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Future opportunities for bio-based adhesives —
advantages beyond renewability

Bio-based materials are attracting more and more attention in all fields due to their improved environ-

mental footprint and due to the independence from petroleum resources that comes with their use. This

is also true in the field of adhesives, where renewable materials from biopolymers to monomers derived

from renewable resources are increasingly investigated. However, their sustainability is rarely a sufficient

argument for their commercialisation, especially if the new materials cannot be implemented as drop-in

replacements for existing technology. The aim of this review is therefore to point out the advantages that
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Introduction

Due to an increasing environmental awareness and the
growing need to decrease dependence on petroleum resources,
much attention has been paid to the possibilities of synthesis-
ing polymeric materials from bio-based, renewable resources."
Where adhesive technology is concerned, this has led to a
renewed interest in traditionally bio-based binders, such as
starch or renewable rubber, but also to the application of more
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bio-based materials can bring to adhesives compared to their petroleum-based counterparts beyond
their renewability. Specifically, new functionalities through novel molecular architectures, the advantages
of vegetable oils such as hydrophobicity, reduced human and environmental toxicity and the performance
of bio-based compared to petroleum-based adhesives are covered.

recent technologies such as the use of modified vegetable oils
or lignin derivatives for binder synthesis.”

A wide ground of adhesive technologies can today be
covered using renewable materials, which may show an equal or
better performance than their commercial, petroleum-based
counterparts. However, the mere fact that renewables are used
in a product is often not a sufficient argument for its commer-
cialisation, especially when additional costs are associated with
either the materials or their implementation, i.e. when they are
not drop-in replacements for current technology.”

Notwithstanding, the use of plant-based materials can
induce properties that were not previously possible, for
example due to new structural elements, high monomer func-
tionalities and the high molecular weight of starting materials,
which favour the formation of densely cross-linked networks
and adhesion to a variety of substrates.”

Examples for interesting bio-based building blocks include
vegetable oils, which can increase adhesive hydrophobicity and
therefore water resistance, but also biopolymers such as proteins,
polysaccharides and lignin as well as bio-based monomers such
as isosorbide and itaconic acid, which can improve the perform-
ance of petroleum-based adhesives in a variety of ways.

This short review aims to highlight the advantages bio-
based materials can bring to adhesives beyond their renewabil-
ity, and to provide a guide across the spectrum of adhesive
types to match specific needs and opportunities.

Overview of different adhesive types

The term adhesive covers a wide range of materials, and while
the function is always to bond separate substances, this is
achieved through a variety of mechanisms and to very different
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Table 1 Overview over different types of adhesives
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Type Mechanism of hardening Examples for compounds used
Solution/dispersion Evaporation of solvent/water Polyvinyl acetates, polyurethanes, acrylates, rubber
Hotmelt Cooling Polyamides, saturated polyester, ethylene vinyl acetates

1-Component External impulse, i.e. water,

temperature, UV-light
2-Component Mixing of the components

Pressure sensitive adhesives Retain tackiness

specifications.” The adhesive joint usually contains a poly-
meric substance that is connected to the substrate through
chemical bonds, physiochemical attractions and physical
interlinking. The fashion in which this polymer is applied is
equally as important as its chemical composition because it
determines the conditions under which the application must
take place and therefore the possible end uses. It also influ-
ences factors such as the spreading of the adhesive on the sub-
strate and the area of contact, which in turn have a big impact
on the adhesive forces that can be developed.® The different
types of adhesives are summarised in Table 1.

Some, though progressively fewer, adhesives are applied in
solution. The solvent subsequently evaporates to give the final
joint. Due to environmental concerns dispersions, in which
the polymer is suspended in water, are becoming a popular
alternative. Both solvent-based adhesives and dispersion
adhesives can be based on polyvinyl acetates, polyurethanes,
acrylates, and natural and synthetic rubber.”

Another method of application is used for hotmelt
adhesives. The main advantage of hotmelt adhesives is the
short time in which bonding is achieved, and they are there-
fore usually chosen for processes that require a high through-
put. The polymer is melted and applied while hot, and the
joint is hardened simply by the cooling of the adhesive.
Hotmelt adhesives are generally based on thermoplastic poly-
mers such as polyamides, saturated polyesters and ethylene-
vinyl acetate copolymers.®

Finally, there are adhesives that are applied before the
polymer is completely formed. The joint is hardened through
a chemical reaction of the components, and the adhesives are
therefore termed reactive adhesives. They are further character-
ised into 1-component reactive adhesives, in which all reactive
components are present in one component, and 2-component
reactive adhesives, in which the reactive substances are mixed
only shortly prior to the application.’

In the former type, the crosslinking reaction that forms the
adhesive joint is generally triggered by an external impulse,
such as water for polyurethanes, silane adhesives and cyano-
acrylates, the absence of air for anaerobic adhesives or high
temperature for condensation resins such as phenol formal-
dehyde, urea formaldehyde or melamine formaldehyde
adhesives. Condensation resins are frequently used in the
wood construction industry for bonding wood and wood com-
posite materials.'® Another example are acrylates, cured
through ultra-violet light (UV), which activates a photo-
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Polyurethanes, silanes, cyanoacrylates, condensation resins
(phenol formaldehyde, urea formaldehyde, melamine formaldehyde), acrylates

Epoxides, polyurethanes, methacrylates
Acrylates, rubber

initiator compound that starts a radical polymerisation
reaction.

2-Component reactive adhesives can be based on epoxides,
polyurethanes or methacrylates. While epoxides and poly-
urethanes undergo addition reactions, methacrylates like acry-
lates undergo radical polymerisation, in this case started by
mixing with an initiator compound.”* The different adhesive
classes are not always completely distinct, as there can be
hybrids such as reactive hotmelt adhesives. These contain a
mixture of polymers, one of which cools down quickly while
the other undergoes further chemical reaction, combining the
fast application of hotmelt adhesives with the superior cohe-
sion and durability of reactive adhesives.’

A last, somewhat separate class of adhesives are pressure
sensitive adhesives, which are differentiated because they do
not harden but retain their tackiness throughout the service
life, and rely heavily on non-covalent interactions with the sub-
strate. Pressure sensitive adhesives are often based on acry-
lates, rubbers and UV-curing polymers, and are used for
example in adhesive tapes and labels."”

Motivations for the use of sustainable adhesives

In recent years, there has been an increasing drive in the
entire chemical industry to improve the sustainability of pro-
cesses and products. This is due on one hand to the environ-
mental awareness of customers and the ensuing regulations
and on the other to the looming shortage of oil from which
many chemicals are derived and the associated threat of pet-
roleum price volatility. In the adhesive industry, this has mani-
fested itself most notably in the switch from solvent- to water-
based or high solid adhesives, and in the renewed interest in
traditional natural adhesive materials such as polysaccharides
and proteins.”

Another incentive for producing adhesives based on renew-
able materials is the move towards a circular economy. Using
bio-renewable or waste feedstock helps to reduce the carbon
footprint. As a bonus, the inherent biodegradability of renew-
able materials such as starch, polyhydroxyalkanoates or cell-
ulose is often higher than that of synthetic materials such as
polypropylene and polyethylene.**

While the majority of adhesives are still petroleum-based,
the recent classification of formaldehyde as a harmful sub-
stance is another incentive that drives the search for alterna-
tive adhesive solutions, especially in the wood industry.'®
Many wood adhesives for both solid wood and wood compo-
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sites are still based on formaldehyde-containing condensation
resins. In order to avoid harmful emissions both during pro-
duction and during the service life, alternative adhesives must
be found. This is another factor that has accelerated research
into greener and also renewable alternatives such as protein
adhesives.

Aside from regulatory forces, another aspect in the adhesive
market drives investment into new, sustainable products. As
pointed out in a report by Frost & Sullivan from 2015, titled
“Investment Analysis of the European Adhesives and Sealants
Market”, the adhesives’ market is highly competitive, which
necessitates the development of customised, specialty pro-
ducts to enable differentiation and increase loyalty.'®

In the construction sector, also analysed in the report
“North American and European Construction Adhesives and
Sealants Market, Forecast to 20227, there is a need for increas-
ingly high performance products, especially regarding shock,
heat, moisture and UV resistance.'”” On the contrary, the
market for non-structural adhesives is increasingly focused on
technologies that are easy to use and allow flexibility in the for-
mulation.'® In the automotive sector, the focus is on light-
weight cars that can lower the carbon footprint. Therefore,
there is a need to develop adhesive solutions for bonding light-
weight materials, and for adhesives that ease recycling and are
low in hazardous substances.

Some of these challenges can be met using the unique pro-
perties of renewable materials, and these market trends are
therefore a good opportunity to investigate how sustainable
adhesives can be introduced into portfolios to benefit the
environment and generate profits.

Introducing bio-based materials into adhesives

There are several ways in which renewable materials can be
introduced into adhesives. The most obvious route is to use
natural products, ie. biopolymers such as proteins, that
already have adhesive characteristics. A second possibility is to
use building blocks or monomers that can be derived from
renewable sources, and combine them to make polymers
closely resembling synthetic adhesives. While this route
requires initially more efforts to generate the necessary struc-
tures, it presents a much easier drop-in solution at the appli-
cation end as similar equipment can be used for the proces-
sing, and formulation components can remain largely
unchanged. Lastly, bio-based materials can be introduced as
additives into synthetic adhesive formulations.

Biopolymer adhesives. Renewable materials have historically
been used as adhesives longer than synthetic polymers, but
have been replaced in many applications because of the
cheaper production or superior characteristics of synthetic
equivalents. One example is the adhesive used on the back of
stamps. It was historically based on natural gums such as gum
arabic, but has now been largely replaced by polyvinyl acetates
due to their superior adhesion and water resistance.'®*°

Proteins, natural rubber and polysaccharides, especially
starch, natural gums and cellulose, are all renewable polymers
that have been used as adhesives in the past. When glue lami-
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nated timber was first used for construction in the 19th century,
bio-based adhesives based on the protein casein were used.
These have now been replaced with synthetic phenolic resins
which offer superior adhesive strength and water resistance.*’
Animal glue, which is based on collagen obtained from burning
animal connective tissue, has been used for over 3000 years.>'
Due to its water solubility, it is nowadays only used in specialist
applications, such as in conservation and for the construction
of musical instruments.”> Aside from the historical accuracy
that necessitates its use, it is also advantageous due to its brit-
tleness, which causes it to break without damaging the attached
wood, making it ideal for repair and reassembly.

Today, traditional bio-based adhesives are still employed in
certain applications where they present an advantage over syn-
thetic polymers. One example are stationary adhesives,
especially glue sticks, which are usually based on modified
starch and water. In many stationary applications, solvent-
based adhesives are used because the water damages the
paper, but in glue sticks, the necessary quantity of water is
small enough not to cause problems.*® Pressure sensitive
adhesives for office labels often still contain natural rubber,
which has good cohesive properties and shear resistance, and
is cheaper than the synthetic alternative.**

Corrugated cardboard is also still produced using starch.
Sodium borate (Na,B,0,-10H,0) is used to connect the
hydroxyl groups on the starch with those of the cellulose in the
paper.>® Casein is widely used to attach labels to glass bottles
due to its good adhesion and the ease of removing it under
hot water when the bottles are recycled. Bio-based polysacchar-
ides are also often used in medicinal applications such as plas-
ters. In this case their advantage over synthetic adhesives is
their non-toxicity, and in addition their capability to absorb
moisture without losing adhesion.

These materials present a good basis for renewable
adhesives. However, their structure and therefore their pro-
perties are adapted to their original natural environment. If
they are to be used in different contexts, especially where high
performance is required, modifications to these structures are
necessary.”” For example, due to the many polar groups in
both proteins and polysaccharides, water resistance is often
the major hurdle to be overcome.

Several possibilities exist to improve the water resistance of
adhesives based on biopolymers. For proteins, these include
making the functional groups more available for crosslinking,
for example through modification of the tertiary and quartern-
ary structure, chemical crosslinking to create denser networks
and mixing of the proteins with synthetic adhesives.>®

Similar strategies can be employed where polysaccharides
are concerned. Imam et al for example formulated a wood
adhesive based on corn starch, citric acid and polyvinyl alcohol
with a molecular weight of 100 000-146 000 Da.>” The shear
force required to de-bond hard wood pieces in an ASTM D-906-
64 test was increased from 1000 kg to 2750 kg by crosslinking
the adhesive with hexamethoxymethylmelamine. The water re-
sistance as measured in % of veneer failure could further be
improved from 70% to 99% by adding latex to the formulation.

This journal is © The Royal Society of Chemistry 2019
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Another example for overcoming the inherent hydrolytic
susceptibility of biopolymer adhesives is the work of Zheng
et al., who created a wood adhesive entirely based on soy, more
specifically defatted soy flour made up of 50% soy protein and
40% carbohydrates.>® The moisture resistance was increased
by hydrolysation of the carbohydrates, causing self-cross-
linking with the proteins in the formulation. The hydrolysation
was performed for example by adding HCI to the carbo-
hydrates at a concentration of 2% at 140 °C for 60 min. After
soaking in water at 63 °C for 3 h, the shear strength could thus
be increased from 0.6 MPa to 1.18 MPa.

An extensive list of all the works published concerning the
modification of adhesive properties of biopolymers would be
out of scope for this review. It should however be noted that
numerous publications detail successful ways to improve
moisture resistance, strength and durability and that conse-
quentially, many promising strategies for the application of
biopolymers as adhesives exist. For wood adhesives, which are
one of the most important areas of application for biopolymer
adhesives, these have been recently reviewed by He.>®

A biopolymer with rather different properties to proteins,
natural rubber and polysaccharides is lignin. Contrary to the
aforementioned biopolymers, it consists of a densely crosslinked
aromatic network, which shows low compatibility with most sol-
vents and decomposes without melting. The challenge that
needs to be overcome to enable its application in adhesives is
therefore not its moisture resistance but rather the ability to
process it. Due to structural similarities between lignin and con-
densation resins used for wood composite bonding, this has
been the most prominent area of research into lignin
adhesives.>*" Thanks to numerous hydroxyl groups in the struc-
ture, it can however also be used as a polyol in polyurethanes.*

Adhesives from renewable monomers. Renewable building
blocks that can be used to create macromolecules have been
in the focus of the polymer industry for the last decade, and
many of the developments are transferable to adhesive syn-
thesis. Many diacids and diols that can be used in polyester
synthesis such as succinic acid, itaconic acid, sebacic acid,
1,2-propanediol, 1,3-propanediol and 1,4-butanediol have
become available from biorefineries and plant-based
sources.

Another important product group are vegetable oils. Their
components glycerol and fatty acids can either be used directly
in polyester synthesis or converted to new building blocks.*®
For example, the double bonds can be converted by epoxi-
dation, followed by ring opening to create secondary hydroxyl
groups, or converted to primary hydroxyl groups by ozonolysis
or hydroformylation followed by hydrogenation. New dimers
can also be created through thiol-ene click chemistry, such as
shown in Fig. 1. In this case, a new amine functionality was
introduced by Stemmelen et al. into grapeseed oil using cyste-
amine hydrochloride.**

Due to these availabilities, the most common classes of
adhesives to be synthesised from renewable building blocks
from a chemical point of view are polyesters, polyurethanes
and epoxy-based polymers.

This journal is © The Royal Society of Chemistry 2019
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Fig. 1 Thiol—ene reaction introducing new functionality in the vege-
table oil published by Stemmelen et al.

One example in which different renewable building blocks
were combined to create an adhesive is the work of Dai et al.,
who used both diacids and diols to make a polyester and
cured it with a vegetable-oil-based crosslinker.”> The polyester
was prepared from itaconic acid with ethylene glycol, 1,4-buta-
nediol, 1,6-hexanediol and glycerol; the crosslinker from acry-
lated epoxidised soybean oil.

The combination of the two improved the adhesion to both
tin and glass plates significantly from 0 to 5B according to the
ASTM D3359-09 crosshatch adhesion test compared to the
soybean material without polyester.

Of course, different renewable building blocks or biopoly-
mers and bio-based monomers can be combined to benefit
the adhesive properties. One example is the work of Jian et al.,
who cured epoxidised soybean oil with polybutylene succi-
nate.?® Thus, a highly structured chain element could be intro-
duced in the polymer. When the molecular weight of the
polybutylene succinate was increased from 462 g mol™" to
978 g mol™", the melting points of the corresponding cured
adhesives could be increased from 57 °C to 86 °C. The tensile
strength was also increased from 0.6 MPa to 7.9 MPa.

Renewable building blocks can also be used in poly-
urethanes, and one such adhesive was recently prepared by
Malik et al. from vegetable oils.>” Canola oil was first epoxi-
dised, followed by ring opening, and then derivatised with
different diisocyanates. The polyurethane was then used as an
adhesive for teak wood. One problem with such bio-based
polyurethanes is that the isocyanates used are usually non-
renewable, limiting the overall renewable content of the poly-
urethane. Some bio-based diisocyanates are however also avail-
able, and have been tested for their adhesion strength with
castor-oil-based polyols for instance by Sahoo et al.>®

Renewable materials as additives in adhesive formulations.
A different possibility for increasing the renewable content of
an adhesive formulation is to use renewable materials as addi-
tives. Biopolymers can for example be used as rheology modi-
fiers, or to bind water in the adhesive.”> One very common
example is the use of rosin as a tackifier. Rosin, which consists
largely of abietic acid, shown in Fig. 2, and its derivatives, is a
resin that can be obtained from coniferous trees. It is often
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Fig. 2 Structure of abietic acid, a major component of rosin.

added to pressure sensitive adhesives and wooden floorboard
adhesives.

Natural fats and oils also find application as plasticisers.
Recently, for example, a mixture of liquefied wood and depoly-
merised polyethylene terephthalate from waste streams was
evaluated as a plasticiser for a polyvinyl acetate adhesive for
flooring applications by Jasiukaityté-Grojzdek et al.>®

The motivations for including bio-based materials into
adhesives and the methods with which it can be done are sum-
marised in Table 2.

This review does not aim to include all examples of
research in which renewable materials have been successfully
introduced into adhesives. Instead, its purpose is to point out
and exemplify the different advantages that can be gained by
using those materials that have been discovered, in the hope
of serving as a guide to potential users and thus of increasing
the number and scale of bio-based adhesive applications.

New types of macromolecular
architectures through bio-based
starting materials

One important factor that differentiates bio-based adhesives
from traditional adhesives based on petroleum-derived
materials is their “molecular architecture”. Where biopolymers
are used, macromolecules are already present. This eliminates
the need for a polymerisation process. On top of this, the con-
nections formed in nature, for example in lignin or in pro-
teins, are often complex and not easily accessible by traditional
polymerisation chemistry.

Alternatively, monomers derived from renewable sources
also contain combinations of functional groups that would not
be economical if produced through petrochemical pathways. One

View Article Online
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epichlorohydrin  4,4'-diaminodiphenylmethane

Fig. 3 Renewable and non-renewable building blocks used in polymer
synthesis.

example is isosorbide, a molecule derived from glucose that con-
tains four stereo-centres, as shown in Fig. 3. These differences
can be leveraged to improve adhesive performances in a number
of ways, some illustrations of which are detailed below.

Additional bond formation due to high functionalities

The functionality of biopolymers is often much higher than
that of traditional resins. One example for this is softwood
Kraft lignin, which was recently analysed by Crestini et al.*
The lignin was fractionated according to solubility, glass tran-
sition temperature (T,) and molecular weight, and the func-
tionality was analysed for the different fractions.

The highest molecular weight fraction, which was insoluble
in acetone, was found to contain 3.5 mmol g~ phenolic OH
and 3 mmol g~ aliphatic OH. At a molecular weight of
12200 g mol™, this corresponds approximately to 43 phenolic
and 37 aliphatic OH-groups per molecule. This is significantly
higher than the concentration in most synthetic polyols, which
contain only two to six OH functions as end groups.

This can become useful in two ways. On one hand, the
speed of crosslinking of the resin during the curing can signifi-
cantly increase, as a higher number of reactive groups are
present. This was demonstrated for example by Ferdosian et al.,
who blended a lignin-based epoxy resin with a bisphenol-A-based
epoxy resin to make a polymer matrix for fibre-reinforced plastics
and coatings.”" The lignin-epoxy resin was prepared from depoly-
merised Kraft lignin and epichlorohydrin, and blended with a
commercial bisphenol A epoxy resin at 25 wt%. A curing agent
(4,4-diaminodiphenylmethane) was then added to the mixture

Table 2 Summary of motivations for the use of bio-based adhesives and methods for introducing them

Motivations

Ways to introduce bio-based content

« Customer environmental awareness

« Natural macromolecules with adhesive properties (proteins, natural rubber,

polysaccharides, lignin)

« Regulations, i.e. classification of formaldehyde as a
carcinogen

- Oil shortage & associated price volatility

« Differentiation through the development of customised/
specialty products

1870 | Green Chem., 2019, 21, 18661888

« Synthesis of polymers from renewable monomers (succinic acid, itaconic acid,
1,3-propanediol etc.)

+ Use of renewable compounds as additives (rosin, fats, oils)

This journal is © The Royal Society of Chemistry 2019
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and curing was interrupted through quenching in an ice bath
before the curing process was characterised by DSC.

Compared to the lignin-free resin, the activation energy of
the lignin-containing resin could be lowered from 48 kJ mol ™
to 45 k] mol ™", while its curing onset and end of curing reac-
tion at a heating rate of 10 °C min~" were lowered from 77 °C
to 58 °C and 260 °C to 243 °C respectively. The authors attri-
bute this speeding up of the curing reaction to the additional
hydroxyl groups present in the lignin that can participate in
the crosslinking reaction.

The higher density of functional groups in bio-based pro-
ducts can also lead to overall higher crosslinking densities.
This was observed for example by Desai et al., who produced
polyurethane adhesives from toluene diisocyanate and various
bio-based polyols and tested their lap shear strength for wood
bonding.>® The polyol was prepared by first performing a
glycosylation of potato starch to obtain glycol glycosides, as
shown in Fig. 4. These were then condensed with argemone or
castor oil in different quantities to vary the hydroxyl value.

The authors found that the highest hydroxyl values from
adhesives based on both oils also resulted in the highest lap
shear strength and the highest amounts of wood failure com-
pared to cohesive and adhesive failures. The thus synthesised
adhesive performed better than commercially available
adhesives. Unfortunately, only the brand and not the exact type
of commercial adhesive used for the comparison is specified.

A similar effect was reported by Mija et al, who mixed
humins, a hydoxymethylfurfural biorefinery byproduct shown
in Fig. 5, into a polyfurfuryl alcohol resin.** Cellulose compo-
sites were impregnated with the resulting resin and cured, and
the tensile strength and Young’s modulus was evaluated. The
tensile strength increased from 15 MPa to 30 MPa and the
Young’s modulus increased from 3.5 GPa to 4 GPa with the
addition of the humins compared to pure polyfuryl alcohol
resins.

This improvement is probably related to the fact that
humins already possess a crosslinked structure, which there-
fore contributes to an increased crosslinking density, but it is
also due to another positive aspect that is often associated

HO
OH H,SO,4 (0.5%
-0 o + Ho/\/OH 2 4 ( °)
110-120 °C
OH n
starch
HO O/\/
OH OH
HO O
OH *
0 OH OH
07 \_-0H
OH OH

glycol glycosides

Fig. 4 Glycolisation of starch to obtain glycol glycosides (Desai et al.
2003).2°
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Fig. 5 Structure of humins (Mija et al. 2017).4

with biopolymers. Specifically, the good compatibility between
the cellulose substrate and the humins also leads to a strong
interfacial adhesion, overall strengthening the composites.
This effect was also leveraged by Liu et al. in the design of a
water resistant adhesive based on soy protein.*® Calcium car-
bonate was first introduced into the soy protein to make a
nanocomposite. The nanocomposite adhesive was then used
to bond plywood samples, and its adhesion performance was
evaluated. Due to the strong interactions between the calcium
carbonate crystals and the free functional groups of the soy
protein polypeptides, the shear strength could be increased
from 1.7 MPa without calcium carbonate to above 5 MPa.
Lastly, the large amount of functional groups in many bio-
polymers allows for a great variety in modification. In addition
to reacting with traditional crosslinking agents, such as poly
(methylenediphenylisocyanates) (pMDI) and formaldehyde,
the hydroxyl functionality can also be modified for example
using silane reagents. This was done by Li et al., who doubled
the wet shear strength of a soy-protein-based adhesive for
plywood by adding 3% of an epoxy-silane coupling agent.**

New properties due to novel monomer architecture

Bio-based monomers differ in their structure from traditional,
petroleum-based monomers due to the different pathways in
which they are synthesised. The full potential of bio-based
materials can be tapped if their advantages over petroleum-
based equivalents are identified and subsequently applied in
areas in which those advantageous properties can be fully
exploited, rather than where a one-to-one replacement of
current materials is attempted.

A well-known example of this is the compound 1-3,4-di-
hydroxyphenylalanine (.-DOPA), which is an active part of the
substance used by mussels to achieve high bond strength even
under water.

Its bonding effect is due on one hand to the oxidative cross-
linking that can take place between the aromatic rings, and on
the other hand to the chelating effect on metals.*” If .-DOPA is
incorporated into adhesive formulations, these mechanisms
can be used to increase underwater strength, or adhesion to
metallic substrates. Incorporation can happen for example
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through derivatisation with a diol and p-toluenesulfonic acid
as done by Manolakis et al. and shown in Fig. 6, followed by
incorporation into a polyamide.*®

Another monomer with potential to induce novel properties
into adhesives is 2-pyrone-4,6-dicarboxylic acid, shown in Fig. 7.
A chemically stable metabolic intermediate of lignin, it can be
obtained from lignin through bacterial transformations.*”

Hasegawa et al. synthesised an epoxy adhesive based on
this monomer by adding two epoxy groups and then curing it
with different anhydrides.*® The adhesive was tested on metal
substrates and necessitated shorter curing times and lower
temperatures compared to the petroleum-derived reference
adhesive based on bisphenol A. Furthermore, the tensile
strength of the lignin-based adhesive was observed to be
higher. This was explained by the authors by the high polarity
of the monomer as well as by possible chelation effects on the
metal surface.

Another interesting effect of the monomer architecture is
that it enables tuning of the degradation behaviour.
Michinobu et al. incorporated 2-pyrone-4,6-dicarboxylic acid
into a polyester, and found that both thermal and hydrolytic
degradation were influenced compared to a polyethylene tere-
phthalate reference material."® Thermal degradation in
thermogravimetric analysis (TGA) started at 250 °C, corres-
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sulfonic acid, which was used as counterion (Manolakis et al. 2014
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Fig. 7 Lignin derived 2-pyrone-4,6-dicarboxylic acid, its diepoxy
derivative (Hasegawa et al. 2009)*® and bis(2-hydroxyethyl)terephthalate
(Michinobu et al. 2008).
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ponding to the breaking of the lactone cycle, instead of at
400 °C, when the backbone ester bonds start to degrade.
Hydrolytic degradation of a copolymer from bis(2-hydroxy-
ethyl)terephthalate and 2-pyrone-4,6-dicarboxylic acid, which
was also considered to proceed via opening of the lactone
cycle, could be adjusted through the amount of the renewable
monomer.

A film containing 50% of the terephthalate was observed to
lose over 90% of its weight after 30 days in a 0.1 M aqueous
sodium hydroxide solution, while a film containing 70% of the
terephthalate lost below 10% in the same conditions. An
adhesive material with tuneable biodegradability would be
especially interesting to applications with a short life span, for
which the degradation must be prevented for the duration of
its use, but enabled after it is thrown away.

An interesting property was also discovered by Fan et al.,
who planned to make a thermoplastic resin from a citric acid
derivative and observed a slow self-crosslinking reaction after
short storage times that turned the resin into a thermoset that
could be used for example for 1-component adhesive appli-
cations.”® Citric acid was converted to methyl-3-(methoxycarbo-
nyl)furan-2-acetate (MCFA) via conversion to dimethyl-1,3-acet-
onedicarboxylate (DMAD) followed by reaction with chloroace-
taldehyde, as shown in Fig. 8.

The MCFA was then transesterified with various linear
diols. A kind of crosslinking, causing the thermosetting nature
of the final product, was produced by a ring opening of the
furan followed by the formation of enols due to the strong elec-
tron withdrawing effects of the ester groups as shown in Fig. 9,
and the formation of hydrogen bonds between the enol group
and the ester and aldehyde groups in other chains.

Other than the chelating ability, polarity and reactivity of
the monomers, the positions in which chains are connected
can also differentiate bio-based materials from traditional
polymers. One example for such an effect was reported by
Pawlik et al. for a polyol based on palm oil.”" It was used to
make a polyurethane foam in this case, but the observations
can likely be extrapolated to polyurethane adhesives. Only
quantities of up to 15% of the bio-based polyol were used to

O OH
o} o} o}
"o o w
\o O/

(0] OH O

DMAD

citric acid

MCFA

Fig. 8 Conversion of citric acid to methyl-3-(methoxycarbonyl)furan-
2-acetate (Fan et al. 2016).%°
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Fig. 9 Enol formation on citric acid-based polymer (Fan et al. 2016).%°

avoid having to make modifications to the formulation. The
tensile strength of the resulting foam could however be
increased from 48 kPa to up to 86 kPa through the addition of
the bio-based material. This was thought to be because the
hydroxyl groups of the bio-based polyol were in the middle of
the chain instead of in the end as it is the case for the pet-
roleum-based polyol. For an equivalent molecular weight of
the polymer, the soft segments were therefore shorter, improv-
ing the mechanical properties.

Another example of a novel structure with interesting pro-
perties are the hyperbranched epoxy resins synthesised by
Duarah et al. from starch, epichlorohydrin and bisphenol A.>?
Due to the globular shape of the hyperbranched polymer, a
low viscosity resin was obtained. Unlike adhesives based on
starch and traditional epoxy resins, the resulting adhesives
showed both excellent chemical resistance and biodegradabil-
ity. An adhesive containing 20% starch showed only 0.0017%
weight loss in 10% aqueous HCI compared to 0.0025% weight
loss that was measured for a starch free diglycidyl ether epoxy
of bisphenol A (DGEBA) that was used as a reference, and also
outperformed the reference in NaOH, NaCl and ethanol solu-
tions as well as in water. Furthermore, around 25% weight loss
upon exposure to bacteria was observed for the 20% starch
resin compared to below 5% for the DGEBA reference.

Of course, it may be possible to achieve the same effect that
was seen for bio-based monomers using petroleum-based
compounds that also achieve mid-chain crosslinking, possess
high polarities or can chelate metals. However, it is worth con-
sidering whether using the bio-based monomers may be a
more direct route to the desired properties, and whether in
combination the advantages, such as sustainability and higher
bond strength than a standard petroleum-based polyol, consti-
tute a sufficient argument for their implementation.

Components with multiple functionalities

Another advantage of many bio-based molecules is the possi-
bility to use them for more than one function in a formu-
lation. This was demonstrated for example by Qi et al., who
mixed different commercial latex adhesives, including a urea
formaldehyde resin, with modified soy protein.>®> The
addition of 40% of the modified soy protein to the urea form-
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aldehyde resin resulted in equal dry strength and improved
the wet shear strength in the bonded veneer samples from 4.7
MPa to 6.4 MPa.

One cause for this improvement was the participation of
the modified soy protein in the crosslinking reaction, via bond
formation between free hydroxyl groups on the urea formal-
dehyde resin and carboxylic acid, hydroxyl and amine groups
on the protein. This was evidenced for example through the
appearance of new ester groups in the adhesive IR spectrum,
and new peaks in the thermal analysis. A further basis for the
improvement can be found in the fact that the protein acidi-
fied the adhesive, acting as a catalyst in the curing reaction.
Additionally, the presence of the modified soy protein also
lowered the overall viscosity and therefore improved the
spreading and processability of the adhesive.

A similar effect was observed by Desai et al., who made an
adhesive based on potato starch glycol glycosides and castor
0il.>* The replacement of the trimethylolpropane, shown in
Fig. 10, with glycol glycosides in the formulation resulted
both in an increase in lap shear strength from 43 x 10> N m >
to 60 x 10> N m™> and in a decrease of the viscosity from 30
poise to 3.7 poise. The glycol glycosides therefore acted as both
crosslinker and viscosity modifier. Unfortunately, it also
decreased the resistance to hot water, lowering the peel strength
from 7.4 kN m™" to 6.7 kN m™" after treatment. This was prob-
ably due to the increased polarity caused by the numerous
hydroxyl groups.

Where extracted tannins, natural polyphenols present in
most plants, are used, the opposite effect can be observed.
Hydrocolloid gums are often also present in tannin extracts,
and can serve to increase the viscosity of adhesives that are
made from tannins or introduce thixotropic behaviour.’®

On example of a bio-based monomer that can be used in
many different functions is citric acid. It can be a catalyst, a
crosslinker with different functionalities, a dispersing agent or
a monomer. For example, Sridach et al. used citric acid as a
catalyst for crosslinking an adhesive based on polyvinyl
alcohol, starch and hexamethoxymethylmelamine.*® Yang
et al. also used citric acid as a crosslinking agent, this time for
an adhesive based only on cotton.”” They found that in
addition to its function as an acidic crosslinker, the free OH-
group could react with other anhydrides, creating a tetrafunc-
tional monomer as shown in Fig. 11.

In contrast, Nordqvist et al. used citric acid as a dispersing
agent for dispersions of wheat gluten and soy protein isolate
in a study designed to evaluate the differences in bonding per-
formance between the two products.’® Lastly, citric acid was
used as a comonomer together with sucrose to make an
adhesive for particle boards by Umemura et al.*®

OH
HO%OH

Fig. 10 Trimethylolpropane.
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Fig. 11 Reaction of citric acid with polymaleic anhydride to give a tetra-
functional monomer (Yang et al. 1997).%”

In another study, the concept was even taken a step further,
where it was used without any other components. It was mixed
with wood powder and pressed at 200 °C and 4 MPa pressure
for 10 minutes.®® At a citric acid content of 20 wt%, an impact
strength of 0.9 k] m~> was observed.

A different case are nanocellulosic materials. These are
generally used to reinforce the mechanical properties of
materials, but recently, they have also been investigated as
binders in adhesive formulations, for example for particle-
boards.®® Amini et al. prepared particle boards containing
15% or 20% of cellulose nanofibrils as binder, which passed
modulus of rupture and modulus of elasticity industry
requirements for low-density grades based on ANSI A208.1
(2016), i.e. for boards with densities less than 0.64 g em™>.%?
The requirements for medium density particle boards, i.e.
with densities between 0,64 ¢ cm™ and 0,8 ¢ cm™ could
however not be met.

Some further problems, such as the water content of the
nanocellulose, which is generally as high as 97%, as well as
their price, remain to be overcome.®® A solution for the first
appears to be the cold pressing of the water after a slurry with
wood particles has been produced, while a solution to the
second could be the use of lignocellulose nanofibers
extracted from recycled particleboard.®® If these develop-
ments are successful, the nanocellulose could fill a function
both as structural reinforcement and as adhesive material in
the product.

Modification of protein adhesion

A specific advantage of protein-based adhesives is the depen-
dence of their adhesive strength on their different levels of
structure. As macromolecules, proteins can be processed in
similar fashion to petroleum-based macromolecular adhesives,
but are more complicated in their make-up.

The folding of the protein chains, for example, can be influ-
enced by crosslinking reactions or by the addition of com-
pounds that interact with the chains. Manipulation of the
adhesive strength through modification of the tertiary struc-
ture was for example demonstrated by Cheng et al., comparing
cottonseed and soy protein as adhesives for maple veneer.®
They disrupted the structure by adding guanidine hydro-
chloride, sodium dodecyl sulfate, sodium hydroxide or urea,
all shown in Fig. 12. In the case of soy protein, the tensile
strength was measured at 230 lb in™> (1.6 MPa) after
10 minutes pressing time at 100 °C. When the soy protein was
modified with sodium dodecyl sulfate, sodium hydroxide and
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Fig. 12 Compounds used to disrupt protein tertiary structures.

guanidine hydrochloride, the tensile strength increased to 250
b in™ (1.7 MPa), 260 1b in™* (1.8 MPa) and 280 1b in™? (1.9
MPa) respectively.

In the case of the cottonseed protein, however, the tensile
strength was lowered from 490 1b in™? (3.4 MPa) for the un-
modified protein to 450 b in™* (3.1 MPa), 310 Ib in™? (2.1 MPa),
190 b in? (1.3 MPa) and 70 Ib in~? (0.48 MPa) for the samples
modified with sodium dodecyl sulfate, urea, sodium hydroxide
and guanidine hydrochloride. Thus, the properties of the
protein can significantly change through simple measures. If
the mechanisms are properly understood, they could be lever-
aged for example to make adhesives that are switchable in
their properties as needed for specific applications or in
different situations.

Another mechanism by which proteins can be influenced is
through hydrolysis of their bonds and application of heat.
Both short heating to 50-90 °C and enzymatic hydrolysis were
found by Nordqvist et al. to improve the bond strength and
water resistance of wheat gluten adhesive used for bonding
beech wood panels.®® Hydrolysis to a degree of 0.8% with