Issue 5, 2019

Effect of maturity and mineralogy on fluid-rock reactions in the Marcellus Shale

Abstract

Natural gas extraction from the Appalachian Basin has significantly increased in the past decade. The push to properly dispose, reuse, or recycle the large amounts of produced fluids associated with hydraulic fracturing operations and design better fracturing fluids has necessitated a better understanding of the subsurface chemical reactions taking place during hydrocarbon extraction. Using autoclave reactors, this study mimics the conditions of deep subsurface shale reservoirs to observe the chemical evolution of fluids during the shut-in phase of hydraulic fracturing (HF), a period when hydraulic fracturing fluids (HFFs) remain confined in the reservoir. The experiment was conducted by combining a synthetic hydraulic fracturing fluid and powdered shale core samples in high temperature/pressure static autoclave reactors for 14 days. Shale samples of varying maturity and mineralogy were used to assess the effect of these variations on the proliferation of inorganic ions and low molecular weight volatile organic compounds (VOCs), mainly benzene, toluene, ethylbenzene and xylenes (BTEX) and monosubstituted carboxylic acids. Ion chromatography results indicate that the relative abundance of ions present was similar to that of water produced from HF operations in the Marcellus Shale basin. There was an increase of SO42− and PO43− and a decrease in Ba2+ upon fluid-shale reaction. Major ionic shifts indicate calcite dissolution in two of the fluid-shale reactions and barite precipitation in all fluid-shale reactions. Toluene, xylene, and carboxylic acids were produced in the shale-free control experiment. The most substantial increase in BTEX analytes was observed in reactions with low maturity shale, while the high maturity shale reaction produced no measurable BTEX compounds. Total organic carbon decreased in all reactions including fracturing fluid and shale, suggesting adsorption onto the organic matter (OM) matrix. The results from this study highlight that both the nature of OM and mineralogy play a key role in determining the fate of inorganic and organic compounds during fluid–shale interactions in the subsurface shale reservoir. Overall this study aims to contribute to the growing understanding of complex chemical interactions that occur in the shale reservoirs during HF, which is vital for determining the potential environmental impacts of HF and designing more efficient HFF and produced water recycling techniques for environmentally conscious natural gas production.

Graphical abstract: Effect of maturity and mineralogy on fluid-rock reactions in the Marcellus Shale

Associated articles

Article information

Article type
Paper
Submitted
28 sen 2018
Accepted
15 fev 2019
First published
18 fev 2019

Environ. Sci.: Processes Impacts, 2019,21, 845-855

Author version available

Effect of maturity and mineralogy on fluid-rock reactions in the Marcellus Shale

J. Pilewski, S. Sharma, V. Agrawal, J. A. Hakala and M. Y. Stuckman, Environ. Sci.: Processes Impacts, 2019, 21, 845 DOI: 10.1039/C8EM00452H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements