
increase of fluorine concentration.'**

In another study, it is observed that with a lesser number of
coatings, the film has larger inter-grain boundaries (i.e. more
porous) leading to poor electrical properties. A large number
(>7) of sol-layers lead to cracks in the film that decreases the
Hall mobility.**° Therefore, an optimum thickness is required to
obtain a higher electrical conductivity that, in turn, gives the
preferred dense surface morphology for better electrical
performance. Jin et al. demonstrated an improved approach in
which stannous oxalate (SnC,0,) was dispersed in deionized
(DI) water together with citric acid and triethanolamine to
obtain a sol-gel solution. The dip-coated film shows a lower
sheet resistance of ~30-40 Q sq~'.»** Doping of Ta and Nb in
SnO, films by the dip-coating technique achieves moderate
electrical properties.™®

Gallium (Ga)-doped SnO, semiconductors show p-type
conductivity with an average optical transmittance of more
than 87%. Thin film Ga-doped SnO, was fabricated using a sol-
gel spin coating process with a doping concentration of gallium
greater than 10%.” Ga doping reduces the grain size from
7.63 nm to 3.36 nm as the Ga doping concentration increased
from 0% to 20%. The RMS surface roughness increased from
2.34 nm at 0% doping to 1.29 nm at 20% and the band gap
energy decreased from 3.92 eV for undoped to 3.83 eV for 15%
Ga doping. The highest mean hole concentration obtained by
this method (1.70 x 10'® cm™?) is slightly lower than that ob-
tained by DC (direct current) magnetron sputtering (8.84 x 10"
em?), as reported by Huang et al.'*’ Moreover, the carrier
mobility was found to decrease as the resistivity increased with
doping. An organic additive-free aqueous solution based
process was reported for the sol-gel synthesis of doped SnO,.
Film formation was demonstrated via an evaporation-driven
method and dip-coating in a thermostatic oven at 25-60 °C. A
crystalline SnO, film was obtained after heat treatment at

This journal is © The Royal Society of Chemistry 2021
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700 °C for 10 min.**® Non-toxic stannous fluoride (SnF,) was also
used as a fluorine source to deposit the fluorine-doped SnO,
thin films. The process was referred to as the green sol-gel
method. The SnF, content was varied from 0 to 10 mol% to
optimise differing conductivity. The solution was stirred at
80 °C for 2 h and then dip-coated to form FTO thin films, which
exhibited a resistivity around 7.0 x 10™* Q cm.'*

Film deposition using SnO, nanoparticles is similar to the
sol-gel process and involved pre-synthesized nanoparticles.
This process has the advantage that post-deposition annealing
at high temperatures is not necessary to achieve crystalline
films because nanoparticles are already in the crystalline phase.
In another report, Zhao et al. demonstrated a surfactant-free
and binder-free deposition of Sb:SnO, in a compact thin film
using Sb:Sn;O0, suspension.’® The as-prepared films have
electrical resistivity around 3.04 x 107> Q cm and a trans-
parency of ~92.70%."° Synthesis of highly crystalline Sb-SnO,
nanoparticles is achieved by microwave heating of the antimony
acetate and SnCl, precursors in benzyl alcohol and toluene at
135 °C for 15 min. The spin-coating of ATO dispersion resulted
in uniform film deposition with 90% transparency and 1.9 X

This journal is © The Royal Society of Chemistry 2021

107> Q cm resistivity.”®* Deposition of F-doped SnO, films by
Nadarajah et al. involved a reactive tin(u) hydroxide nitrate
nanoscale cluster in an aqueous solution. Those films rendered
very low electrical resistivity (1.5 x 10™* Q m) and optical
transmittance (>85%)."** It is also worth noting that, generally,
dopants which formed nanoparticles resulted in a rough
surface.

3.2 Chemical bath deposition

A low temperature and single precursor based chemical bath
deposition (CBD) approach was presented by Tsukuma et al.***
in which SnF, was dissolved in DI water, and film growth
occurred at 40 °C. After the heat treatment, the electrical
properties improved significantly and the resistivity was
measured to be ~1.4 x 107> Q cm."® An aqueous solution of
SnF, and HF resulted in a thin film when small amounts of
H,0, and/or H;BO; were added, but the resistivity was found to
be ~18.7 Q cm."** This high resistivity is due to poor crystallinity
and the presence of high interface defects for the film synthe-
sized by using CBD and liquid phase deposition (LPD) methods
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at low temperatures (40-75 °C)."** Raviendra et al.*** demon-
strated an electroless deposition of polycrystalline Sb-SnO, thin
films using stannic chloride (SnCl;), ammonium fluoride
(NH4F), and silver nitrate in a solution at room temperature.
The visible transmittance and reflectance in the infra-red region
of pristine SnO, films were found to be ~80% and ~70%,
respectively, with resistivity on the order of ~107> Q cm. In
contrast, Sb-doped SnO, films showed a visible transmittance of
86% and an infra-red reflectance of ~83% with resistivity in the
range of ~10°-10* Q cm. The resistivity of the Sb-doped thin
films was excellent and comparable to the films deposited using
the physical deposition process. When the antimony doping
concentration was increased from 0 to 5 at%, the grain size
increased from 30 to 65 nm. The larger grain size reduced the
grain boundary scattering by reducing the grain boundary
potential, which resulted in enhanced mobility and conduc-
tivity.'*® However, this process required fine control over pH and
therefore reproducibility can be challenging.**

3.3 Spray coating and aerosol jet

Spray pyrolysis is a widely used deposition technique for
achieving high-quality pure and doped SnO, films on a hot glass
substrate (400-600 °C). This process is simple, inexpensive and
efficient.®”****>” It makes the process of adding several dopants
easier with a high growth rate and reproducibility and enables
mass customization for homogeneous large part deposi-
tion.™**%° However, due to high processing temperatures, it can
result in certain constraints in depositing the top electrode on
functional layers. In these deposition processes, the sheet
resistance initially decreases from 189.0 Q sq ' to a minimum
of 4.1 Q sq " with the increase of the substrate temperature
from 250 °C to 300 °C and then saturates."® In this process, the
lattice parameters remain fairly constant with temperature but
the crystallinity and transmittance increase, while higher
temperatures (>250 °C) result in rougher surfaces. Doping not
only affects the preferred orientation but also the source
compounds, solvent, and growth parameters (such as the
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solution concentration, feed rate, and spraying gas pressure). It
is claimed that the fluorine doping using the ultrasonic spray
technique®* decreases the sheet resistance from about 138 Q
sq ' to 35 Q sq ' and increases the optical bandgap from
3.57 eV for a single crystal SnO, to 3.77-3.93 eV.

Ultrasonic spray pyrolysis of FTO layers on flexible substrates
leads to compact grain structures without cracks.**> Muthuku-
mar et al. reported that an increase in the growth temperature
from 360 °C to 400 °C results in an average grain size increase
from 70 nm to 100 nm and an RMS roughness increase from
6.4 nm to 10.5 nm.'*> The Hall mobility increased from 11 cm?
VvV 's't020.1 cm® V' s and resistivity decreased from 1.3 x
107 Q cm to 6.3 x 10”* Q cm, with the increase of growth
temperature. With the increase of film thickness from 211 to
480 nm, there was an increase in the average grain size from
85 nm to 110 nm and the RMS roughness from 9.2 nm to
19.2 nm due to competitive grain growth processes.'*> Niobium-
doped SnO, thin films of cassiterite tetragonal structure and
polyhedron-shaped grains grown by spray pyrolysis are pre-
sented."'”16>1%* In this deposition process, the optical trans-
mittance increased when compared to that of undoped SnO,,
while the absorption edge is red-shifted with an increase in the
niobium doping concentration."”

According to Kumar et al., doping with neodymium (Nd)
improves the electrical parameters of n-type SnO, films.'*® The
resistivity of SnO, films initially decreased with the Nd doping
level up to 4% and further increased for a higher doping level of
6%.'** The change in resistivity was found to be associated with
the carrier concentration and grain boundary scattering in the
doped SnO, films. The increment in the carrier concentration
and conductivity was related to the increase in Nd dopants that
generated more carriers in the SnO, lattice upon substitution.
In a report by Serin et al., the electrical conductivity of spray-
deposited polycrystalline un-doped SnO, films was calculated
using a two-point probe method as a function of substrate
temperature.'®® The Hall mobility and electron concentration as
a function of substrate temperature have been studied in
detail.’*® The highest mobility of 35 + 1.1 cm® V™' 57! was

Table 1 Properties of SnO, thin films deposited using solution-based techniques

Transmittance
Dopants Thickness (nm) Resistivity (Q cm) (%) Mobility (em* V™' s™")  Year Reference
Undoped 720 1.15 x 107° 86 0.61 2008  Kasar et al.’’
Sb-doped 525 4.7 x 107* 60 11 2018 Ponja et al.’®
P-doped 400 7.2 x107* 80 35 2018  Powell et al.’
Ga-doped 160 0.71 87.5 8.33 £ 0.16 2015 Tsay et al.”’
Nb-doped 550 9.6 x 10°* 71.87 — 2013 Turgut et al.'"’
Mo-doped 1.7 x 10* 1.6 60 — 2017  Huo et al.'”
W-doped 1.7 x 10* 0.61 69 — 2017  Huo et al.'*®
Mo and W co-doped 1.35 x 10* 0.35 56 — 2017 Huo et al.'™
F-doped 1000 41 x107* 75 — 2010  Miao et al.**®
F-doped 440 — 84.61 — 2015 Benhaoua et al."®*
F-doped 211 8.9 x 107* 79.4 17.9 2013 Muthukumar et al.*®
Sb-doped 454 2.81 x 10°° 60.55 0.347 2013 Anetal'®
Sb-doped 340 1.98 x 10°° 72 — 2013 Lekshmy et al.'®?
Co-doped 450 37.35 80 — 2010  Bagheri et al.’®’
F-doped 300 1x10°° 80 28 2014  Wang et al.'®®
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observed at 300 °C. The mobility decreased with increasing
temperature. The conductivity of SnO, samples was found to be
persistent with respect to the substrate temperature. Initially,
the electrical conductivity and free-electron concentration
increased with the substrate temperature and then fell laterally.
However, the Hall mobility first decreased and then increased
with increasing substrate temperatures. The Hall mobility
values reported for SnO, films were lower as compared to
monocrystalline thin films. The low values of mobility might be
due to the hindrance provided by grain boundaries with respect
to carrier transport in the SnO, polycrystalline film. The prop-
erties of doped SnO, films prepared by solution-based tech-
niques are tabulated in Table 1.

The solution-based approach offers a facile and an efficient
process to deposit films made up of metal oxide on polyethylene
terephthalate (PET) and glass substrates with low cost and scale-
up opportunity. Doping of various elements shows the versa-
tility of the solution approach towards the design of highly
conducting and transparent tin oxide films. Although there are
reports on the film deposition at low temperatures, achieving
good crystallinity is critical to obtain desirable electrical and
optical properties. Most processes require post-growth heat
treatment to achieve high electrical conductivity that again
limits their application in low-temperature device fabrication.
Therefore, further efforts on the development of nanomaterials
based on SnO, thin films are key to resolve these existing
challenges.
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3.4 Chemical vapor deposition (CVD) and metal-organic
chemical vapor deposition (MOCVD)

Wang et al.*®® deposited FTO films by the CVD technique with
the inclusion of different additives and reported a carrier
mobility of ~28.5 cm® V™' s~ " at a high carrier concentration of
~4 x 10*° em 3. The reported high mobility is associated with
the development of (200) preferred orientation of the CVD-
grown FTO thin films.'*® In another work, Ponja et al.> demon-
strated antimony doped SnO, thin films using aerosol assisted
CVD. The samples with 4 at% Sb dopant exhibited an electron
mobility of 11.4 cm® V' s and a relatively high carrier density
of 10** cm 3 with a visible transmittance of 60%. Hybrid density
functional theory (DFT) calculations reveal the performance
limit beyond a certain dopant level and the appearance of Sb(ur)
within the doped thin films.> Phosphorus doped SnO, which
displays excellent electrical properties and optical properties
was synthesized by using aerosol assisted CVD (AACVD).
Phosphorus concentration plays a key role in obtaining high
mobility and high visible transmittance. Both the surface
morphology and crystallinity depend on the phosphorus
concentration.’

Ta-doped SnO, films were deposited on «-Al,0; (012)
substrates by using a MOCVD method. The deposited films
showed an average transmittance of >88% in the visible wave-
length range.'® When the Ta concentration was increased from
0 to 8 at%, the transparency range extended to the UV-B spectral
region (i.e. 280-320 nm), and the optical bandgap of the films
increased from 3.96 to 4.30 eV.'*® Furthermore, 4 at% of Ta

Sample
holder

ThicknefE=———='Sample
i Sutter]

Vacuum inlet
Chamber

Thermal evaporation

Anode
(substrate)

I

i )
@ Cathode

Magnetron Sputtering

Sample
holder

ple

Pressure|

gauge [y
Vacuum|
pump
i

(target)

Pressure
gauge

RHEED
Screen

rotation

Target

Gas
inlet

Effusion
Cell

Molecular beam epitaxy

\
holderu t 4 ‘yﬂs

Pulse laser deposition

P

Focus

Substratg

Cathodic arc deposition

Fig. 6 Vacuum based physical vapor deposition techniques.

This journal is © The Royal Society of Chemistry 2021

J. Mater. Chem. A, 2021, 9, 16621-16684 | 16631


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ta01291f

Open Access Article. Published on 30 iyun 2021. Downloaded on 05.08.2024 15:29:00.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Journal of Materials Chemistry A

doped SnO, films showed the highest Hall mobility of 58.1 cm?
V™' 57!, and the lowest resistivity of 4.0 x 10~* Q ¢cm was ob-
tained at 6 at% of Ta doping concentration.*® Ta-doped SnO,
epitaxial films demonstrate beneficial electrical properties and
transparency extending to the UV-B light region, indicating
a wide range of applications from transparent electric to
photoelectric devices.**®

3.5 Doping of SnO, through physical vapor deposition
methods

Thin-film SnO, can be synthesized by using different physical
vapor deposition techniques, namely, magnetron sputtering,
pulse laser deposition, thermal evaporation, and electron beam
evaporation. Fig. 6 depicts the different techniques employed to
synthesize SnO, thin films. Physical vapor deposition tech-
niques provide high-quality thin films when compared to
solution-based methods. The film thickness, composition, and
electronic properties can be tuned precisely. The sputter depo-
sition technique is commonly used for SnO, deposition. It is
a widely accepted and used technique for numerous applica-
tions including metal electrodes, transparent conductors, gas
sensors, liquid crystal displays, LEDs, thin-film solar cells, and
dielectric layers in low emissivity coatings for energy-saving
smart windows. Due to its higher deposition rate, excellent
reproducibility, competitive cost, and the possibility of using
commercially available large-area sputtering systems, magne-
tron sputtering is a preferred technique.>***-'7°”> Numerous
reports have been made to grow SnO, thin films by doping
using the direct sputtering technique.*>**>'>"”® DC magnetron
sputtering offers a high deposition rate, uniformity over a large-
area substrate and provides easy control over the composition
of films. SnO, films with single phase tetragonal polycrystalline
structures can be deposited by sputtering and annealing in air
at different temperatures. It is also worth noting that the crys-
tallization of films grown at high substrate temperatures is
enhanced.'”®

Banyamin et al.* demonstrated the electrical and optical
properties of FTO deposited by mid-frequency pulsed DC
magnetron sputtering® from a loosely packed blended SnO,
and F, powder to produce homogeneous n-type thin films at low
temperatures without post-deposition treatment. This method
has several advantages: (1) enhanced sputtering rate without
any need for reactive process control equipment, (2) low depo-
sition temperatures, (3) suppression of arcs, and (4) the
formation of dense homogeneous films. Furthermore, the
loosely packed powder avoids target cracking and allows varia-
tion of the composition.?” Apart from the scattering losses at
surfaces, sputter-deposited FTO has high transparency (82-
85%) in the visible region, which is independent of doping. In
this process, the mean crystallite size increases with both the
fluorine content and temperature, but diminishes with excess
fluorine due to the solubility limit. The bandgap increases
slightly with F doping (from 3.70 to 3.77 eV).

Polycrystalline tantalum-doped tin oxide (TTO) films can be
deposited onto amorphous substrates to obtain lower resistivity
using the radiofrequency (RF)-magnetron sputtering method."””
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Thin film resistivity in such processes decreases exponentially
from 1 to 1.7 x 107% Q cm with respect to the substrate
temperature. These resulted in an average optical transmittance
decrease from 97% at 600 °C to 91% at 700 °C. The charge
carrier density increased from 3.6 x 10"® cm™? at 300 °C to 3.3
x 10*° em™* at 700 °C, while the Hall mobility increased from 1
to 12 ecm® V™' s7'. With an increase in the oxygen ratio in the
process gas mixture, the charge carrier density initially dropped
and then increased, thereby decreasing its mobility, trans-
mittance, and grain size. It is possible to prepare nitrogen-
doped tin oxide in an amorphous phase onto flexible PET
substrates by RF magnetron sputtering.** Increasing the oxygen
partial pressure produces oxygen-rich smoother and more
uniform films, thereby increasing the transmittance (about 80%
in the visible region) and the optical band gap (from 3.19 to
3.42 eV for 1 to 4% partial pressure). The resistivity of nitrogen-
doped SnO, is in the range of 9.1 x 107* Q cm.

Low-temperature reactive DC magnetron sputtering can also
be used to prepare antimony doped tin oxide films on glass and
graphite substrates using a metallic tin target, without addi-
tional heat treatment.'” The electrical resistivity of such films
varies with the oxygen content in the sputtering gas atmosphere
as it influences the optical properties such as changes in color
(vellow at 10% but brown at 16% oxygen). It also provides
moderate transmission whereby at 17% oxygen, the average
optical transmittance is about 74%. Besides, the bandgap
energy increases with the oxygen content from 2.2 eV at below
17% to approximately 3.6 eV at 17% of SnO,.

Dopant elements, the synthesis mechanism and post-
deposition treatments play an important role in achieving high
electrical conductivity and optical transparency for TCOs."****
The Sb-, Ta-, Nb-, F-, arsenic (As)-, and tungsten (W)-doped SnO,
thin films have been widely explored.®*'*>'#* Even though Sb is
the frequently used dopant for SnO, films for optoelectronic
device applications,®**”> the persistent issue is the strong
resistivity dependency on the film thickness.'”* In general, when
the thickness is decreased by tens of nanometers, the resistivity
of TCO thin films increased significantly.””* Shihui Yu et al
developed Sb-doped SnO, (ATO) thin films with varying thick-
nesses on a glass substrate by magnetron sputtering and
proposed a mechanism of varying electrical properties with
respect to film thickness."”* In 2019, Bhasker Parida et al.
deposited high-quality ITO films by RF magnetron sputtering
with post-thermal annealing in a nitrogen environment."®* The
high quality of ITO films is attributed to the combined effects of
effective suppression of oxygen incorporation into films due to
the post-annealing process.'®*

Liao et al. and Kim et al. also reported the conductive
properties of SnO, films by introducing H, into sputtering
plasma.*®>**¢ Thin films of FTO were prepared by pulsed DC
magnetron sputtering with a metal tin target through two
different modes: the transition mode and the oxide mode. In
the transition mode, the CF, gas flow rate was varied, whereas,
in the oxide mode, the CF, gas flow was fixed, but the H, gas
flow was varied.’® A minimum resistivity of 1.63 x 107> Q cm
with an average visible transmittance of 80.0% was obtained for
the transition mode, whereas in the oxide mode the resistivity

This journal is © The Royal Society of Chemistry 2021
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reduced to 8.42 x 10~ * Q cm with an average transmittance of
81.1%. Kim et al. investigated the effect of using hydrogen
plasma treatment on the structural and electronic properties of
sputter-grown SnO,.'*® The electrical conductivity of the film
increases due to the generation of oxygen vacancies after
hydrogen plasma treatment. On the other hand, hydrogen
plasma treatment etched SnO, films and subsequently
degraded their crystalline quality and optical transmittance.
Zhu et al. prepared FTO films by using RF magnetron sputtering
with a SnO,-SnF, target in an Ar + H, atmosphere. The intro-
duction of H, during sputtering can improve the conductivity of
FTO films. It was also revealed that the base pressure has
a notable influence on the structural properties of FTO films.**”
The performance of TCO is considerably affected by the crys-
tallinity and surface morphology of the film.**®'*® Smoother
surfaces reduce the contact resistance and localized field
effects,*"* whereas rougher or patterned surfaces affect the
amount of light absorbed by the active layers due to entrapment
of incident light (by scattering the incoming light and
increasing the optical path length of light within the solar
cells).">'* A pyramidal surface is found to have a larger
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transmission and efficiency than those of a rectangular
surface.”® The surface morphology and grain orientation of
a film are affected by its own thickness.” The electrical
conductivity and transmittance of the film increases and
decreases, respectively, with increasing thickness of the film."*®

Engineering the morphology is important for specific
applications, and roughness in relation to morphology can be
tuned by incorporating additives during the process.™ It is also
worth noting that the resistivity depends on the crystalline
orientation.' Investigation of doped SnO, by trivalent ions
using the pulsed layer deposition (PLD) technique reveals that
the films exhibit preferential orientation and have an average
transmittance of 83-86%. The resistivity decreases with the
increase of doping from 0% to 6%; however, for doping with
>6%, the resistivity increases.'*® Fukumoto et al. demonstrated
epitaxially grown high mobility Ta-doped SnO, films on TiO,
substrates using pulsed laser deposition.’”” Ta-doped SnO,
(Sn;_,Ta,0,, TTO) thin films epitaxially grown on TiO, (001)
substrates using pulse laser deposition showed a very high Hall
mobility of 130 em® V™" 57" at room temperature with a carrier
density of ~10*° cm™* (Fig. 7). It is also worth noting that the
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Fig. 7 (a) w—20 X-ray diffraction patterns for Sn;_,Ta,O, (TTO) films with x = 3 x 10~3 grown at various substrate temperatures (Ty). (b) A
reciprocal space map around the asymmetric 112 diffraction peaks for a TTO film grown at T, = 600 °C. A cross represents the peak position for
bulk SNO,. (c) Ts dependence of Hall mobility (u, circles) and full width at half maximum of the rocking curve (w scan) for the 002 diffraction peak
(FWHMO002w, diamonds) for the TTO (x = 3 x 10~°) films, where Ta>* ions were substituted for the Sn** sites and generated one electron per Ta

(100% doping efficiency),**” presented with permission and copyright.
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Table 2 Properties of SnO, thin films deposited using vacuum-based techniques
SnO, Thickness (nm) Resistivity (Q cm) Transmittance (%) Mobility (cm® v~ s ") Year Reference
F-doped 400 6.71 x 107° 83 15.1 2014 Banyamin et al.®°
AIN-doped 200 0.05 90 5 2015 Wu et al.**°
Al-doped 1050 0.81 80 1.1 2010 Entradas et al.'*
Al-multilayer SnO,: 200 1.38 80-81 0.399 2014 Park et al.'”®

Al: 25
N-doped 100 9.1 x 1074 80 — 2015 Fang et al.'"®
N-doped 8 x 102 Above 80% 6.75 2019 Nguyen et al.'*®
Sb-doped 220 1.8 x 10°° 11.6 2015 Bissig et al.®®
Sb-doped 300 49 x 1073 74 — 2010 Boltz et al.'”®
Sb-doped 700 3x107° 80 6.5 2010 Montero et al.'*®
Cu-multilayer Sn0,: 0 0.29 87 — 2014 Yu et al.**°

Cu: 14 7.79 x 107° 54 —
Zn-doped 850-900 7.436 80 35.14 2012 Ni et al.””*
Ta-doped 1.7 x 107° 91 12 2014 Weidner et al."””
Ta-doped 400 5.4 x 107* 85 25.7 2016 Weidner et al.”*
Ta-doped ~120 6.0 x 107* — 130 2020 Fukumoto et al.*’
Ta-doped 453 4x10™* 88 58.1 2019 He et al.*®®
Cd-doped 82 1.78 x 10? 84 — 2012 Flores et al.”?

Ta" ions are substituted for the Sn*" sites and generate one
electron per Ta, which suggests 100% doping efficiency for the
Ta dopant. The properties of doped SnO, films prepared by
vacuum-based techniques are summarized in Table 2.

The synthesis mechanism plays an important role in SnO,
based TCOs. The surface morphology, chemical composition
and bulk defects depend on the synthesis process.>** In general,
the vacuum based technology provides better uniformity of the
film and lower bulk defects over solution based techniques.
Chemical composition can be precisely controlled using
a vacuum b