Issue 18, 2018

Development of a sensor for trivalent iron: AHP fixed on mesoporous silica

Abstract

Since the emergence of deferiprone as an iron(III) chelating drug, hydroxypyridinones have been intensively explored due to their high affinity for trivalent metal ions and ability to form complexes at physiological pH with low toxicity. For instance, they have been employed as carriers of La(III) in therapy for bone diseases and to remove Gd(III) from Gd-based contrast agents. We believe that a pyridinone-based sensor can be useful for iron(III) monitoring. Herein, we present a novel chelating solid-phase, resulting from the functionalization of a mesoporous silica MCM-41, with the hydroxypyridinone N(3′-aminopropyl)-3-hydroxy-2-methyl-4-pyridinone (AHP) as the active site. The physico-chemical characterization of the new solid-state device, named AHP-MCM41@, demonstrates that the AHP moiety is covalently anchored on the silica surface; the active site concentration was found to be around 0.4 mmol g−1. Furthermore, its sorption of Fe(III) from aqueous solution is rather rapid. The soluble AHP forms a rich variety of complexes with iron(III), which is typical of all analogous O,O donor ligands, and is dominated by M : L = 1 : 3 complexes. Could complexes with such high stoichiometry can be retained in the solid phase? The answer is yes. The existence of these different species in the solid phase is evidenced by the sorption isotherm results and from sorption experiments as a function of solution pH and also in the presence of a competitive ligand. Furthermore, the existence of complexes in the solid phase was demonstrated via solid vis-spectrophotometry, where these species showed identical colour variations to those formed in solution. Such complexes in the solid phase have never been reported in the literature. Additionally, the intense colour of the solid phase in the presence of iron(III) is promising for naked eye detection.

Graphical abstract: Development of a sensor for trivalent iron: AHP fixed on mesoporous silica

Supplementary files

Article information

Article type
Paper
Submitted
20 fev 2018
Accepted
25 iyl 2018
First published
26 iyl 2018

New J. Chem., 2018,42, 15237-15244

Development of a sensor for trivalent iron: AHP fixed on mesoporous silica

R. Biesuz, M. A. Santos, V. M. Nurchi and G. Alberti, New J. Chem., 2018, 42, 15237 DOI: 10.1039/C8NJ00869H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements