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Integrated artificial neurons from metal halide
perovskites†

Jeroen J. de Boer and Bruno Ehrler *

Hardware neural networks could perform certain computational

tasks orders of magnitude more energy-efficiently than conven-

tional computers. Artificial neurons are a key component of these

networks and are currently implemented with electronic circuits

based on capacitors and transistors. However, artificial neurons

based on memristive devices are a promising alternative, owing to

their potentially smaller size and inherent stochasticity. But despite

their promise, demonstrations of memristive artificial neurons have

so far been limited. Here we demonstrate a fully on-chip artificial

neuron based on microscale electrodes and halide perovskite semi-

conductors as the active layer. By connecting a halide perovskite

memristive device in series with a capacitor, the device demonstrates

stochastic leaky integrate-and-fire behavior, with an energy con-

sumption of 20 to 60 pJ per spike, lower than that of a biological

neuron. We simulate populations of our neuron and show that the

stochastic firing allows the detection of sub-threshold inputs. The

neuron can easily be integrated with previously-demonstrated halide

perovskite artificial synapses in energy-efficient neural networks.

Introduction

Artificial intelligence-based systems have seen a rapid increase
in their capabilities in a wide range of tasks, such as natural
language processing,1 image recognition,2,3 and strategizing.4,5

The increase in the performance of these systems is accompa-
nied by an exponential increase in the computational power,
and thus the energy consumption.6 Neuromorphic computing
addresses this issue by implementing neural networks in hard-
ware, lowering the required energy by orders of magnitude
compared to conventional computers.7 Neuromorphic chips
rely on two main components for computation: artificial neu-
rons, which integrate incoming signals and fire a voltage pulse

upon reaching a threshold, and artificial synapses, which
determine the connection strength between neurons. Ideally,
both components can be integrated into a single chip in a dense
arrangement to enable large-scale artificial neural networks.
Both the neurons and synapses are typically implemented with
electronic circuits composed of transistors and capacitors.8 On
the other hand, implementations that use memristive elements,
which change their resistance based on an applied voltage, can
be more compact and highly energy efficient, making them an
attractive alternative.9 Much research has gone into developing
artificial synapses that directly use the resistance change of a
memristive element as a proxy for connection strength.9–12

Memristive elements also show promise for use in artificial
neurons, because of the inherent stochasticity in their resis-
tance changes.13 This inherent stochasticity of memristive
neurons can be leveraged for better signal representation,14,15

or more efficient probabilistic computing than would be possi-
ble with deterministic neurons.16 Nonetheless, applying mem-
ristive elements in artificial neurons is more complex and has
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New concepts
We demonstrate the first fully on-chip integrated halide perovskite artificial
neuron. These neurons can be integrated in neuromorphic hardware that
draws inspiration from the brain to compute with order of magnitude higher
energy efficiency compared to conventional hardware. Our artificial neuron
consists of a single halide perovskite memristive device and a capacitor. The
simple device layout makes our neuron significantly easier to scale than
neurons based on complex electronic circuits of silicon capacitors and
transistors, which are commonly used to make artificial neurons. The
highly efficient conduction of ions by halide perovskite that underlies
resistance changes in these materials allows a lower operating voltage
compared to artificial neurons based on other memristive materials. In our
current implementation, the neuron consumes 20–60 pJ per spike, lower
than the energy consumption of a biological neuron. Our neuron is fabri-
cated on the microscale with a lithography procedure that is compatible with
halide perovskite and that enables further downscaling. The similarity of our
neuron design to that of microscale halide perovskite artificial synapses that
we have demonstrated before allows dense integration in all-halide
perovskite energy-efficient neuromorphic chips.
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been much less explored compared to their application in
synapses.

Here, we demonstrate a simple memristive neuron based on
a halide perovskite memristive element. Metal halide perovs-
kites are semiconducting compounds that efficiently conduct
both electronic and ionic charge carriers.17 The efficient ion
conduction in halide perovskites readily induces hysteresis,
which was previously exploited to make energy-efficient artificial
synapses.18–20 While various halide perovskite artificial synapses
have been reported, only one halide perovskite neuron has been
experimentally demonstrated before.21 However, this previous
implementation used off-chip circuitry to implement signal
integration and neuron-like spiking, making scaling difficult.
We connect a microscale volatile halide perovskite memristive
device in series with a capacitor. The series capacitor applies a
reverse bias on the memristive element after spiking of the
neuron, which aids in resetting the memristive element after
each spike. This makes our neuron design more robust against
non-reversible resistance changes of the memristive component
than designs with a series resistor,22,23 or capacitor connected in
parallel.16,24,25 Because our design consists of only two compo-
nents, the neuron is also more easily scalable than implementa-
tions that require more complex circuitry besides the memristive
element.14,26,27 Moreover, the efficient ion conduction of halide
perovskites allows an operating voltage of hundreds of millivolts,
lower than in previous memristive neurons which is favorable for
low energy consumptions. We fabricate our crosspoint neurons
with a previously developed procedure that prevents degradation
of the halide perovskite layer during lithography.19 Our neuron is
integrated fully on-chip without the need for external circuitry to
emulate neuron functionality. In that way, the device architecture
of our halide perovskite memristive device lends itself to further
downscaling and the neuron could be easily integrated with
halide perovskite artificial synapses that we have demonstrated
before to form artificial neural networks with ultralow-energy
consumption.19

Experimental
Fabrication of the on-chip artificial neuron

Heavily p-doped Si wafers (1–5 O cm resistivity) were purchased
from Siegert Wafer. PbI2 (99.99%) was purchased from TCI.
Methylammonium iodide (MAI) was purchased from Solaronix.
Anhydrous DMF and chlorobenzene were purchased from Sigma-
Aldrich. 950 PMMA A8 was purchased from Kayaku Advanced
Materials. All materials were used without further purification.

Devices were fabricated using a similar procedure as
described before.19 The artificial neurons were fabricated on
heavily p-doped Si wafers with a 100 nm thermal oxide layer.
Gold bottom electrodes were patterned on the wafer with a lift-
off procedure using MA-N1410 photoresist. UV exposure with a
Süss MA6/BA6 mask aligner was followed by development in
MA-D533/s. A 5 nm Cr adhesion layer and an 80 nm Au electrode
layer were deposited on the patterned resist by e-beam physical
vapor deposition. Lift-off was then performed by soaking in

acetone for one hour. A 60 nm SiO2 layer was deposited from a
O2 and SiH4 gas mixture using inductively-coupled plasma-
enhanced chemical vapor deposition (ICPCVD) in an Oxford
PlasmaPro100 ICPCVD system. Silver top contacts were pat-
terned using the same procedure as for the bottom electrodes.
After patterning of the top electrodes, the SiO2 layer was etched
in an Oxford Plasmalab 80 Plus system with an Ar and CHF3 gas
mixture, using the top electrodes as a hardmask.

Inside a nitrogen-filled glovebox (o0.5 ppm O2 and water), a
stoichiometric mixture of PbI2 and MAI was dissolved in DMF to
obtain a 40 wt% MAPbI3 precursor. The precursor was spin
coated over the electrodes at 4000 rpm for 30 seconds in the
same glovebox. Chlorobenzene was added as an antisolvent after
3 seconds of spinning. Directly after spin coating the samples
were annealed at 100 1C for 10 minutes. The 950 PMMA A8
solution was spin coated on top of the halide perovskite at 3000
rpm for 45 seconds, followed by a 5 minute bake at 100 1C.

Electrical characterization

I–V curves between �0.5 and 0.5 V and the retention time of the
low resistance state were measured with a Keysight B2902A
Precision Source/Measure Unit.

Artificial neuron measurements were performed by applying
voltage pulses between the heavily p-doped Si substrate and the
silver top-electrode with a Rigol DG1062Z arbitrary waveform
generator, while measuring the voltage between the gold bottom
electrode and the Si substrate with a PicoScope 6402C oscilloscope.
The data was smoothed using a moving average with a 5 point
subset, corresponding to a 20 ms time window. Afterward, 50 Hz
noise from the AC power supply was removed using a fit to a sine
wave with a 50 Hz frequency. Raw versions of the figures in the
main text are given in Fig. S11 (ESI†) and show that the measured
signal is not affected significantly by the noise removal.

Results and discussion

Artificial neurons can be fabricated from a resistive switch that
shows rapid, highly volatile switching connected in series with
a capacitor.28 Thereby, successive voltage pulses eventually
switch the memristive element to the low resistance state,
charging the capacitor (firing). Then, the charged capacitor
reverse-biases the memristive element, switching it off again.
We use a resistive switch that comprises of methylammonium
lead triiodide (MAPbI3) as the active layer, and a gold and silver
contact as the bottom and top contact respectively (Fig. 1a and
Methods section). The 2.5 mm wide contacts are arranged in an
overlapping back-contact geometry, where the two contacts are
orthogonally placed on top of each other with an insulating
spacer layer of SiO2 in between. All lithographic processing
steps are therefore performed before the perovskite deposition.
The compact, dense structure lends itself to downscaling.19

This resistive switch shows a unipolar behavior with a clear
threshold voltage of about 0.3 V, where the resistance rapidly
changes by four orders of magnitude from approximately 1 GO
to 100 kO (Fig. 1b). This resistance change is maintained for a
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short period only after switching off the voltage pulse, about
125 ms in the case of Fig. 1c, a requirement for the fabrication
of an artificial neuron. A histogram of retention times based on 40
measurements is given in Fig. S2 (ESI†). In no case is the retention
time more than 500 ms. The resistance changes of the resistive
switch are stochastic in nature, as is apparent from the histograms
of the time to switch after applying the voltage pulse in Fig. S3a–c
(ESI†) and their corresponding fit with a Poisson distribution.
Such a Poisson distribution for the switching time is expected for
resistive switches that change their resistance due to stochastic
formation and destruction of conductive filaments.13 We note that
resistance change can also occur for the same device but without
the MAPbI3 layer, as illustrated by Fig. S4 (ESI†). The switching
then happens at about 10� higher voltages. It has previously been
shown that silver filaments can form in SiO2 layers,29 and the
resistance changes therefore likely occur due to filament formation
through the SiO2 spacer between the Ag and Au electrodes. Thus,
the role of the halide perovskite layer in the final device is to
strongly facilitate the formation of these Ag filaments, enabling
lower voltage operation and thereby reducing the energy consump-
tion of the device.

To turn this resistive switch into an artificial neuron, it
needs to be connected to a capacitor. We implement this

on-chip by connecting the resistive switch in series with a 300 pF
capacitor that is formed by the Au bottom contact, the thermal SiO2

layer and the highly-doped Si substrate, as shown in Fig. 2a. With
such a connection, the operation of the neuron follows three key
steps, depicted in Fig. 2b. In the first step, stimulation, the input
voltage pulse experiences a resistive switch with high resistance.
Therefore, every voltage pulse deposits only a small amount of
charge on the capacitor, insufficient to build up significant voltage.
After several pulses, the resistance of the resistive switch will
promptly change to the low resistive state. At that point, the second
step (firing) is initiated. The capacitor is quickly charged and the
charge on the capacitor sets up a voltage that opposes the input
voltage. The third step (resetting) is initiated when the applied
voltage is removed. The capacitor discharges through the resistive
switch, causing the resistive switch to return to the high resistive
state, and the cycle can restart.

Fig. 2c shows the experimental realization of the spiking of
the artificial neuron. A 33 Hz, 750 mV pulse train is applied to
the device and the voltage across the capacitor is measured. We
observe firing pulses on the capacitor after one to three applied
pulses. Fitting of the charging and discharging of the capacitor
in Fig. S5a and b (ESI†) reveals that the resistance of the
resistive switch is reduced to 1 to 4 MO during most firing

Fig. 1 A volatile halide perovskite resistive switch. (a) Optical microscopy image of the cross-point formed by the gold and silver electrodes before
deposition of the halide perovskite layer, with a schematic image of the full resistive switching device. A gold bottom electrode and silver top electrode
sandwich an SiO2 insulating layer. Halide perovskite is spin-coated over the electrodes and forms the active layer of the device. (b) I–V curve of the
device, measured between �0.5 and 0.5 V. The measured current increases by approximately 4 orders of magnitude at 0.3 V. The device returns to the
initial high-resistive state as soon as the voltage is reduced to 0 V again and shows symmetric resistive switching properties in the negative poling
direction. (c) Retention time measurement of the resistive switch. The resistance increases to that of the device in the high resistance state after
approximately 125 ms. The full measurement is given in Fig. S1 (ESI†).
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steps. The resistance obtained from the fit is higher than the
100 kO obtained in the voltage sweep in Fig. 1b, indicating that
the device has not fully switched to the low resistance state. The

voltage drop over the resistive switch is gradually reduced as the
filament is forming and the capacitor is charged, leading to
only partial formation of the filament. This partial formation of

Fig. 2 Operation of the artificial spiking neuron. (a) The neuron is constructed by connecting the memristive part of the device, consisting of the gold
bottom electrode, silver top electrode and the MAPbI3 layer, with the capacitor formed by the gold electrode and contact pad, the 100 nm thermal SiO2

layer and the highly doped Si substrate in series. (b) Schematic representation of the three stages of the operation of the neuron. Upon application of a
voltage, the device first undergoes a ‘‘stimulation’’ phase, where there is no significant voltage build-up on the capacitor due to the high resistance of the
memristive part of the device. After enough voltage has been applied to the device, the memristive device switches to the low-resistance state and the
capacitor is rapidly charged, causing a voltage buildup on the capacitor, i.e. ‘‘firing’’ of the neuron. When the applied voltage is removed, the capacitor
discharges. This reverse-biases the resistive switch, aiding the disruption of the conductive filament, called the ‘‘resetting’’ process. (c) A pulsed
measurement of the artificial neuron. A pulse train of 5 ms, 0.75 V pulses are applied with a 33 Hz frequency, resulting in firing spikes on the capacitor.
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the filament further aids the volatility and energy efficiency of
the device.

During discharging of the capacitor in the resetting step, a
resistance of approximately 10 MO is extracted, which corresponds
to the input impedance of the oscilloscope. Assuming that the
resistive switch is brought back to its 1 GO high resistance state
during the resetting step, the oscilloscope provides a lower resis-
tance discharge path for the capacitor, which is a limitation of our
current measurement setup (see Fig. S5c, ESI†).

The capacitive discharge fit immediately corresponds to the
oscilloscope impedance (Fig. S5a, ESI†), from which we con-
clude that the resistive switch is reset as soon as the bias is
removed, at least on the timescale of the measurement. No
firing pulses were measured if the halide perovskite layer was
omitted, as shown in Fig. S6 (ESI†). The resistance changes that
underlie the spiking behavior of the neuron, therefore, occur
through the halide perovskite layer at these low applied vol-
tages. Fig. S7 (ESI†) shows that the stochastic spiking of the
neuron was reproducible over multiple measurements.

The firing pattern of the neuron is stochastic in nature,
which is expected from the underlying stochastic switching
mechanism of the resistive switch. Similar to the resistive switch
itself, Fig. S8a (ESI†) shows that the time under bias before
spiking of the neuron follows a Poisson distribution, with a
mean of 6.9 ms for the 0.75 V pulses. This stochastic switching
is also observed in biological neurons and can have advantages
compared to purely deterministic neurons.

To demonstrate this advantage we use the experimentally
obtained mean switching time and resistances to model the
behavior of the stochastic neuron. We compared the simulated
stochastic neuron to a hypothetical deterministic neuron with a
deterministic threshold of the same time constant (6.9 ms) to
determine the ability of stochastic and deterministic neurons to
represent the input voltage pulse train. Modeling of the neuron
is discussed in more detail in Supplementary note S1 (ESI†).

Fig. 3a shows the simulated spiking behavior of a stochastic
and a deterministic neuron. The spiking of the simulated
stochastic neuron is similar to that in the measurement shown

Fig. 3 Simulations comparing the stochastic spiking of the neuron with a hypothetical deterministic version of the neuron. (a) Comparison of a
simulated stochastic and deterministic spiking neuron, with the same input as in Fig. 2c. Similar spiking behavior is obtained for the simulated and
experimentally measured stochastic neurons. The deterministic neuron always spikes after a cumulative 6.9 ms of bias has been applied. (b) Simulated
spiking behavior of populations of 100 stochastic and deterministic neurons. Ten voltage pulses are applied in the simulation with the same pulse
duration, length, and magnitude as (a). Blue-shaded regions indicate the application of the 750 mV pulses, while the red marks indicate spiking by the
neuron. While the deterministic neurons all spike at the same time, spiking by the stochastic neurons is distributed more evenly throughout the applied
pulses. (c) The population codes obtained for each applied pulse in (b). We define the population code as the cumulative amount of spikes output by the
population. For the deterministic population, the population code increases with each even number of applied pulses, while the stochastic population
shows a more gradual increase with each applied pulse. (d) The representation error of deterministic and stochastic populations as a function of the
population size, averaged over 1000 simulations. Deterministic populations have the same representation error regardless of their size. The
representation error of the stochastic neurons decreases as the population size increases. The representation error of the stochastic populations is
lower for population sizes of 11 or more neurons. The blue shaded region indicates one standard deviation.
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in Fig. 2c. The simulated deterministic neuron, on the other
hand, spikes at regular intervals.

To achieve more biologically plausible, robust, and accurate
spiking neural networks, neurons are typically implemented in
populations.14,15 In these networks, input signals are fed into
the neurons in the populations and their collective output is
collected as a population code. Fig. 3b shows a simulation of
populations of 100 stochastic or deterministic neurons. While
the spikes of the stochastic neurons are distributed over all
input voltage pulses, the deterministic neurons spike uniformly
roughly each second input pulse.

From the simulations of the stochastic and deterministic
neuron populations, we calculate the population code as the
cumulative amount of spikes output by the total population after
each successive input pulse, Fig. 3c. The population code for the
deterministic populations increases stepwise, showing that the
stochastic neurons can better distinguish different numbers of
applied pulses, i.e., they can better encode or represent the input.
This process by which stochastic neurons can pick up on sub-
threshold signals is called ‘‘stochastic resonance’’. Biological
neurons, which are also stochastic, rely on stochastic resonance
to detect otherwise sub-threshold signals.30

Fig. 4 Tunability of the firing of the neuron. (a) Increasing the frequency of the incoming voltage pulses to 50 Hz leads to a higher firing probability with
each input pulse. (b) At a lower frequency of incoming voltage pulses of 20 Hz the neuron does not fire. (c) A lower input voltage of 400 mV,
corresponding to connection of the neuron through high resistance synapses, leads to no firing of the neuron.
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To study the effect of population size on the reliability of
signal detection, we simulated population codes for populations
of 1 and up to 100 neurons and computed a signal representa-
tion error for each population size, see Fig. 3d. Supplementary
note S1 (ESI†) explains how the representation error was deter-
mined. This representation error measures how well the popu-
lation can encode and distinguish between different inputs. The
representation error is initially larger for small populations of
stochastic neurons compared to deterministic ones. However,
the error rapidly decreases as the population size increases and
drops below that of the deterministic neurons for relatively
small population sizes of 11 or more stochastic neurons. These
results are in line with previous work where the same benefit
was found for stochasticity in artificial neuron populations.14,15

Experimentally, the neurons are stochastic, but the stochasticity
is tunable. The spiking behavior of the neuron can be tuned by
changing the parameters of the input voltage pulses. As shown in
Fig. 4a, the neuron outputs spikes with a higher probability for each
input pulse if the frequency of the incoming pulses is increased. On
the other hand, a lower input pulse frequency in Fig. 4b leads to no
spiking of the neuron, which is a clear demonstration of the leaky
behavior of the neuron. Another demonstration of the leaky-
integrate-and-fire behavior of the neuron is given in Fig. S10 (ESI†).
Increasing the pulse duration to 7.5 ms leads to firing with each
applied voltage pulse, whereas 2 ms pulses applied with the same
frequency do not lead to spiking of the neuron.

Changing the voltage also provides a way to change the
firing pattern of the neuron. When the neuron is integrated in
full networks, this would be equivalent to connecting the
neuron through synapses with a low connection strength, i.e.
a high resistance. The measurement in Fig. 4c illustrates that a
lower voltage drop over the neuron due to a resistive artificial
synapse leads to no spiking of the neuron. Our spiking neuron
therefore shows the leaky-integrate-and-fire behavior and
synaptic strength-dependent spiking properties required for
constructing neuromorphic hardware with the synapse.

The energy consumption of the firing pulses can be calcu-

lated by E ¼ 1

2
� C � V2, with C the capacitance of the on-chip

capacitor and V the voltage of the firing pulse, which yields an
energy consumption per firing pulse between 20 to 60 pJ. This is
already lower than the energy consumed by a biological neuron
(on the order of 100 pJ),31 and artificial neurons that have been
implemented in hardware spiking neural networks before,32 even
in this early adaptation. More energy-efficient silicon artificial
neurons that were demonstrated before have not yet been
implemented in full networks.33 In addition, neurons based on
electronic circuits of traditional transistors and capacitors require
a large number of these components,8,33 making the circuits
bulky and therefore limiting the maximum density that can be
reached on the final chip. In contrast, our design consists of only
two components and could therefore be incorporated in higher
densities more easily. Moreover, there is no detectable voltage
build-up on the capacitor during the stimulation step before
firing, meaning that the energy consumption per spike can be
reduced by reducing the capacitance of the capacitor without

negatively influencing the functioning of the neuron. We discuss
further scaling effects in Supplementary note S2 in the ESI.†

Biological neurons are sensitive to input signals of similar
frequencies that we use in this work.34 Although these frequen-
cies are significantly lower than that of conventional computers,
the different way that information is processed in neuro-
morphic networks still allows for efficient computation. In fact,
neuromorphic networks require synapses and neurons that
have time constants that are well-matched to their input for
efficient computation. Thus, interfacing with the natural world,
e.g. for learning from visual input, requires operating frequen-
cies similar to those we use here.7,35 These time constants can
be difficult to achieve with CMOS-based neuromorphic
hardware.36 Our neuron therefore provides a convenient alter-
native that is natively capable of operating at these frequencies.
The ability to incorporate these neurons and the corresponding
artificial synapses on flexible substrates could allow for novel
application areas, including soft robots or even in combination
with biological tissue. In addition, ion conductivity and corres-
ponding resistance changes of halide perovskites can be tuned
by light stimulation.37 Perovskite neurons could therefore also
open up new possibilities of hybrid electronic-photonic neuro-
morphic hardware, such as low-power smart sensors.

Conclusion

In conclusion, we have demonstrated the first fully on-chip
halide perovskite artificial neuron. The neuron consists of only
two components, which lends itself well to high-density integra-
tion, and shows clear leaky-integrate-and-fire behavior, impor-
tant for integration in neuromorphic hardware. The spiking of
the neuron is stochastic, similar to biological neurons, yet with
a lower energy consumption per spike between 20 to 60 pJ. The
stochastic spiking of the neuron is beneficial for detecting sub-
threshold input, similar to biological neurons. The energy con-
sumption of the neuron could be further reduced by lowering the
capacitance of the capacitor. The similarity in device architecture
of this artificial neuron to the downscaled artificial synapses of
MAPbI3 that we have shown before,19 allows easy implementation
of energy-efficient all-halide perovskite neuromorphic hardware.
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