Issue 2, 2020

Cell membrane biomimetic nanoparticles for inflammation and cancer targeting in drug delivery

Abstract

Nanoparticle capture and elimination by the immune system are great obstacles for drug delivery. Camouflaging nanoparticles with cell membrane represents a promising strategy to communicate and negotiate with the immune system. As a novel class of nanotherapeutics, such biomimetic nanoparticles inherit specific biological functionalities of the source cells (e.g., erythrocytes, immune cells, cancer cells and platelets) in order to evade immune elimination, prolong circulation time, and even target a disease region by virtue of the homing tendency of the cell membrane protein. In this review, we begin with an overview of different cell membranes that can be utilized to create a biointerface on nanoparticles. Subsequently, we elaborate on the state-of-the-art of cell membrane biomimetic nanoparticles for drug delivery. In particular, a summary of data on circulation capacity and targeting efficiency by camouflaged nanoparticles is presented. In addition to cancer therapy, inflammation treatment, as an emerging application of biomimetic nanoparticles, is specifically included. The challenges and outlook of this technology are discussed.

Graphical abstract: Cell membrane biomimetic nanoparticles for inflammation and cancer targeting in drug delivery

Article information

Article type
Review Article
Submitted
30 avq 2019
Accepted
10 noy 2019
First published
11 noy 2019

Biomater. Sci., 2020,8, 552-568

Cell membrane biomimetic nanoparticles for inflammation and cancer targeting in drug delivery

H. Wang, Y. Liu, R. He, D. Xu, J. Zang, N. Weeranoppanant, H. Dong and Y. Li, Biomater. Sci., 2020, 8, 552 DOI: 10.1039/C9BM01392J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements