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Conceptual insights 

Combinatorial science and high throughput experimentation via instrument automation is producing 
unprecedented quantities of experimental data.  The high dimensionality and large volume of these 
datasets now exceeds human ability to simultaneously comprehend the full dataset.  Herein we 
demonstrate the utility of multi-dimensional scaling methods to facilitate the use of human intuition 
and understanding in the analysis of large data sets as applied to the pH-dependent oxygen 
evolution electrocatalytic activity of 2121 multi-metal oxide compositions spanning 15 pseudo-
quaternary composition spaces. Combined with additional clustering analysis, three distinct classes 
of OER catalysts are identified as well as a compositionally tuneable catalyst family enabling high 
performance in acidic and neutral pHs.
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Functional mapping reveals mechanistic clusters for OER catalysis 
across (Cu-Mn-Ta-Co-Sn-Fe)Ox composition and pH space. 
Helge S. Stein1, Dan Guevarra1, Aniketa Shinde1, Ryan J. R. Jones1, John M. Gregoire1*, Joel A. 
Haber1*

Identification of stable electrocatalysts for the oxygen evolution reaction (OER) remains a primary challenge in materials 
for energy. The pH-dependent activity is known for very few catalysts, prompting our exploration of a broad range of 
catalysts using high throughput experiments and data science. This approach enables the largest screening of OER activity 
and operational stability to date, as illustrated through investigation of the (Cu-Mn-Ta-Co-Sn-Fe)Ox composition space as 
15 unique quaternary composition spaces. In total 2121 compositions are tested between pH 3 and 13, creating an 
extensive dataset whose interpretation requires development and application of data science to provide insights that are 
both beyond the standard composition-activity relationships and beyond human interpretation due to the dimensionality 
of the dataset. Three distinct classes of OER catalysts are identified with respect to pH-dependent activity and stability. 
The large-scale screening reveals a new class of Co-rich OER catalysts that can be compositionally tailored to a specified pH 
and perform on par with state-of-the-art acid OER catalysts.

Introduction
Solar fuels generation by means of harvesting sunlight to 
generate hydrogen or carbon-containing fuels as a renewable 
energy carrier is a promising technology for meeting future 
energy needs.1,2 However, technologies based on water 
splitting as well as CO2 reduction are limited in efficiency by 
the activity and stability of OER catalysts.1,3,4 Direct utilization 
of solar energy for OER involves development of a 
photoanode, whose operational pH is typically determined by 
device considerations and the stability requirements of the 
light-harvesting semiconductor.5,6 The photoanode also 
typically requires an OER catalyst coating, and initial reports 
indicate that the performance of light absorbers with and 
without catalyst coatings strongly depend on electrolyte pH.7–9 
Indeed, several recent publications indicate that the 
fundamental mechanism for OER on a particular catalyst 
composition may change as a function of electrolyte pH as a 
result of pH-dependent metal center oxidation states, surface 
speciation, and surface charge. The continued discovery of 
photoanode light absorbers that operate in different 

electrolyte pH motivates the design of OER catalysts that 
provide the requisite activity and stability under the specific 
operating conditions8. Studying composition-dependent 
changes in activity and stability can yield general design rules 
and/or functional classes of materials, i.e. materials serving 
specialized tasks that exhibit qualitatively different functional 
behaviors like acid- or alkaline-active catalysis10–14.
Prior high-throughput experimental search campaigns for 
identifying metal oxide OER catalysts in high-order 
composition spaces (containing up to 4 cations) by our group 
indicate that 10 at.% is an appropriate composition interval for 
sampling such composition spaces, and that unique 
performance can emerge with different combinations of 
cations.15,16 While this approach enables identification of 
composition-activity trends within a given 3- or 4-cation space, 
a more global mapping of such trends is demonstrated in the 
present work by exploring higher dimensional composition and 
electrolyte spaces by varying both to provide an in-depth 
functional  assessment.
To accelerate catalyst exploration over diverse metal oxide 
composition spaces, a new composition library design was 
developed to synthesize, on a single plate, all unique 
compositions containing 1, 2, 3 or 4 cations with 10 at.% 
intervals for a set of 6 elements, corresponding to the 
simultaneous synthesis of the 2121 unique compositions 
needed to cover all 15 pseudo-quaternary composition spaces. 
Previous work on ink-jet printed and sputtered OER catalysts 
also indicates that a calcination temperature high enough to 
convert the precursors to metal oxides and low enough to 
mitigate particle sintering provides the highest activity,4,17–19 
so processing was fixed to a single annealing temperature of 
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400 °C. While many catalysts exhibited initial transients in their 
activity due to changes to the catalyst surface, these are 
ascribed to catalyst oxidation and formation of a corrosion 
passivation layer. Empirically we have observed that such 
transients consistently stabilize within several minutes, 
enabling the design of a pre-aging protocol. For catalyst 
loadings of 4 nmoles/mm2, if only 1% of 10 mA cm-2 of anodic 
current during initial operation arises from catalyst corrosion, 
the entire catalyst would corrode in ~60 minutes. Therefore, 
120 minutes of operation identifies catalysts that exhibit 
relatively stable initial operation. Since long duration 
measurements are not amenable to high throughput serial 
measurements, we perform parallel operation of the catalysts 
for 2 hours20 prior to serial catalyst evaluation using 
established high throughput techniques.21 
With these high throughput methodologies, the high 
dimensional composition-pH parameter space can be 
experimentally explored, yet interpretability of this data 
suffers from the so-called “combinatorial explosion”. The 
combinatorial explosion describes the situation when multiple 
composition spaces (here 15 psuedo-quaternaries) in different 
environments (here four pHs) produces large numbers (here 
60) scalar performance maps over high-order composition 
spaces (here pseudo-quaternary composition spaces), as 
presented in Figure S8 of the ESI for the (Cu-Mn-Ta-Co-Sn-
Fe)Ox composition space data. This volume of data, even with 
advanced visualization schemes from combinatorial materials 
science,22–24 exceeds the ability of most human minds to 
digest, and if expanded to multiple six-metal oxide 
compositions clearly is too great to fully comprehend (See the 
ESI for such figure of merit plots for the additional composition 
spaces (Cu-Mn-Ta-Co-Ni-Fe)Ox and (La-Ce-Mn-Co-Ni-Fe)Ox. 
It was therefore concluded that the generation of scientific 
insights and discovery of new materials for OER is limited by 
the rate of assessing ‘classic’ visualization methods. Based on 
Li et al.25 we utilize multidimensional scaling (MDS) for 
dimensionality reduction in visualizing complex 
electrochemical datasets. MDS25,26 is chosen over PCA, t-SNE27 
or other methods22, because the interest is in preserving 
compositional similarity (measured as L2-distance) in contrast 
to describing variance or stochastic properties of the dataset. 
This visualization method allows us to use human intuition and 
intelligence28–30 to unravel non-linear trends in activity with 
composition and pH. MDS for functional maps is successfully 
employed in the discovery of Co-based OER catalysts that excel 
in maintaining activity over the range of pH 3 to 13, including 
high activity in acidic electrolytes.

Methods
Platemap design

In order to capitalize on the above mentioned (and other) 
experiences and insights we chose to design a new platemap 
utilizing our standard platform15,31 (10 cm × 15 cm FTO coated 
substrate, with 1 mm2 sample spots printed on a rectangular 
grid on a 2 mm pitch) but utilizing 6 metal oxide precursor inks 

for the library instead of four. The use of 6 metals produces 15 
pseudo-quaternary composition spaces (6 choose 4 
combinations), each of which contains 286 discrete 
compositions utilizing a 10 at.% composition step, for a total of 
4290 samples. However, because each of the pseudo-
quaternary composition spaces also contain 1, 2, and 3 metal 
oxide compositions which are shared by other pseudo-
quaternary composition spaces, the number of unique 
composition samples in the 6 metal, 15 pseudo-quaternary 
composition spaces are reduced to 2121 samples. This number 
of samples can be placed on a single substrate utilizing our 
standard printed materials library format. The generic print file 
is generated as a series of samples, each composed of a 
mixture of 1, 2, 3, or 4 inks (from a possible 6 inks) to contain a 
constant total volume of ink, containing 4 nanomoles of metal 
oxide precursor). Different physical libraries are printed by 
loading six precursor inks into the printer and assigning each of 
six ink channels a particular color in the platemap. Different 
composition spaces are printed and explored by loading and 
assigning colors to different metal oxide precursor inks. The 
sample compositions were randomly distributed across the 
entire plate to deconvolute the impact of sample composition 
from location-dependent processing variations and sample 
crosstalk on the catalytic performance.

Synthesis description

The preparation and printing of metal oxide precursor inks for 
the synthesis of physical material libraries has been described 
in detail previously,16,32 and in the ESI. For this investigation, 
each sample contains 4 nanomoles of metal per 1 mm × 1 mm 
sample spot. Eight or more copies of each six-metal library 
were printed at the same time to ensure consistency between 
plates as the inks and printer conditions were identical. The set 
of duplicate libraries were processed as described previously, 
and in the ESI, to a final calcination temperature of 400 °C for 
10 hours.

PETS experiment description

In order to experimentally identify the sparse number of 
compositions which are stable in acid under OER potentials, 
we have previously described the engineering and 
experimental conditions applicable for exposing a 10 cm by 15 
cm plate of ~2000 samples to similar electrochemical 
conditions for a period of hours.20 This parallel electrochemical 
treatment system (PETS) has been deployed to discover non-
precious metal OER catalysts that operate in acid.33 The system 
and process have been slightly modified for the present study 
to accommodate the different pH conditions and electrolytes 
used. A single calcined library containing a 6-metal 
composition space was treated in the PETS system at a single 
pH for 2 hours. The electrolytes and buffers were chosen to be 
stable under OER conditions, which excluded the use of many 
pH buffers, as they contain organic acids which are subject to 
oxidation. The pHs (approximated as pH 3, 7, 9 and 13 herein) 
and electrolytes used are:
a. pH 2.8: 10 mM H3PO4/40 mM NaH2PO4+ 0.25 M Na2SO4
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b. pH 6.6: 50 mM NaH2PO4/50 mM Na2HPO4 + 0.25 M Na2SO4

c. pH 9: borate with 0.25 M Na2SO4

d. pH 13: 0.1 M NaOH + 0.25 M Na2SO4

Microporous polypropylene frits separate the anolyte and 
catholyte chambers to prevent spatial artefacts due to 
nonuniform ionic plating on the counter electrode, and both 
chambers continually flow electrolyte in a recirculating fashion 
to ensure homogenous chemical potential exposure to each 
sample within the library. Each library was conditioned by a 2 
h current-limited CP @ 25 mA designed to minimize spatial 
variations in potential due to IR losses in the substrate FTO 
layer. 
SDC Experiment description

The scanning drop electrochemical cell (SDC) and its 
performance has been reported previously, along with its 
application for evaluating OER catalyst performance.16,17,33 
Following the 2 h PETS treatment, the library was loaded onto 
the SDC set-up and scanned using the same pH 
buffer/electrolyte as was used to pretreat it in the PETS. A 2-
step chronopotentiometry (CP) measurement was conducted 
on each sample: 15 second CP measurement at 3 mA cm-2, 
followed by a 15 second CP measurement at 10 mA cm-2. If the 
potential exceeded 1 V overpotential for more than 0.5 
seconds the experiment was aborted and the next 
measurement initiated. A single scalar value for the 
overpotential for each sample was obtained as the average 
potential over the final 8 seconds of the 10 mA cm-2 CP 
measurement. Data points greater than 1.5 standard 
deviations from the mean were removed before averaging.

Results
Visualization of higher composition spaces

In this study, over 16,000 data points from 15 quaternary 
systems at 4 different pHs needed to be visualized in a 
comprehensive manner. Plotting all data in pseudo-quaternary 
diagrams at each pH produces a nearly incomprehensible array 
of 60 figures, as shown in Figure S8. We utilized 
multidimensional scaling26 (MDS) for sample compositions 
(cMDS) to reduce the dimensionality of the composition space 
and to enable extraction of insights from these plots. This 
visualization is performed similar to how quinary compositions 
were visualized by Li et al.25 As there are no compositions in 
our dataset containing more than four cations, the 
composition data is directly used in the cMDS without 
augmentation by the complete composition space.25 
To introduce the reader to this kind of composition 
visualization, all binary lines of six arbitrary elements A - F are 
shown in a cMDS plot in Figure 1a). It is apparent that the 3D 
octahedron edges are comprised of the binaries between the 
elements A - F. Following from the fact that the MDS derived 
octahedron only has 12 edges, three binary lines (A - B, F - D, C 
- E) need to be broken apart, as they would need to bisect the 
center of the octahedron, to which the algorithm assigns large 
dissimilarities. Since the metric MDS26 tried to conserve 
“distance”, these binary lines become bent outward as they 

are compositionally “distant” from those inside the body of 
the octahedron (quaternaries). Figure 1b) shows a full cMDS 
color-coded by the concentration of element A, indicated by 

an arrow. In general cMDS conserves compositional similarity 
over exact mapping of binary compositions (e.g. RadViz24).  

Figure 1: Visualizations of cMDS. a) cMDS with highlighted binary 
compositions showing that most binary composition lines are located at 
the edges of the 3D diamond. b) Full cMDS color coded with the content of 
A (purple to yellow). In general, the higher the content of A, the closer it is 
placed towards pure A (yellow). c) cMDS with color code according to the 
content of A/C/F. d) Viewing angle maximizing the distance between the 
pure composition endmembers used throughout the manuscript. The 
arrows at the left bottom indicate that these plots represent a viewing 
angle onto a 3D shape.

Figure 2: cMDS of (Cu-Mn-Ta-Co-Sn-Fe)Ox at pH a) 3, b) 7, c) 9, d) 13. For 
generating each graph a plate containing the library of composition 
samples was treated using PETS for 2h in the respective electrolyte and 
subsequently analyzed in a serial chronoamperometric measurement at 10 
mA/cm2. All graphs are color coded according to the average potential  
OER,10mA vs. OER at the respective pH to reach 10 mA/cm2. From this 
visualization three functional classes become apparent: cluster I for acid 
active OER catalysts, cluster II for catalysts strongly reacting to changes in 
pH, and cluster III for bad performing (alkaline OER) catalysts.
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Figure 3: Histograms and functional clustering of 𝞰OER,10mA vs. pH of (Cu-Mn-Ta-Co-Sn-Fe)Ox a) histogram of  𝞰OER,10mA at pH 3, 7, 9 and 13. Sample with a  OER,10mA 

of above 1.0 V vs. OER were binned to the highest value. b) Violin plots of the different clusters identified through spectral clustering using a radial gaussian 
distribution kernel as affinity. c) cMDS of 𝞰OER,10mA(pH) with cluster membership as color code, d) 2 alternate viewing angles from c and e) MDS of 
𝞰OER,10mA/cm(pH) into 3D with highlighted cluster labels and cluster kernels from 2 viewing angles.

Figure 1c) shows a full cMDS with points color coded according 
to their content of A/C/F as red green blue cyan (RGBC) color 
mapping. In Figure 1d) the viewing angle used throughout this 
manuscript for cMDS is shown. This viewing angle of the 
octahedron maximizes the visual distance between the pure 
elements to give readers a broader sense of trends. Where 
necessary, other viewing angles are shown. It should be noted 
that the composition of the catalysts reported is the intended 
printed compositions, not necessarily the composition of the 
catalyst after PETS, as discussed below.
 
Pre-Aging through PETS

Corrosion of some metal oxides in the Cu-Mn-Ta-Co-Sn-Fe 
oxide system is expected from known Pourbaix diagrams.34–36 
In particular, Cu, Mn, and Fe oxides have limited stability at pH 
3. Details are presented in the ESI of an X-ray fluorescence 
spectroscopy (XRF) study of composition changes to a 
systematic subset of compositions after electrochemical 
measurements were performed. This study confirms (Figure 
S2) that Ta was quite stable at all pHs, while many 
compositions had significant loss of Fe, Cu, Mn and Co after 
electrochemical treatment in pH 3 or 7 electrolytes. Cu was 
particularly stable in pH 9, but often unstable in pH 13. 
Interestingly, the co-presence of Cu appears to confer some 
corrosion stabilization to Fe at pH 9, as does the co-presence 
of Ta to Fe, Mn, and Co at pH 3. In addition, electrochemical 
treatment in specific electrolytes may change the structure of 
the catalysts via hydration, hydroxylation, oxidation state 

changes in certain metals, and incorporation of electrolyte 
constituents into the coating.37–39 Thus, the nature of the 
catalyst post-PETS may be significantly altered from the as-
calcined state and we assert more relevant to the operating 
catalyst performance than would be the initial performance of 
the as-calcined materials. However, herein we analyze the 
operational performance with respect to the initial 
composition, not a final measured composition, because the 
performance is also a function of the specific nanostructures 
and chemical structures produced by the prior history of the 
material. To reproduce the behavior observed, one should 
reproduce the initial composition and apply similar 
electrochemical treatments, not target the final composition 
obtained. This approach to using high throughput experiments 
to identify the samples whose detailed study will provide 
scientific insights has been demonstrated previously,17,18 and 
the present work uses clustering and identification of 
representative samples to motivate a suite of future studies on 
the detailed compositional, microstructural, and structural-
chemical characterization of the operational catalysts. 

OER Activity as function of pH

OER activity was measured as the overpotential at 10 mA/cm2 
using chronopotentiometry and is shown on a common color-
scale for pH 3, 7, 9, and 13 in cMDS visualizations in Figure 2. A 
general trend is that Co-rich samples tend to have low 
𝞰OER,10mA at all pHs, with samples in the (Sn-Ta-Co)Ox region 
exhibiting small changes as a function of pH and samples in the 

(Sn-
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Cu-Mn-Ta)Ox region exhibiting large changes in 𝞰OER,10mA as a 
function of pH. For this composition space, the (Fe-Co)Ox-rich 
samples at pH 13 have the lowest 𝞰OER,10mA of all compositions 
at all pHs. Compositions containing more than two metals 
generally exhibit a lower 𝞰OER,10mA than those with two or 

fewer metals. Analyzing variation in 𝞰OER,10mA as a function of 
pH can give insight into which catalysts perform OER via 
different mechanisms or have different rate-limiting steps40, 
this is particularly important at near-neutral pH where it is 
unclear whether the reactant is OH- (the anticipated reactant 
in strong base) or H2O (the anticipated reactant in strong acid). 
The median change in 𝞰OER,10mA with pH is -38.4 mV/pH 
(variance 0.54 mV/pH) which is about 2/3 of the Nernstian 
slope of -59.1 mV/pH (see Figure 3 a) for a histogram of the 
change of 𝞰OER,10mA over pH). Also, 𝞰OER,10mA changes 
significantly between pH 3 – 7 and between pH 9 – 13, but 
barely between pH 7 – 9, as can be inferred from Figure 3 a). 
For pH 3 many samples required more than 1 V vs. OER to 
achieve the current density of 10 mA cm-2, which is the trigger 
for aborting a measurement, thus these values were binned to 
1 V vs. OER. These high 𝞰OER,10mA may arise because the 
catalytic material completely corroded or became insulating 
during PETS treatment, or the catalytic performance of the 
material at pH 3 is poor. Likely, these processes occur 
simultaneously, as most OER-active metal oxides corrode in 
acid or have been demonstrated to activate an OH--based 
mechanism41,42. Another apparent trend is that Co-rich 

samples tend to be good acid OER catalysts, and (Cu-Mn-Ta-
Sn)Ox-rich samples have comparatively high 𝞰OER,10mA at every 
pH. (Cu-Mn-Ta-Fe)Ox samples show the most prominent drop 
in 𝞰OER,10mA between pH 7 to pH 9, followed by a smaller drop 
from pH 9 to pH 13. 
The above-mentioned trends motivate clustering all samples 
into three clusters. Functional classification is done via 
clustering samples by their 𝞰OER,10mA(pH) using spectral 
clustering with a radial Gaussian affinity kernel. All data points 
were standard scaled (i.e. zero mean and unit variance) prior 
to clustering, as is standard practice. The clustering results are 
shown in Figure 3b - 3d. The cluster-separated violin plots in 
Figure 3b demonstrate functional differences among the 
different classes, highlighting materials that follow the general 
trend of monotonic improvement of 𝞰OER,10mA with pH (cluster 
B) and those that break the linear trend at low or high pH 
(cluster C and A). It is apparent that the clusters generally 
exhibit an approximately-normal distribution of overpotentials 
at each pH with substantial overlap between clusters, 
particularly at high and low pH. The clusters are well separated 
in both the composition (Figure 3c) and property space, as 
shown in the 3D MDS representation of the standard scaled 
𝞰OER,10mA(pH) data in Figure 3e. 
This functional clustering enables going beyond identification 
of top performers (see below) to identify representative 
samples for specific functions, synthesis pathways or catalyst 
classes. This identification is done by retrieving the centroid of 
each of the three functional clusters (shown in 3 b) and 3 c)) 
via calculating the mean position in the four dimensional 
𝞰OER,10mA(pH) space and selecting the six (centroid and five next 
nearest neighbors) samples closest (by squared euclidean 
distance) to the cluster center. This selection reveals samples 
identified via functional clustering that are emblematic of a 
functional cluster/class (A, B, and C). Significantly, these 
samples are not compositionally close (unlike top performers) 
but partially originate from different quaternaries and 
constitute six compositional ‘trends’, thereby highlighting the 

Figure 5: Proposed functional map for OER catalysts at different pH for the 
function and composition space (totaling over 8000 measurements). 
Samples are color coded according to cluster membership described above. 
Grey diamond shaped points mark samples with single metal compositions, 
yellow symbols denote the three samples with the lowest 𝞰OER,10mA at the 
respective pH, magenta squares the three with the highest 𝞰OER,10mA And the 
black dashed line denotes the top performing materials

Figure 4: 𝞰OER,10mA(pH) for centroid composition for every of the three 
identified clusters a) A, b) B, c) C with the accompanying five next nearest 
neighbors to the centroid. Selected compositions are compositionally 
distant, however functionally very similar. The selected samples contain a) 5 
b) all and c) four out of six elements in the library.

Page 6 of 9Materials Horizons



ARTICLE Journal Name

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

necessity to visualize catalytic performance and cluster 
membership for six elements at once and not in the otherwise 
necessary 60 individual pseudo-quaternary diagrams. 
The visualizations of overpotential and cluster membership so 
far has utilized MDS-based data reduction with respect to 
composition (Figures 2, 3c-3e) or pH (Figure 3b), and the 
scalability of MDS to higher input dimensions enables 
visualization of the combinations of these parameter spaces, 
i.e. a 10-dimensional parameter-space containing the 
standardized composition (6 dimensions for concentration of 
each element) and functional properties (four dimensions for 
each 𝞰OER,10mA measured at a different pH). The resulting 2D 
MDS of Figure 5 provides a functional map encoding all 
available composition and functional property information, as 
well as cluster membership, in a digestible form. 
From the functional map, it is apparent that the best 
performing samples are rich in Co and Fe and perform well at 
any pH. Ta- and Sn-rich samples exhibit the highest 𝞰OER,10mA at 
any pH. Cluster A contains the samples with lowest 𝞰OER,10mA at 
any pH. From the functional maps for this composition space it 
would follow that an OER catalyst with good performance over 
a wide pH range would be found in the (Co-Mn-Cu-Fe)Ox 
system with alloying of SnOx. An unfavorable choice for OER 
catalysts would be Ta and Sn rich systems. An interesting 
finding is the variety of active OER catalyst compositions at 
each pH. 

To assess if the top performing materials are outliers, and to 
show the influence of alloying in close compositional vicinity, 
the top performers are plotted with their respective nearest 

composition neighbors in Figure 6. If one of the compositional 
nearest neighbors to the best material at a given pH is not the 
second best performing catalyst, the best material is treated as 
an outlier and the second best is chosen (in these cases, the 
third best is a compositional nearest neighbor of the second 
best, i.e. for each pH there is 0 or 1 high performance outlier). 
While Co is the only consistent element in the best catalysts 
from each pH, the concentration of Co in the best catalysts 
decreases with increasing pH. An intriguing result that is 
uniquely enabled by the high-dimensional combinatorial study 
is that the additional elements that optimize Co-containing 
catalysts vary with pH; going from acid to base, the most 
favorable alloying elements are Mn and Cu at pH 3, Mn and Fe 
at pH 7, Mn and Cu at pH 9, and Fe and Sn at pH 13. The 
importance of Sn at high pH is particularly surprising given that 
all of the metals can form stable (hydr)oxides in alkaline 
electrolytes, indicating that Sn may participate directly in the 
catalysis or alter the properties of the Co/Fe active sites, as 
previously observed for Ce-containing mixed metal oxides18. 
This observation is one example of the many observations that 
can be extracted from this large dataset to motivate and 
design future research to elucidate catalyst mechanisms and 
the role of different elements in optimizing OER catalysis.
From the functional map in Figure 5 a Co-rich catalyst family is 
identified that can be tuned to be a good OER catalyst in any 
pH by appropriate combination with a second, third or fourth 
cation. This pH-tailored catalyst shows an activity trend across 
two pseudoquaternary composition spaces that motivates 
further studies on the complete psuedoquinary composition 
space. This finding would not have been possible from a 
manual analysis of all 15 pseudoquaternary spaces at all four 
pHs (see Figure S8). The identified acid-stable catalyst 
performs favorably relative to a compositionally similar 
catalyst, CoFePbOx

43.
The performance and optimal composition of this catalyst was 
further explored by preparing a follow-up library at 5 at% 
composition steps of the (Co-Cu-Mn-Sn)Ox composition space. 
(See ESI Figure S3) The stability and performance of the 
identified optimal composition was tested in pH 3 on a 
Co0.8Cu0.1Mn0.1Ox film deposited by ink-jet printing onto a 
glassy carbon electrode in an RDE setup (Figure S4). Additional 
high performance compositions were prepared and tested on 
ca. 1 cm2 films on FTO (Figure S5), but none of the investigated 
compositions were stable for more than a few hours (see ESI). 
This is consistent with literature44 indicating a persistent, small 
Co-corrosion current that does not strongly influence 
instantaneous measurements of overpotential, but intrinsically 
limits the operational lifetime. This discovery of an active 
catalyst of limited stability suggests alternate screening 
parameters i.e. PETS treatment for several days instead of 
hours. However, the identified pH-tunable Co-based OER 
catalyst family suggests interesting applications in PEC and 
other electrochemical energy conversion fields.

Discussion

Figure 6: Samples with highest activity (lowest  OER,10mA) at selected pH are 
shown as red lines for pH 3-9 (a to d, respectively). At pH 7 and pH 9, the 
2nd lowest overpotential sample is shown in red because the lowest 
overpotential samples (dark grey) is suspected of being an outlier. By non-
trivial addition of certain elements, the Co-rich catalyst activity can be 
optimized for a specific pH at the expense of less activity at other pH.
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To the best of our knowledge, our utilization of cMDS is the 
first to rapidly visualize a variety of composition spaces, 
enabling exploration of extremely large electrochemical 
activity datasets from the synthesized compositionally diverse 
combinatorial materials libraries. The cMDS as shown in 
Figures 1, 3, and 4 reveals interesting and novel trends in 
activity as a function of pH and composition. In general, OER 
catalysts can be categorized into three classes that are most 
distinctly differentiated by their high or low activity at pH 3 
and 13, where almost no catalyst exhibits a comparably low 
𝞰OER,10mA at all pHs. The best performing materials are typically 
found at 3- or 4-metal compositions, but never at the 1- or 2-
metal compositions. Beyond the identification of facile 
composition trends, these diagrams corroborate the claim17 
that a certain degree of compositional complexity is necessary 
to have a well-performing OER catalyst.
Beyond the identification of top performers is identification of 
materials that are representative for classes of functional 
behavior. These compositions are identified in Figure 4 for the 
(Cu-Mn-Ta-Co-Sn-Fe)Ox composition space and are identified 
as representative of each functional class of pH-dependent 
OER performance. Further investigation of these compositions 
is expected to yield a deeper mechanistic understanding 
beyond what can be obtained by investigating only the top 
performing catalysts. We therefore refer to these samples as 
likely being those of highest informational relevance for 
subsequent studies regarding underlying mechanisms of why 
these classes exist.
Based on all acquired results, a combined 2D MDS-based 
representation of initial composition and function is generated 
in which every sample is represented as a 10 dimensional 
vector that encodes standard scaled composition and 𝞰OER,10mA 

at all pHs. An interesting finding is a sharp boundary between 
those samples belonging to class C samples, with typically high 
𝞰OER,10mA at pH 13 and overall low OER activity, and the other 
classes.
To gather mechanistic understanding, one has to decouple 
stability and performance, which is often difficult in ‘one-
sample-at-a-time’ experiments. With the abundance of a large 
OER catalyst dataset it is possible to deduce some mechanistic 
understanding. The OER catalyst data suggests that there are 
three catalyst classes in this composition space. The most 
easily understood class contains those materials that follow a 
monotonic trend of decreasing 𝞰OER,10mA  vs. pH (Cluster B) and 
generally perform better at higher pH. As the potential needed 
to obtain a certain current density is dependent on the 
concentration of OH-, it is suggested that these materials 
catalyze the OER via adsorption of OH-, as suggested in the 
classic OER reaction pathways discussed in the literature.41,45 
Another class contains the Co-rich catalysts that perform 
particularly well at low and neutral pH (cluster A). For these 
catalysts it is suggested that, depending on pH, they can 
catalyze the OER via direct oxidation of water (low pH) or via 
adsorption of OH-. The direct oxidation of water does, 
however, seem to be the less favorable route since a larger 
overpotential is needed. The third class are those materials 
that show a generally high overpotential at any pH with a less 

than linear decrease in 𝞰OER,10mA with increasing pH; these 
catalysts seem to both not perform well in terms of catalytic 
activity and perform relatively worse in alkaline electrolytes, 
perhaps due to lower stability.

Conclusions
This study employed high-throughput electrochemistry to 
experimentally evaluate the catalytic OER performance of 
thousands of compositions across the pH range of 3-13. In 
order to comprehend the volume of data generated, data-
science was leveraged to generate functional maps facilitating 
the use of human insight, resulting in the discovery of an 
precious metal-free catalyst at pH 3, identification of the pH-
dependent combinations of elements that optimize Co-based 
catalysts, and classification of the broad range of catalyst 
compositions into three major classes of OER catalysts, 
providing insight into the underlying OER mechanisms.
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