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the first order perturbation that allows for the magnetic dipole-

dipole interaction in the system. In this framework, the particle

polydispersity enters the equation in a very natural and straight-

forward way. The resulting expressions for the initial dynamic

susceptibility, i.e. dynamic response of the system to a weak, lin-

ear polarised, harmonic, external field, have a closed analytical

form and represent the first-order density corrections to the De-

bye spectrum. We apply our formalism to describe three mea-

surable effects stemming from the interparticle correlations: the

low-frequency regime of the real part of the dynamic suscepti-

bility; its imaginary part maximum shift; and the low-frequency

growth of the imaginary part. Analysing the effect of the dilution

on the experimentally obtained spectra, we not only find a very

good agreement of our theoretical results and the experimental

data, but also conclude that the measured spectra do not reflect

the superposition of the individual particle relaxations, but are

the consequences of the complex interplay between this individ-

ual particles’ dynamics, their polydispersity, and the interparticle

interactions, both steric and magnetic.

Although, here, we will focus on the simplest case of magnetic

dipoles and magnetic fields, the approach put forward in this

manuscript is rather generic and can be applied to the dipoles of

different nature. Here, it is worth saying that for electric dipoles

the approach has to be extended as both higher order corrections

to the dipolar interactions and the currents might become rele-

vant, see, for example7 and references therein.

2 Theoretical Approach

Let us consider a system of single-domain magnetic nanoparti-

cles with number density n, suspended in a liquid magnetopassive

carrier, in a long cylindrical tube, whose long axis coincides with

Oz of the coordinate system. A weak linearly polarised ac mag-

netic field H = (0,0,hexp(iωt)) is applied along Oz-axis (h is the

amplitude; ω stands for the angular frequency; t denotes time).

At a given temperature T , each magnetic particle (magnetic core

diameter x) has a magnetic dipole (µ, |µ| ≡ µ(x) = πM0x3/6).

Here, M0 is the saturation magnetisation of the magnetic mate-

rial. The orientation of each dipole is characterised by the an-

gle θ = 6 (µ,H), and can be described by the probability density

W (t,θ). This probability in reality is determined by three factors:

thermal fluctuations, dipole-field coupling and interparticle inter-

actions. In the classical approach, for a randomly chosen dipolar

particle (1) this density (W (t,θ1) ≡ W (1)) is the solution of the

Fokker-Planck equation:

2τ1
∂W (1)

∂ t
=

1

sinθ1

∂

∂θ1

{

sinθ1

[

∂W (1)

∂θ1
−W (1)

∂UH(1)

∂θ1

]}

; (1)

UH(1) = (µ1 ·H)/kT = α1eiωt cosθ1.

Here, τ1 is the characteristic relaxation time of the particle (1).

The function UH(1) describes the interaction of the first parti-

cle with an applied external field and has the form of Zeeman

energy related to kT ; α1 = µ1h/kT is the first particle Langevin

parameter. Equation (1) is usually used to describe the fluctu-

ations of the single-domain magnetic particle magnetisation, as-

suming that the problem is polar-rotation independent43,44. Be-

sides that, equation (1) holds true only for a system of noninter-

acting dipoles. The solution of Eq. (1) should satisfy the proba-

bility normalisation condition, and also defines the magnetisation

as a function of time:

M(t) =
n

2

π
∫

0

sin(θ)dθ

∞
∫

0

W (t,θ)cosθ µ(x)p(x). (2)

One can notice that Eq. (1) is a one-particle equation, and as

such it depends on the properties of the given particle. In this

way, it turns out to be very easy to allow for the inherent poly-

dispersity of particles in dipolar soft matter. Thus, the expression

for M(t) contains the averaging, not only over all orientations,

but also over the granulometric composition p(x) (each particle

has a dipole moment µ(x)). Assuming that the field amplitude h

is small, the solution of Eq. (1) can be easily found within the

linear response approach:

W0(1) = 1+
α1 cosθ1

1+ iωτ1
eiωt . (3)

In other words, for a system of polydisperse dipolar particles, we

obtain familiar Debye linear response expressions for the dynamic

initial (zero field) susceptibility χD(ω) = χ ′
D(ω)− iχ ′′

D(ω):

χ ′
D(ω) =

n

3kT

∞
∫

0

µ2(x)

1+ω2τ2(x)
p(x)dx,

χ ′′
D(ω) =

n

3kT

∞
∫

0

µ2(x)ωτ(x)

1+ω2τ2(x)
p(x)dx.

(4)

For many decades these classical formulas have been widely used

for processing the dynamic spectra of both magnetic and elec-

tric responses. However, in reality they are valid for very diluted

systems only, since in the zero-frequency limit the real part (4)

predicts the Langevin value χL = n〈µ2〉/3kT for the static sus-

ceptibility, which is linearly dependent on particle number den-

sity and contains averaged over all particles sizes dipole moment

〈µ2〉. It holds true only for vanishing n; even for low and mod-

erate concentrations, a large number of experimental measure-

ments and computer simulations29,45,46 prove the susceptibility

to obey the parabolic n-dependence (19). Density dependence is

also inherent to the position of the imaginary part maximum and

is not reflected by the Debye model (see, below Fig. 1). All this

clearly underlines the necessity to include interdipolar correla-

tions in the description of the dynamic spectra. At the same time,

in the static case, the modified mean-field approach47 prove to

be a very accurate model to describe equilibrium magnetic prop-

erties of moderately interacting dipolar systems. Thus, modifying

Eq. (1), we know the static limit of the perturbed solution. In

equilibrium conditions (static uniform magnetic field H, ω = 0)

∂W (1)/∂ t = 0, i.e. the expression in square brackets in Eq. (1)

becomes zero
∂W̃ (1)

∂θ1
−W̃ (1)

∂UH(1)

∂θ1
= 0. (5)
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Here, we indicate the equilibrium orientation probability density

with tilde. The solution of Eq. (5) has the Boltzmann form

W̃0(1) = (α1/sinhα1)exp(α1 cosθ1),

and leads to the Langevin law for magnetisation:

M(H) = n

∞
∫

0

[

coth
µ(x)H

kT
−

kT

µ(x)H

]

µ(x)p(x)dx, (6)

valid only for an ideal paramagnetic gas. On the other hand, the

equilibrium probability density should satisfy the equation, con-

necting the one-particle probability density with the pair distribu-

tion function g2(1,2)
47:

∂W̃ (1)

∂θ1
−W̃ (1)

∂UH(1)

∂θ1
= n

〈

g2(1,2)
∂Udd(1,2)

∂θ1

〉

2

, (7)

〈...〉k =

∞
∫

0

(

∫

dΩk

∫

drk ...

)

p(xk)dxk,

dΩk = (4π)−1 sinθkdθkdζk, drk = r2
k drk sinψkdψkdφk.

Here, the azimuthal and the polar angles (θk and ζk) define the

orientation of the k-th magnetic moment in spherical coordinate

system, and the vector rk denotes the radius-vector of the k-th

particle. The integration in angular brackets means the averaging

over all degrees of freedom and over all possible sizes of the k-th

particle. Expanding the pair distribution function g2(1,2) in series

over the particle concentration n, and considering the presence of

n in the Eq. (7), the pair distribution function might be expressed

in the following form, that corresponds to the lowest order of the

thermodynamic perturbation method:

g2(1,2) = W̃ (1)W̃0(2)Θ(1,2), (8)

where Θ(1,2) is the Heaviside step-function, describing the im-

penetrability of two dipolar particles, and the function W̃0(2) is

the probability density of the ideal paramagnetic gas. Substitut-

ing it in the right-hand part of Eq. (7) and using the fact that

W̃ (1), W̃0(2) and Θ(1,2) do not depend on θ1 and that W̃ (1) does

not need to be averaged over the second dipole orientations, we

obtain:
〈

g2(1,2)
∂Udd(1,2)

∂θ1

〉

2

=

〈

W̃ (1)W̃0(2)Θ(1,2)
∂Udd(1,2)

∂θ1

〉

2

=

= W̃ (1)
∂

∂θ1

〈

W̃0(2)Udd(1,2)Θ(1,2)
〉

2
. (9)

So, the equilibrium Fokker-Planck equation (5) can be written as

∂W̃ (1)

∂θ1
−W̃ (1)

∂Ũe(1)

∂θ1
= 0, (10)

Ũe(1) =UH(1)+n
〈

W̃0(2)Udd(1,2)Θ(1,2)
〉

2
;

where

Udd(1,2) =
1

kT

[

3
(µ1 · r)(µ2 · r)

r5
−

(µ1 ·µ2)

r3

]

. (11)

The second term in Ũe(1) is the dipole-dipole interaction

(Udd(1,2)) between particles (1) and (2), separated by the centre-

to-centre distance |r|= r, and it is weight-averaged over all possi-

ble orientations, positions and sizes of the randomly chosen par-

ticle (2).

Returning to a non-equilibrium case, Eq. (1)2 transforms into

Eq.(12)

2τ1
∂W (1)

∂ t
=

1

sinθ1
× (12)

×
∂

∂θ1

{

sinθ1

[

∂W (1)

∂θ1
−W (1)

∂Ue(1)

∂θ1

]}

.

where instead of an equilibrium function W̃ , its non-equilibrium

analogue W is used. In this case, Ũe(1) should be also replaced

by Ue(1). In general, function Ue, described by Eq. (13), denotes

the dimensionless effective field (normalised by thermal energy

kT ), with which a randomly chosen dipole moment interacts in

the system. It consists of the external field and the effective field

created by all other dipoles. This term provides a key difference

between our approach and standard Weiss-like mean-field mod-

els.

Ue(1) =UH(1)+n〈W0(2)Udd(1,2)Θ(1,2)〉2 . (13)

Let us find the solution of Eq. (12). The ideal gas probability

density W0 is its solution if the n-dependent term, allowing for

interparticle interactions, is neglected. Using the expression in

Eq. (3) for the particle 2, we may calculate the effective field

produced by all dipoles:

〈W0(2)Udd(1,2)Θ(1,2)〉2 =

= eiωt

∞
∫

0

α(x2)

1+ iωτ(x2)

∫

dr2Θ(1,2)
∫

dΩ2 Udd(1,2)cosθ2 p(x2)dx2 =

=
eiωt

kT

∞
∫

0

α(x2)

1+ iωτ(x2)

∫

dΩ2(µ2 · ẑ)
2 p(x2)dx2×

×
∫

dr2Θ(1,2)

[

3
(µ1 · r)(r · ẑ)

r5
−

(µ1 · ẑ)

r3

]

= (14)

=
eiωt

kT

∞
∫

0

α(x2)

1+ iωτ(x2)

µ(x2)

3
p(x2)dx2

4πµ1 cosθ1

3
=

=
4πα1 cosθ1eiωt

9kT

∞
∫

0

1− iωτ(x)

1+ω2τ2(x)
µ2(x)p(x)dx,

where we introduce the unit vector ẑ of Oz-axis. Note that the

integral dr over translational degrees of freedom is dependent on

the shape of the container; here, the usage of the long cylindric

tube allows to avoid the demagnetisation effects. The technical

details of the integration can be found in47. Hence, the effective

field term is

Ue(1) = α1 cosθ1eiωt



1+
4πn

9kT

∞
∫

0

1− iωτ(x)

1+ω2τ2(x)
µ2(x)p(x)dx



≡

(15)

≡ α1 cosθ1eiωt

[

1+
4π

3

(

χ ′
D(ω)− iχ ′′

D(ω)
)

]

.
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The integration here does not depend on the index of a chosen

particle. As a result, the effective field Ue(1) turns out to be ex-

pressed in terms of Debye susceptibilities. We can present the

solution of Eq. (12) in the form of the sum of the zeroth and the

first harmonic

W (1) = 1+α1A1(ω)cosθ1eiωt , (16)

where the zeroth harmonics is simply equal to unity. The first

harmonics amplitude A1(ω) = A′
1(ω)− iA′′

1(ω) is complex, and its

real and imaginary parts satisfy the linear set of equations:

{

A′
1(ω)+ωτ1A′′

1(ω) = 1+4πχ ′
D(ω)/3,

ωτ1A′
1(ω)−A′′

1(ω) =−4πχ ′′
D(ω)/3.

(17)

The dynamic susceptibility χ(ω) is also defined by A1, and we ob-

tain the expressions for the real and imaginary parts of the spec-

trum in the interacting dipolar system:

χ(ω)≡ χ ′(ω)− iχ ′′(ω) =
n

3kT

〈

µ2
1

[

A′
1(ω)− iA′′

1(ω)
]

〉

1
, (18)

χ ′(ω) = χ ′
D(ω)+

4π

3

[

χ ′2
D (ω)−χ ′′2

D (ω)
]

,

χ ′′(ω) = χ ′′
D(ω)

[

1+
8π

3
χ ′

D(ω)

]

.

The novelty of the described above approach is to introduce

the second term for the effective field produced by all dipole mo-

ments (n〈W0(2)Udd(1,2)Θ(1,2)〉2) into the expression for Ue(1) to

construct Eq. (12).

This term has a meaning of the effective field acting on each

particle due to the presence of all others. In the case of the static

applied field (ω → 0), the perturbation theory of the first order in

n correctly leads to a well-tested modified mean field approach47

expression for the initial susceptibility:

χ(0) = χL (1+4πχL/3) . (19)

In the latter, the effective field is expressed in terms of Langevin

susceptibility χL. Importantly, the expressions in Eq. (18) are

the exact results of the first order perturbation theory and, be-

ing expressed in terms of Debye dynamic susceptibilities, have

the quadratic precision in n. Besides that, in zero-frequency limit,

the real part χ ′(ω → 0) = χ(0) (see, Eq. (19)). In contrast to

the aforementioned attempts to allow for interparticle interac-

tions36–39, this approach extends the concept of modified mean

field, does not contain any Weiss-type singularities, and takes ac-

curately into account the part of polydispersity. The latter is of

crucial importance when applying the model to describe real ex-

perimental systems.

Below, as one of the measurable characteristics of the spectrum,

we analyse the dependence of the frequency ω∗, at which the

maximum of the imaginary part is reached, which, as mentioned

above, does not depend on n in the framework of standard Eq.

(1) . We can define the value of ω∗ in our formalism by solving

∂ χ ′′(ω)

∂ω

∣

∣

∣

∣

ω=ω∗

= 0. (20)

For the polydisperse case, the solution can be only found implic-

itly:

[

1+
8π

3
χ ′

D(ω∗)

] ∞
∫

0

1−ω2
∗ τ2(x)

[

1+ω2
∗ τ2(x)

]2
τ(x)x6 p(x)dx =

=
16π

3
χ ′′

D(ω∗)

∞
∫

0

ω∗τ2(x)x6

[

1+ω2
∗ τ2(x)

]2
p(x)dx. (21)

In the monodisperse case, one can replace p(x) by δ -function cor-

responding to a chosen particle size. This substitution, after some

algebra, leads to the equation for ω∗:

[

(

ω∗(0)

ω∗(ϕm)

)2

+1+
8πχL(ϕm)

3

(

ω∗(0)

ω∗(ϕm)

)2
][

(

ω∗(0)

ω∗(ϕm)

)2

−1

]

=

=
16πχL(ϕm)

3

(

ω∗(0)

ω∗(ϕm)

)2

. (22)

The ratio in the brackets (ω∗(0)/ω∗(ϕm))
−1 shows the shift of the

maximum position with respect to its zero-concentration value

(ω∗(0)). The solution of the latter bi-quadratic equation always

exists, however, our approach is the low-order perturbation in

particle concentration n, i.e. in the magnetic phase fraction ϕm.

So, it is only meaningful to find the solution in the linear order in

χL ∝ ϕm:
ω∗(0)

ω∗(ϕm)
= 1+

4πχL(ϕm)

3
. (23)

In the following we will test Expressions from Eq. (18) by com-

paring the latter to the experimental results for moderately inter-

acting magnetic fluids.

3 Results and Discussions

One of the known mechanisms for a dipole moment to relax in

a carrier liquid is a so-called Brownian rotation. Its characteris-

tic time τB = 3ηv/kT is determined by the particle hydrodynamic

volume v = πx3
h/6 (xh being a hydrodynamic particle diameter),

and the carrier viscosity η . In the case of magnetic nanoparti-

cles, their dipole can also relax via Neél mechanism, which does

not involve the rotation of the particle as a whole. Rather, it is

due to the fluctuation of the dipole moment within the crystalline

lattice of the nanoparticle48. The latter mechanism has a char-

acteristic time τN = τ0 exp(Kvm/kT ), which depends on the parti-

cle characteristic relaxation time scale τ0 ∼ 10−9 sec, anisotropy

constant K, and its magnetic core volume vm = πx3/6. For each

dipole in the system, its most probable relaxation is the shortest

of τN and τB, which is why it is common to use the following ex-

pression for the relaxation time as a function of the particle size:

τ(x) = τNτB/(τN + τB).

In order to illustrate the model proposed above for the dy-

namic response, we use two ferrofluids with well-defined particle-

size distributions that can be accurately described using gamma-

distribution:

p(x) =
1

x0

(

x

x0

)a
exp(−x/x0)

Γ(a+1)
. (24)

The first ferrofluid, F1 (magnetite nanoparticles in kerosene, sta-

bilised with oleic acid, x0 = 1.23 nm; a = 4.95, xh = x+6 nm),
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was extensively studied by a combination of experiment, theory

and computer simulations in Ref.29, where the static magnetic

properties were analysed. In this work, the basic sample was

diluted to obtain another 6 samples with the same granulomet-

ric composition, but different magnetic material content. In the

static case, we showed that the modified mean field approach is a

suitable model to describe the initial susceptibility and the mag-

netisation curves for each sample. Here, we use this system to

Fig. 1 Dynamic Susceptibility 4πχ(ω) of F1: comparison of the Debye

ideal gas model to the expressions in Eq. (18). Frequency range is

given in log-scale. Here, ϕm = 0.06; T = 293 K; K = 20 kJ/m3; effective

viscosity η = 2×103 Pa sec; M0 = 480 kA/m.

analyse the dynamic response, because we know that the static

limit Eq. (19) of the proposed model Eq. (18) is correct. The

commonly used Debye ideal gas model (4) does not provide this

kind of ω → 0 asymptote, and as such is expected to provide a

quantitatively different susceptibility spectrum. This is fully con-

firmed by Fig. 1, where we plot the dynamic susceptibility for

the F1 with magnetic phase concentration (ϕm = 0.06) calculated

using both aforementioned formalisms. In addition to the dif-

ference in the values of χ ′, one also sees that for χ ′′, both the

height of the maximum and its position are not the same if the

interparticle correlations are properly taken into account. Note

that the maximum of χ ′′ is of particular importance, as it deter-

mines the characteristic frequency of the corresponding dipolar

fluid. In order to analyse the influence of particle concentration

on the dynamic spectrum, in Fig. 2, we plot χ(ω)/χ(0) for three

different values of ϕm. The spectrum visibly changes on dilution:

the maximum of χ ′ shifts to higher ω when ϕm decreases. In

the inset, the frequency (ω∗(ϕm)), at which the maximum of the

imaginary part of the spectrum is reached, is plotted normalised

by ω∗(0). In the same inset of Fig. 2, we plot the theoretical pre-

diction for reduced ω∗ for a monodisperse system with the same

value of χL, i.e. with the same value of the mean-squared mag-

netic moment Eq. (23). It can be seen that the relative shift of

ω∗ is stronger in the monodisperse system. It is the consequence

of the following: in a polydisperse system, the value of ω∗ is de-

termined by a relatively small number of Brownian particles that

Fig. 2 Reduced Dynamic Susceptibility χ(ω)/χ(0) of F1: the effect of

dilution. Three spectrums are plotted for ϕm = 0.12;0.06;0.01 in blue,

orange and bordeaux respectively. Frequency range is given in

log-scale. Inset: the dependence ω∗(ϕm)/ω∗(0). Solid line is the

solution of Eq. (21); the dotted line is a corresponding monodisperse

sample Eq. (23).

slowly grows with ϕm, whereas in a corresponding monodisperse

system all particles contribute to the same relaxation. However,

even for a polydisperse ferrofluid, this effect is large enough to be

measured; the experiment, however, should be performed accu-

rately without changing the granulometric composition on dilu-

tion. To the best of our knowledge, only one experimental work

is available11, that satisfies the aforementioned condition. In the

plot below (Fig. 3), we compare our theoretical prediction to the

results measured for system C from11, which we address as F2

(ferrum-cobalt particles in Decalin, stabilised by polyisobuten).

Following the experimental strategy, we analyse the spectra of F2

and F2 diluted by 10 times. After fitting gamma-distribution Eq.

(24) to that of Ref.11 we obtained x0 = 0.38 nm; a= 17, xh = x+17

nm. Even for a low concentrated reference sample, the value of

ω∗ shifts by 10 per cent on 10 times dilution. As it is stated in

Ref.11, in sample F2 no aggregates were observed; this is why the

changes in the dynamic spectrum are to be attributed to the dipo-

lar interparticle correlations only, and the prediction of Eq. (18)

is fully capable of describing them.

The other measurable effect can be observed when analysing

the initial slope κ of χ ′′:

κ ≡ lim
ω→0

4πχ ′′(ω)

ω
= 4πχL

(

1+
8πχL

3

)

τchar, (25)

τchar =





∞
∫

0

x6 p(x)dx





−1
∞
∫

0

x6τ(x)p(x)dx,

which depends parabolically on the particle concentration

through χL and contains a very important characteristic of the

system, namely τchar. The latter has the meaning of the relax-

ation time averaged over the system granulometric composition

with the weight of mean-squared particle dipole moment. From

1–7 | 5

Page 5 of 7 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



Fig. 3 Dynamic Susceptibility 4πχ(ω) of F2: comparison of the

experimental data to the expressions in Eq. (18). Frequency range is

given in log-scale. Here, mass fraction of iron for the basic sample is

0.061; T = 293 K; K = 100 kJ/m3; effective viscosity η = 5×103 Pa sec;

M0 = 1490 kA/m. Reference sample: orange, filled symbols; 10 times

diluted sample: blue, empty symbols (rescaled to be visible).

Eq. (4), the analogous slope κD is linear in concentration, but

contains the same characteristic time scale as a prefactor. In Fig.

Fig. 4 Initial slope (κ) as a function of ϕm: comparison of the Debye

ideal gas model to the expressions in Eq. (25). The results for F1

(black) are associated with the left ordinate axis; the results for F2

(orange) with the right one. Inset: particle size distributions versus

magnetic core diameter (x).

4 we plot κ(ϕm) for F1 and F2 as predicted by Debye ideal gas

model Eq. (4) and by the modified mean field approach Eq. (18).

The results of the two models differ substantially. The absolute

value of these deviations are different for F1 and F2. In the case

of F1, the quadratic correction from χL is not very large, because

the particles in F1 are rather magnetically weak. On the other

hand, particles in F2 are predominantly magnetically hard (very

high crystallographic magnetic anisotropy), and in this case, the

quadratic term in χL is much larger. The actual values of the slope

are determined by the value of τchar. Even though p(x) is broader

in the case of F1, the value of τchar for F2 is approximately an

order of magnitude larger, due to the dominance of the Brown-

ian slower relaxations in it. Notice that, had we used the Debye

model to extract τchar from the experimental measurements, at a

finite magnetic phase concentration of approximately 5 percent,

the error due to the neglected interparticle correlations would

have been as high as the factor of two.

4 Conclusions

Our study demonstrates the impact of the dipolar interparticle

correlations on the dynamic susceptibility. By introducing the in-

terparticle interactions and the inherent polydispersity into the

theoretical model, we show that the dynamic spectra are not a

simple reflection of the individual dipole relaxations in the sys-

tem, but are rather defined by a complex weave of granulomet-

ric composition, individual particle properties, their interaction

strengths, and particle concentration. There are three spectra

characteristics that are especially sensitive to the nonideality of

the system: the low-frequency behaviour of the real part; the

low-frequency growth of the imaginary part; and the maximum

of the imaginary part. Interactions lead to an overall decrease

of the characteristic time-scales for a given polydisperse dipolar

system on dilution. This result is especially important for medical

applications of dipolar systems, where the correct prediction of

the working frequency range defines the efficiency of the treat-

ment19,40–42. As we show in the present manuscript, the analysis

of the spectra based on the Debye ideal gas approximation can

lead to highly pronounced inconsistency in the determination of

characteristic relaxations. We are confident that the presented

theoretical predictions will serve as a motivation for further and

more detailed AC susceptometry experiments.
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