Issue 7, 2020

The value of seasonal energy storage technologies for the integration of wind and solar power

Abstract

Energy storage at all timescales, including the seasonal scale, plays a pivotal role in enabling increased penetration levels of wind and solar photovoltaic energy sources in power systems. Grid-integrated seasonal energy storage can reshape seasonal fluctuations of variable and uncertain power generation by reducing energy curtailment, replacing peak generation capacity, and providing transmission benefits. Most current literature focuses on technology cost assessments and does not characterize the potential grid benefits of seasonal storage to capture the most cost-effective solutions. We propose a model-based approach for comprehensive techno-economic assessments of grid-integrated seasonal storage. The approach has two major advantages compared to those presented in the literature. First, we do not make assumptions about the operation of the storage device, including annual cycles, asset utilization or depth of discharge. Rather, a model is used to calculate optimal storage operation profiles. Second, the model-based approach accounts for avoided power system costs, which allows us to estimate the cost effectiveness of different types of storage devices. We assess the cost competitiveness of three specific storage technologies including pumped hydro, compressed air, and hydrogen seasonal storage and explore the conditions (cost, storage duration, and efficiency) that encourage cost competitiveness for seasonal storage technologies. This study considers the Western U.S. power system with 24% to 61% of variable renewable power sources on an annual energy basis (up to 83.5% of renewable energy including hydro, geothermal, and biomass power sources). Our results indicate that for the Western U.S. power system, pumped hydro and compressed air energy storage with 1 day of discharge duration are expected to be cost-competitive in the near future. In contrast, hydrogen storage with up to 1 week of discharge duration could be cost-effective in the near future if power and energy capacity capital costs are equal to or less than ∼US$1507 kW−1 and ∼US$1.8 kWh−1 by 2025, respectively. However, based on projected power and energy capacity capital costs for 2050, hydrogen storage with up to 2 weeks of discharge duration is expected to be cost-effective in future power systems. Moreover, storage systems with greater discharge duration could be cost-competitive in the near future if greater renewable penetration levels increase arbitrage or capacity value, significant energy capital cost reductions are achieved, or revenues from additional services and new markets—e.g., reliability and resiliency—are monetized.

Graphical abstract: The value of seasonal energy storage technologies for the integration of wind and solar power

Supplementary files

Article information

Article type
Analysis
Submitted
10 mar 2020
Accepted
29 may 2020
First published
29 may 2020

Energy Environ. Sci., 2020,13, 1909-1922

Author version available

The value of seasonal energy storage technologies for the integration of wind and solar power

O. J. Guerra, J. Zhang, J. Eichman, P. Denholm, J. Kurtz and B. Hodge, Energy Environ. Sci., 2020, 13, 1909 DOI: 10.1039/D0EE00771D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements