Issue 6, 2022

A free boratriptycene-type Lewis superacid

Abstract

Bicyclic pyrazabole-bridged ferrocenes with BH groups at their bridgehead positions were prepared from [Li(thf)]2[1,1′-fc(BH3)2] and pyrazole or 3,5-dimethylpyrazole in the presence of Me3SiCl (1 or 1Me, respectively; 1,1′-fc = 1,1′-ferrocenylene); Me3SiH and H2 are released as byproducts. Treatment of 1 or 1Me with 1 eq. of the hydride scavenger [Ph3C][B(C6F5)4] afforded the borenium salts [2][B(C6F5)4] (72%) and [2Me][B(C6F5)4] (77%). According to X-ray crystallography, [2Me]+ contains one trigonal-planar borenium cation, the cyclopentadienyl (Cp) rings of the 1,1′-fc fragment remain parallel to each other, but the Cp–B bond vector is bent out of the Cp plane by an unprecedentedly large dip angle α* of 40.6°. The Fe⋯B(sp2) distance is very short (2.365(4) Å) and the 11B NMR signal of the cationic B(sp2) center is remarkably upfield shifted (23.4 ppm), suggesting a direct Fe(3d) → B(2p) donor–acceptor interaction. Although this interpretation is confirmed by quantum-chemical calculations, the coupling between the associated orbitals corresponds to an energy of only 12 kJ mol−1. Accordingly, both the experimental (e.g., Gutmann–Beckett acceptor number AN = 111) and theoretical assessment (e.g., Et3PO and F-ion affinities) of the Lewis acidity proves that [2]+ is among the strongest boron-based Lewis acids available to date.

Graphical abstract: A free boratriptycene-type Lewis superacid

Supplementary files

Article information

Article type
Edge Article
Submitted
17 noy 2021
Accepted
05 dek 2021
First published
07 dek 2021
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2022,13, 1608-1617

A free boratriptycene-type Lewis superacid

M. Henkelmann, A. Omlor, M. Bolte, V. Schünemann, H. Lerner, J. Noga, P. Hrobárik and M. Wagner, Chem. Sci., 2022, 13, 1608 DOI: 10.1039/D1SC06404E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements