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Organic azides are still in the center of click chemistry connecting two molecules. However, taming the

conjugation selectivity of azides is difficult without the help of bulky groups. We report herein the unique

reactivities of α-azido secondary acetamides (α-AzSAs) as minimal and unhindered azide structures. The

NH–azide interaction in the α-AzSAs, supposed by DFT calculations, allowed selective conjugation in the

presence of other azido moieties, even without steric hindrance. With Staudinger–Bertozzi ligation,

α-AzSAs underwent conjugation prior to the other primary alkyl azides. On the other hand, in propargyl

cation-mediated triazole synthesis, other alkyl azides, including tertiary alkyl azides, underwent the conju-

gation faster than α-AzSAs. We also demonstrated site-selective integration of the functional components

onto the diazide modular hubs.

Introduction

In a broad range of scientific areas, including chemical
biology and polymer synthesis,1,2 click chemistry3 represented
by organic azides4 has received much attention, and it involves
conjugation of two molecules concisely. Beyond this estab-
lished one-on-one conjugation,5 a multi-click modular hub
strategy can integrate multiple compounds onto one scaffold
molecule (Fig. 1).6 Owing to the high reactivity with sufficient
stability and small steric influence, multi-azides, compounds
possessing multiple azido groups, have sparked interest in
click scaffolds of multicomponent integration. In addition,
multi-azides are easily accessible multi-click substrates, for
example, by late-stage global azidation and polymerization of
monoazides.7,8 For these reasons, multi-azides could serve as
so-called functionalized element-block materials9 such as
cross-linking, energetic, and Janus-type polymers in polymer
chemistry,10,11 chemical probes, and pharmaceuticals in
chemical biology and life sciences.12,13 However, although
global azide-click conjugation of the same components has

been well-documented, site-specific conjugation remains
limited in multicomponent integration.14,15 In particular,
similar reactivities among alkyl azides lead to difficulty in site-
specificity.

For discrimination of each azido position in multi-azides,
suitable molecular structures have been studied (Fig. 2). Along
with the different characters between alkyl and aryl (alkenyl)
azides,14,16 steric influence,17,18 metal coordination,19,20 and
electron-poor aryl groups21 are often utilized along with a

Fig. 1 The multi-click modular hub strategy toward multifunctional
materials, and issues of multi-azides as modular hubs.
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recently developed azide-protecting strategy.22 However, dis-
crimination of the azides mostly relies on the bulky substitu-
ents such as aromatic rings and tert-alkyl groups, and these
could negatively impact the physiochemical properties and
dynamics of the materials.23,24 Thus, a new azide-discrimi-
nation strategy which does not require the help of bulky substi-
tuents should be investigated.

Focusing on multi-azide chemistry, we recently reported the
site-selective conversion of azido groups at carbonyl
α-positions to diazo or oxime click groups with the retention of
other azide moieties and one-pot multi-component conju-
gation onto the triple-click scaffold converted from the tris
(alkyl azide) compound.15,25 Although our methods allow dis-
tinguishing multiple alkyl azido groups, the extra conversion
step is undesired for conjugation. Inspired by metal-coordi-
nation19 and the α-azido carbonyl strategy,15 we envisioned
that the intramolecular azide–NH interaction in α-azido sec-
ondary acetamides (henceforth simply “α-AzSAs”)26,27 could
lead to unique reactivity without bulky substituents. Herein,
we report α-AzSAs as minimal and unhindered azido units,
which allow selective conjugation in the presence of other
organic azides. We also showcase the site-selective integration
of the functional components onto the diazide modular hubs.

Results and discussion

In general, unlike those of alkyl azides, electrophilic addition
reactions of aryl (alkenyl) azides are favored because of the
stabilized triazene intermediates (Fig. 3).28 In contrast, nucleo-
philic reactions with aryl (alkenyl) azides are suppressed due
to the low nucleophilicity caused by the delocalization. We
hypothesized that intramolecular hydrogen bonding29 in
α-AzSAs could change the reactivity of alkyl azides. In other
words, by the hydrogen interaction, α-AzSAs could be sup-
posed to promote electrophilic reactions,30,31 but suppress

nucleophilic reactions. Although α-AzSAs, also described as
secondary amides of azidoglycine, are general in click chem-
istry, their specificity has not been mentioned to the best of
our knowledge. To evaluate the characteristics of α-AzSAs on
the selective reaction in the presence of other alkyl azides, we
chose the Staudinger–Bertozzi ligation reaction for the electro-
philic reaction of azides.32 For the nucleophilic reaction, we
have developed propargyl cation-mediated rapid triazole syn-
thesis through the nucleophilic addition of alkyl azides fol-
lowed by cyclization.33 Thus, we chose this method.

Prior to the synthesis, we began our study using DFT calcu-
lations to prove our hypothesis shown in Fig. 3 (Table 1, see
also the ESI†).34,35 From the obtained stable conformations,
the direction of the C–N3 bonds of the ketone, ester, and sec-
ondary amide of α-azido carbonyl compounds 1b–d is in the s-
trans conformation. In contrast, tertiary amide 4 is an eclipsed
conformation for its steric repulsion between azido and
N-methyl groups. Alongside these s-trans conformations, we
found that the charge density on the N1 atom of the azido
group in α-AzSA 1e increased compared to those of other com-
pounds, especially among the amides. In the case of its confor-
mers (1e′ and 1e″), the charge distribution value on the N1
atom of non-s-trans 1e′ is much decreased, whereas s-trans 1e″
retains a similar value. These suggest an interaction between
the N1 atom in the azide group and the N-hydrogen atom in

Fig. 2 Molecular designs of distinguishable organic azides toward mul-
ticomponent integration.

Fig. 3 General reactivity of organic azides and working hypothesis on
α-AzSAs.
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the amide group.26 Propanamide of α-AzSA 1f shows a similar
stable conformation with an increased value on N1. Because a
positive interaction with the dipolar azido group is unlikely,
the NH–N1 interaction would be observed by the dipolar repul-
sion-induced stable s-trans conformation of the α-AzSA struc-
ture. Indeed, α-difluoroazidoacetamide 1g, which is known to
be isolable,36 is s-trans between carbonyl and fluoride groups.
Neither 1h with azidoalkyl side chains nor β-AzSA 1i shows any
NH–N1 interaction. Unlike amides, sulfonamide 1j does not
show specific interactions due to the loss of planarity.37 These
results suggest the interaction between NH and the azide group,
which influences the electronic situation of the azido group,
and prompted us to use α-AzSAs as uniquely clickable azides.

We turned to a feasibility study by performing both electro-
philic and nucleophilic reactions of various azides under com-
petition with a general alkyl azide. First, we examined the

Staudinger–Bertozzi ligation reaction with 2a as an electrophi-
lic reaction (Scheme 1).32 Because the addition of phosphines
to the organic azides is a reversible step, stabilization of phos-
phazide intermediates can improve the reaction progress. In
the case of aryl azides of this reaction, stabilization of phos-
phazide from the aryl azides by hydrogen bonding with NH of
the amide has been demonstrated.38 With α-AzSAs of alkyl
azides, as expected, ligation products 4b–e from α-AzSAs 3b–e
were obtained almost predominantly (nearly >20 : 1 ratio) in
excellent yields, even under competition with 3-phenylpropyl
azide 3a. α-AzSA 3f of the secondary alkyl azide only showed
moderate selectivity due to the steric influence at the stage of
aza-ylide formation in the Staudinger reaction.30,31 The low
selectivity of 3g with a β-azido group and 3h with an azidoalkyl
side chain39 revealed the importance of azide positioning.
Although the values are variable, the downfield chemical shifts
of the N–H in 1H NMR26e,34,35,40 compared to those without
the azido group would also suggest the hydrogen bonding of
α-AzSAs. Despite the same α-azidocarbonyl structures, the ter-

Table 1 Calculated stable conformations of organic azides and charge
distribution on their azido groupsa

Entry
Compounds/
conformations

Mulliken charge distribution (a.u.)

N1 N2 N3

1 1a −0.284 +0.253 −0.167
2 1b −0.310 +0.258 −0.151
3 1c −0.268 +0.259 −0.154
4 1d −0.295 +0.270 −0.140
5 1e −0.333 +0.256 −0.145
6 1e′ −0.275 +0.260 −0.145
7 1e″ −0.312 +0.265 −0.144
8 1f −0.329 +0.266 −0.147
9 1g −0.292 +0.285 −0.093
10 1g′ −0.351 +0.274 −0.086
11 1h −0.261 +0.255 −0.168
12 1h′ −0.319 +0.253 −0.148
13 1i −0.272 +0.251 −0.184
14 1j −0.261 +0.270 −0.129

a The DFT calculations performed with the Gaussian09 suite of pro-
grams using the dispersion-corrected B3LYP-D3 density functional
with the 6-311G** basis set.

Scheme 1 Competitive Staudinger–Bertozzi ligations (0.1 mmol scale).
a Yield determined by 1H NMR. bNot observed due to the volatility.
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tiary amide, ester, and ketone 3i–k gave 4i–k with only moder-
ate selectivity. Benzyl azide 3l did not show specific selectivity.

Because aryl azides have been known to exhibit strong reac-
tivity in the Staudinger reaction or ligation, we also examined
the competitive reactions with α-AzSA 3b and aryl azides 3m
and 3n (Scheme 2). Interestingly, α-AzSA 3b also produced the
corresponding compounds with excellent selectivity rather
than aryl azide 3m. α-AzSA 3b also underwent the Staudinger
ligation prior to the sterically hindered but uniquely reactive
aryl azide 3n.18 In addition, this selectivity was also observed
in traceless Staudinger ligation.41

Encouraged by the positive reactivity of the electrophilic
behaviors, we moved to evaluate the nucleophilic character-
istics of α-AzSAs by our developed propargyl cation-mediated
triazole synthesis shown in Fig. 3 (Scheme 3).33 With propargyl
alcohol 5 and alkyl azide 3a, we examined the competitive reac-
tion followed by aqueous quenching for the introduction of
the hydroxy group. As expected, the reactivities of N-benzyl and
N-cyclohexyl α-AzSAs 3b and 3c were very low compared to that
of 3a, and most of the starting α-AzSAs were recovered. On the
other hand, 3a was converted to triazole 6a in excellent yields.
The observed excellent selectivity (1 : >20 ratio) was inverse to
that of Staudinger–Bertozzi ligation (Schemes 1 and 2). 3d
with a bulky side chain showed moderate selectivity, but the
selectivity was improved in toluene. Unexpectedly, N-phenyl
α-AzSA 3e did not show selectivity in dichloromethane, and
the reaction suppression by toluene solvent was not satisfac-
tory. Secondary alkyl α-AzSA 3f also exhibited good selectivity
(1 : 17), whereas β-AzSA 3g or N-azidoalkyl amide 3h did not.
The selectivities of the tertiary amide, ester, ketone, and
benzyl azides 3i–l were moderate or not observed. This reac-
tion strongly depends on the nucleophilicity of azido groups.
Thus, general aryl azides did not afford the products because

Scheme 3 Competitive propargyl cation-mediated triazole formation
reactions with propargyl alcohol 5a (0.1 mmol scale). a Yield determined
by 1H NMR. b Reaction in toluene. cNot determined due to the volatility.

Scheme 2 Competitive Staudinger–Bertozzi ligation with aryl azides
and application to the traceless reaction (0.1 mmol scale; yield deter-
mined by 1H NMR).

Scheme 4 Competitive propargyl cation-mediated triazole formation
reactions with azidoadamantane of bulky tert-alkyl azide (0.1 mmol
scale; isolated yields).
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of the lack of nucleophilicity by the delocalization (Fig. 3).33a

For this reason, we did not test aryl azides in this reaction.
The specificity of α-AzSAs was also demonstrated with bulky

tertiary alkyl azide 3o (Scheme 4). While the reaction with 3a
and 3o gave less-hindered 6a from 3a as a major product,
bulky 6o from 3o was obtained as a major product under com-
petition with primary alkyl α-AzSA 3b. These results indicate
that the α-AzSA skeleton is a primary alkyl azide that can
exhibit high selectivity by both promoting electrophilic reac-
tions and inhibiting nucleophilic reactions.

However, unlike the tested stepwise reactions, strain-pro-
moted azide–alkyne cyclization (SPAAC) of pericyclic reaction42

with 7 showed no selectivity (Scheme 5). This result indicates
that the azido groups in α-AzSAs retain the same 1,3-dipolar
reactivity as general alkyl azides. Indeed, the reaction with 3a

Scheme 5 Strain-promoted azide-alkyne cycloaddition (SPAAC) reac-
tions (0.1 mmol scale; yield determined by 1H NMR except for 8n (iso-
lated yield)).

Scheme 6 Site-selective use of azido groups in α-AzSA-containing diazides. Isolated yield except for recovered 9b (1H NMR yield) in the reaction
from 9b to 10ba due to the difficulty of purification. TBTA: tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine.
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and a bulky 3n gave 8n in a similar ratio to the reported
values.18a,b On the other hand, very recently, Raines and co-
workers reported the SPAAC with the novel aza-dibenzocyclooc-
tyne.26e Although competitive reactions were not examined,
the reaction rate constants showed the fast SPAAC reaction of
α-AzSA 3b compared to other alkyl azides. The inter- and intra-
molecular hydrogen bonding of 3b with the alkyne are also
suggested in the transition state. Thus, the azide-hydrogen-
bonding-assisted selective conjugation approach should also
work in the pericyclic reaction by developing the molecular
design of azidophiles.

Having identified the unique reactivities of α-AzSAs, we
examined the site-selective conjugation of diazides containing
an α-AzSA structure (Scheme 6). For a diazide of aryl and
α-AzSA 9a, Staudinger–Bertozzi ligation occurred at the α-AzSA
moiety selectively. With a 2,6-dichloro azido benzene unit
forming stable aza-ylides,21e the one-pot double Staudinger
reaction also successfully gave 10ac. Next, bis(alkylazido) com-
pounds, which face difficulty in undergoing site-selective con-
jugation, were investigated. α-AzSA-selective ligation of 9b was
accomplished in 70% yield with 11% of overreacted 10bb. On
the other hand, alkyl azide-selective triazole synthesis was
achieved to give 10bc without the overreaction byproduct,
although the azide close to tert-amide was also unreactive.
With 9c consisting of primary and tertiary alkyl azides,
SPAAC42 occurred only at the α-AzSA moiety owing to the steric
hindrance. Nevertheless, by our method,33 we could reverse
this selectivity to obtain 10cb of the bulky azide-reacted tri-
azole in 43% yield with the recovered 9c in 47% yield. Longer
reaction time led to decomposition of 9c and 10cc by the gene-
ration of the tertiary carbocation. Although not perfect, we
demonstrated a way to the prior use of the sterically hindered
azide even in the presence of unmasked and unhindered
azides. In all cases, one-on-one adducts at the opposite azide
positions were not observed.

Finally, we sought to showcase the site-selective conju-
gation of functional groups onto the bis(primary alkyl azide)
compound 9d (Scheme 6). The traceless Staudinger ligation41

achieved the prior use of the α-AzSA moiety to attach the fluo-
rescent azobenzene moiety to give 11aa followed by the conju-
gation at the benzylic position with biotin 2e. The conjugation
from 9d to 11ab was also successful in one pot. In contrast,
selective conjugation at the benzylic azide was demonstrated by
three-component coupling with chloroalkyl propargyl alcohol 5c
followed by azidation33a,b to give diazide 11ba. The first steps of
each selective conjugation reaction were also successful on large
scale (1 mmol). To the less-hindered α-AzSA moiety in 11ba, 2e
was attached selectively. Lastly, CuAAC of the highly hindered
triarylmethyl azide16b,43,44 in 11bb with the propargyl ether of
the fluorescent unit 12 was accomplished to afford 11bc.

Conclusions

In summary, we reported the unique reactivities of the α-AzSA
structure as a minimal and unhindered azido unit. The

amide–NH–azide interaction in the α-AzSA, supposed by DFT
calculations, allowed selective conjugation in the presence of
other organic azides. With Staudinger–Bertozzi ligation,
α-AzSAs could conjugate prior to the other primary alkyl
azides. On the other hand, in the case of propargyl cation-
mediated triazole synthesis we have developed, α-AzSAs
remained inert, and other alkyl azides, including even tertiary
alkyl azides, underwent the conjugation. We also demon-
strated site-selective integration of the functional components
onto the diazide modular hubs. The unique characteristics of
α-AzSAs44 would open a new methodology of discriminative
azide click reaction free from bulky substituents. We also
believe that this work could help develop multifunctional
chemical probes and polymer materials. Further research
based on this strategy is currently underway in our group.
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