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Abstract:

The growing concerns over environmental pollution and resource sustainability have encouraged
considerable interest in valorizing biomass waste as functional materials for environmental
remediation. Owing to its abundance, renewability, and diverse surface functionalities,
lignocellulosic biomass holds immense potential as a cost-effective adsorbent and a catalyst.
However, its practical application is hindered by limitations such as low surface area, limited
porosity, and insufficient reactive sites. This review systematically compiles, and critically
analyzes the recent advances in surface modification, and nanostructuring strategies aimed at
enhancing the physicochemical properties of biomass-derived materials for water and wastewater
treatment. The article covers a broad spectrum of modification approaches, including physical
(pyrolysis, hydrothermal carbonization, microwave heating), chemical (acid/alkali activation,
oxidative treatments), and physicochemical techniques, alongside emerging nanocomposite
fabrication methods involving metal and metal oxide nanoparticle immobilization. Key focus is
placed on how these modifications improve surface area, porosity, functional group distribution,
and catalytic activity, thereby augmenting the adsorption and degradation capacities of biomass
materials. Mechanistic insights into contaminant removal processes - adsorptive, degradative, and
synergistic pathways are elaborated, thus correlating material properties with their pollutant
removal efficiencies. Additionally, the review outlines the characterization techniques essential
for evaluating structural, morphological, and surface chemistry alterations in modified biomass
materials. By bridging fragmented literature and integrating mechanistic perspectives with
material design principles, this review highlights the potential of engineered biomass-based
materials as sustainable alternatives for environmental remediation. It also identifies research gaps,
proposing future directions focused on scalable, eco-friendly modification techniques,
performance optimization, and comprehensive environmental impact assessments. This work
aspires to guide the development of next-generation biomass-derived materials for advanced,

sustainable, and economically viable pollutant remediation technologies.
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86 1. Introduction:

87 Biomass refers to organic matter derived from living organisms, such as plants, animals,
88  and microorganisms (Fantini, 2017). Examples of biomass include wood, agricultural residues,
89 animal manure, and organic waste (Figure 1). It serves as a renewable energy source that can be
90 utilized through various processes like combustion, fermentation, and conversion into biofuels
91  (e.g., ethanol, biodiesel), and other bioproducts. The renewable aspect of biomass lies in its ability
92  to be replenished relatively quickly compared to fossil fuels, which take millions of years to form
93 (Amyjith & Bavanish, 2022). The substantial quantities of agro-waste pose significant challenges
94  to effective waste management practices (Phiri et al., 2024). Burning of the crop residues is a
95  common practice that results in the non-recovery of potential resources and releasing greenhouse
96  gasses and air pollutants. The crop residues are estimated to contain 80% nitrogen (N), 25%
97  phosphorus (P), 50% sulfur (S), and 20% potassium (K), all of which are lost during burning

98 (Bhuyan & Ahmaruzzaman, 2023). Treating biomass as waste can have significant environmental,

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

99  economic, social, and sustainability implications. The utilization of biomass offers numerous

100 environmental advantages, including reducing greenhouse gas emissions, promoting waste
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101  reduction and recycling, and providing an alternative to fossil fuels (Antar et al., 2021). The

(cc)

102 implementation of effective waste management strategies that prioritize resource recovery,
103  recycling, and utilization of biomass can help mitigate these impacts and promote a more

104  sustainable approach to biomass management (Wan et al., 2019).
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Figure 1. Renewable sources of biomass.

The waste biomass may act as a clean, sustainable, and renewable energy source that can
be used as potential resources for converting into valuable products for their use in removing
pollutants from soil and water. The majority of adsorbents are derived from agricultural sources
such as leaves, bark, seeds, fruit peels, flowers, fish scales, algae, bacteria, and fungi.
Lignocellulosic agro-waste is the most abundant renewable energy resource, with additional
agronomic and environmental applications (S. Mishra et al., 2021). Agricultural biomass residues
have a similar composition to other lignocellulosic materials, with cellulose (40-50%),
hemicellulose (20-30%), lignin (20-25%), and ash (1-5%) (Mujtaba et al., 2023). Lignin is an
aromatic polymer containing various functionalities such as carbonyl (-CO-), hydroxyl (-OH), and
methyl (-CHj3) groups etc. Hemicellulose and cellulose are aliphatic compounds with carbonyl,
hydroxyl, and ether functionalities as a part of their polymeric structure. These functional groups
contain oxygen atoms, which have a strong tendency to bind positively charged heavy metal ions

and small organic contaminants by different physical interactions such as hydrogen bonding,
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120  electrostatic, or van der Waals interactions (Y. Zhou et al., 2015). Thus, using agricultural waste

121 for environmental remediation is a beneficial and cost-effective process.

122 Agricultural biomass, derived from various agricultural sources, possesses distinct
123  characteristics that differentiate it from conventional adsorbents commonly used in environmental
124  remediation processes. These characteristics include a relatively lower surface area, pore size, and
125  pore volume compared to traditional adsorbents like activated carbon or zeolites. The lesser
126  surface area, pore size, and pore volume of agricultural biomass limit its adsorption capacity and
127  efficiency in removing pollutants from contaminated water or soil (Gale et al., 2021). Adsorption,
128  a process where contaminants are physically or chemically bound to the surface of the adsorbent
129  material, relies on the availability of active sites and pore structures for effective pollutant removal
130  (Nayak et al., 2024). With agricultural biomass having inherently smaller surface area and fewer
131  pores, its adsorption capacity may be insufficient for efficient pollutant removal, especially for
132 contaminants present in high concentrations or requiring specific adsorption conditions (Kainth et
133 al., 2024). To overcome these limitations and harness the potential of agricultural biomass as
134  adsorbents for environmental remediation, innovative strategies need to be developed. These

135  strategies may include:

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

136 Surface Modification: The chemical or physical treatments can be applied to agricultural

137  biomass to enhance its surface properties, increase surface area, and create more active sites for

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

138 adsorption. The adsorption performance of biomass can be improved by employing techniques

139  such as impregnation, chemical activation, or thermal treatment that can modify the surface

(cc)

140  chemistry and morphology of biomass (S. Wu et al., 2022).

141 Nanostructuring: Incorporating nanomaterials, such as nanoparticles or nanocomposites,
142  onto the surface of agricultural biomass can enhance its adsorption capacity and selectivity.
143  Nanostructuring increases the surface area by introducing additional adsorption sites, thus
144  facilitating the removal of a wide range of pollutants with higher efficiency (H. Han et al., 2019;
145  Singh, 2023). Moreover, the nanostructured biomass also exhibits enhanced photocatalytic
146  application for the removal of recalcitrant organic contaminants through Fenton-like
147  heterogeneous processes (Kumar et al., 2022).

148  Composite Materials: Combining agricultural biomass with other adsorbent materials, such as

149  activated carbon, clay minerals, or polymers, can create composite materials with synergistic
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adsorption properties. These composite materials combine the strengths and advantages of both
components, resulting in enhanced adsorption performance and versatility for environmental
remediation applications (H. Han et al., 2019).

Functionalization: By introducing functional groups or chemical moieties onto the surface
of agricultural biomass can modify its surface chemistry and improve its affinity towards specific
pollutants (Rani et al., 2025a). The functionalization allows for targeted adsorption of
contaminants, and enhances the selectivity and efficiency of agricultural biomass-based adsorbents
(P. Zhang et al., 2022).

Optimization of Operating Conditions: Optimizing process parameters such as pH,
temperature, contact time, and adsorbent dosage can maximize the adsorption efficiency of
agricultural biomass-based adsorbents. By understanding the adsorption mechanisms and kinetics
involved one can help tailor the operating conditions to achieve optimal pollutant removal
performance (Abegunde et al., 2020).

By employing these strategies, agricultural biomass can be effectively utilized as
adsorbents for environmental remediation processes, offering a sustainable and cost-effective
solution for pollutant removal from water and soil environments. These advancements not only
address the challenges associated with the inherent properties of agricultural biomass, but also
contribute to the development of innovative and eco-friendly adsorption technologies for
environmental protection and sustainability. Over the past decade, there has been a significant
increase in interest within the research community towards the development of sustainable
technologies for removing contaminants (Figure 2). However, existing literature reviews have
predominantly focused either on the adsorptive removal of contaminants using biomass and its
derivatives or on mere compiling the sustainable surface modification techniques, often neglecting
the intricate structural changes within the biomass and its derived nanocomposites, and the
underlying mechanisms of contaminant removal. In this comprehensive review, we provide an
extensive discussion on surface modification techniques, elucidating the structural changes
induced in biomass via various activation processes, while discussing the characterization
techniques employed to analyse surface modifications, and the mechanisms underlying the
contaminant removal. Moreover, we also provide a comprehensive summary of the diverse
environmental remediation applications of biomass and its carbon-rich derivatives, offering a

holistic perspective on the subject.
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185  The sharp increase in publications after 2017 reflects several converging research trends. First, the

186  global emphasis on sustainable and low-cost materials for water and wastewater treatment

(cc)

187  significantly raised the profile of biomass-derived carbons as eco-friendly alternatives to activated
188  carbon. Second, advancements in nanostructuring techniques enabled the integration of biomass
189  with metal and metal oxide nanoparticles, leading to multifunctional composites that combined
190  adsorption with catalytic degradation. Third, the introduction of persulfate- and
191  peroxymonosulfate-based advanced oxidation processes, often mediated by biochar or activated
192  carbon, opened new avenues for tackling recalcitrant organic contaminants. In parallel, the
193  expansion of photocatalytic and electrochemical approaches using biomass-derived supports
194  further drove research interest. Collectively, these innovations account for the steep rise in

195  scientific output observed after 2017.

196
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2. Surface Modification Techniques for Lignocellulosic Biomass

Surface modification techniques for biomass involve altering the surface properties of
biomass materials to enhance their performance or functionality for specific applications. To
improve its efficiency in wastewater treatments lignocellulose biomass can be modified with

various physical and chemical treatments (Figure 3).

2.1. Physical modification of biomass: Physical methods of surface modification of biomass
involve altering the surface properties of biomass materials without introducing chemical changes.
Biomass can undergo modification through a variety of physical processes, including cutting,
grinding, ball milling, boiling, steaming, autoclaving, thermal drying, and pyrolysis (Eldhose et
al., 2023). These methods effectively alter the surface area and particle size of the biomass,

enhancing its adsorption capabilities.

2.1.1. Pretreatment of Biomass: For the synthesis of activated carbon pretreatment of biomass is
the first step which involves: a) acid washing, removes soluble and insoluble metals, ash, and
lignin from the raw precursor, whereas hot water washing primarily removes soluble ions. Alkaline
pretreatment of lignocellulosic biomass removes silicone and expands the internal structure by
dissolving some of the lignin; b) crushing, to obtain a powder sample; ¢) drying at 100 °C, to
remove moisture and obtain constant weight; and d) sieving, to obtain homogeneous particles in a

specific range (Mankar et al., 2021).

2.1.2. Pyrolysis of biomass: Pyrolysis presents an alternative technique for transforming biomass
into valuable products like biochar, bio-oil, and syngas under oxygen-deprived conditions at
temperatures spanning from 300 to 900 °C (Amenaghawon et al., 2021). The process of pyrolysis
can be categorized into slow pyrolysis and fast pyrolysis based on factors such as temperature,
heating rate, pressure, and duration. The fast pyrolysis offers significant advantages by boosting
bio-oil yield, reaching up to 75% from biomass, with a rapid heating rate exceeding 200 °C/min
and a residence time of less than 10 s. However, the slow pyrolysis occurs within the temperature
range of 400 to 600 °C, operates at atmospheric pressure, featuring a relatively lengthy residence
time exceeding 1 h and low heating rates of 5-7 °C/min (Kambo & Dutta, 2015). This method
mainly yields biochar while producing limited amounts of condensed bio-oil, syngas, and

hydrocarbons.


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ma00494b

Page 90of 113

Materials Advances

View Article Online
DOI: 10.1039/D5MA00494B

-—

Hemicellulose (20-40%)
Cellulose (30-45%)

Lignin (10-25%)

Lignin Fraction

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

. N-functional groups

oW

N-Biochar

Metal
Immobilization

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

(cc)

]lnu- Carboxyl

\

17j . LTD"'J S_Lf'i‘;f]’J ’
1’ > \r\”“’ 1)

K [ Metal Immobilized Biochar y

227

eoeesseoe
855” g’\”””\‘mf'“?r,_n

G ,J
“arbony

Metal
Tmmobilization

Lactd  pipet
[ Activated Carbon

|

Metal
Immobilization

[ Metal Immobilized Activated Carbon ]

\ [ Metal Tmmobilizea N-mocnry



http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ma00494b

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

228
229
230

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

Materials Advances

Page 10 of 113

View Article Online
DOI: 10.1039/D5MA00494B

Figure 3. Schematic representation of biomass-derived carbon materials (biochar, hydrochar,
activated carbon) and their surface modification/metal immobilization pathways for environmental

remediation applications.

2.1.3. Hydrothermal carbonization: Recently, hydrothermal carbonization has become more
popular for making activated carbon compared to the traditional thermal carbonization method in
an inert atmosphere. This is because the hydrothermal carbonization method doesn't necessitate
the initial step of drying the biomass (Masoumi et al., 2021). In contrast to pyrolysis, it is observed
as a cost-effective way to produce hydrochar because the hydrothermal carbonization is generally
performed at low temperatures (between 180 to 250 °C) under pressure in water. When water is
present, several chemical reactions occur, including hydrolysis, dehydration, decarboxylation,
aromatization, and re-condensation. The resulting hydrochar contains a large number of
oxygenated functional groups like hydroxylic, carboxylic, and phenolic, which make it more
hydrophilic and also improve its ability to adsorb substances (Masoumi et al., 2021).

2.1.4. Microwave heating:

Microwave irradiation for heating has gained significant attention from researchers owing
to its capacity to transfer heat effectively at the molecular level. This enables a more uniform and
rapid thermal conductivity from the heat source. The microwave heating technique can be
integrated with physical and/or chemical activation processes to produce activated carbons (ACs)
with enhanced performance, employing either a single-stage or two-stage activation procedure.
One-step microwave (MW) activation offers distinct advantages such as a more condensed
structure, smaller footprint, and simpler operation compared to traditional two-step activation
methods (Menéndez et al., 2010). Two-step MW activation processes typically involve
carbonization and subsequent activation of the char, with either activation or carbonization
conducted under MW irradiation. MW heating offers numerous advantages over conventional
heating methods, including uniform and internal heating, rapid and selective heating, ease of
control, straightforward setup, insensitivity to particle size and shape, and reduced pretreatment

requirements for biomass (Ao et al., 2018).

10
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257  2.2. Chemical Modification: Chemical modification of biomass involves altering its chemical
258  composition through various chemical treatments commonly employed for surface modification

259  of agricultural biomass to enhance its properties for various applications.

260  2.2.1. Acid modification of biomass: Acid modification represents a typical wet oxidation process
261 commonly employed for surface alteration. Mineral acids and oxidants such as HNOs, H,0,,
262  HCIO, H,S0,4, H3POy, and HCI are utilized in acid modification processes. While organic acids
263  like acetic, carboxylic acid, formic acid, and oxalic are rarely used due to their weaker effect
264  stemming from their low strength. The acidification of the adsorbent surface enhances its acidic
265  behavior and hydrophilic nature by reducing mineral content. Adsorbents with an acidic surface
266  feature oxygen-containing functional groups such as carboxyl, carbonyl, quinone, hydroxyl,
267  lactone, and carboxylic anhydride (Abegunde et al., 2020). These functional groups are typically
268  situated on the outer surfaces or edges of the basal plane on activated carbon, significantly
269 influencing the material's chemical properties (Demiral et al., 2021). Researchers have extensively
270  explored the utilization of acid-modified adsorbents for water decontamination purposes,

271 reflecting ongoing efforts in this area.

272  2.2.2. Alkaline modification of biomass: Modifying adsorbents with reducing agents can

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

273  markedly alter their surface functional groups, leading to significant enhancements in their

274  adsorption capacities. This process tends to improve the relative abundance of alkali groups and

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

275 render the surface more non-polar, thereby improving the adsorption capacity for non-polar

(cc)

276  substances. When subjected to alkali treatment, an adsorbent acquires a positive charge on its
277  surface, which in turn boosts the adsorption of negatively charged species. Surface reduction can
278  Dbe achieved through treatments involving NaOH, KOH, LiOH, Na,Si0O;, Na,COs, and various
279  oxides (Abegunde et al., 2020).

280  2.3. Physico-chemical activation of biomass: Activated carbon finds wide-ranging applications,
281  including the removal of various contaminants from water and wastewater, as well as its utilization
282  in capacitors, battery electrodes, catalytic supports, and gas storage materials. These applications
283  arise from its desirable characteristics, including its large surface area and porosity, along with its
284  surface chemistry capable of interacting with molecules possessing specific functional groups
285 (Heidarinejad et al., 2020). Over the past decade, there has been growing recognition of the

286  potential of biowaste to yield low-cost adsorbents, leading to numerous studies assessing the

11
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characteristics and efficacy of activated carbon derived from various biowaste sources for

wastewater pollutant removal (Table 1).

12
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Table 1. Synthetic approaches involving surface modification of biomass.

Biomass

Process type

Pre-treatment

Activator

Activating condition

Ref.

Barley straw

Date seeds

Apple bagasse
Kenaf

Cashew nut

Corn straw

Pine wood sawdust
Corncob

Jujun Grass
Lecithin

Wheat straw

Cotton shell

Coconut shell

Tobacco stalks

Shiitake mushroom

Two-step

Single step
Two-step
Single step
Single step
Single step
Single step
Single step
Two-step
Two-step

Two-step

Single step

Single step

two-step

Single step

Carbonization, N, atm.

None

Pyrolysis with CO,, 800 °C
None

None

None

None

None

Hydrothermal carbonization
Hydrothermal carbonization

ZnCl, catalytic hydrothermal
carbonization (200 °C)

None

None

carbonized at 700 °C

None

CO, and steam

KOH/H,S0O,
KOH

H;PO,
H;PO,
H;PO,
H;PO,
H;PO,

KOH

KOH

H;PO,

KOH

ZnC 12

None

None

800 °C in CO, and 700

°C in steam

600- 900 °C, N, atm.

800 °C, N, atm.

600 °C, N, atm.

400-700 °C, N, atm.

300 °C, N, atm.

800 °C, N, atm.

450- 850 °C, N, atm.

900 °C, N, atm.
900 °C, N, atm.

500 °C, N, atm.

600 °C, N, atm.

500 °C, N, atm.

1000 °C, 5 h

300 °C, 500 °C, 700°C

(Pallarés et al., 2018)

(Ogungbenro et al., 2020)
(Suarez & Centeno, 2020)
(Baek et al., 2019)
(Geczo et al., 2021)

(Q. Yang et al., 2020)

(X. Gao et al., 2018)

(Y. Liuetal., 2017)
(Demir et al., 2017)
(Xing et al., 2019)

(Dey & Ahmaruzzaman,
2023)

(Kaur et al., 2024a)

(Sangeetha Piriya et al.,
2021)

(Juetal., 2023)

(X. Liu et al.,, 2023)
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(cc)

Rape straw

Sunflower

Rice straw

Food and plant waste

Cow manure

Pomelo peels

Wheat Straw

Rice husk

Seaweed

Rice Husk

Hazelnut Shell
Rice husk

Corn Stalks
Erythrina speciosa

Animal dung

Two-step

Two-step

Two-step
Single step

Single step

Two-step

Single step

Single step

Two-step

Single step

Two-step
Two-step
Two-step
Single-step

Two-step

carbonized at 700 °C

650 °C

700 °C

None

None

Carbonized at 400 °C

None

None

500 °C

None

None

None

None

None

None

Materials Advances

KOH

Ag/ vitamin C/
and H202

Tannic acid
None

None

KOH

None

NaOH

NaOH

NaOH

KOH
KOH
KOH
ZnCl,

KOH and

750 °C

None

None
300 °C

Carbonized at 300 °C,
500 °C, 700°C, N, atm.

600, 700, 800, 900 °C,
N, atm.

600 °C, N, atm.

None

800 °C, N, atm.
None

950 °C

950 °C

950 °C

None

Hydrothermal activation

(Y. Qin et al., 2022)

(Tomcezyk & Szewczuk-
Karpisz, 2022)

(J. Chen et al., 2021)
(Hoslett et al., 2021)

(P. Zhang et al., 2019)

(D. Chen et al., 2017)

(Cao etal., 2019)

(Kaur, Kalpana, et al.,
2023)

(D. Jiang et al., 2023)

(Yeetal., 2010)

(Yurtay & Kilig, 2023)

(Bouzidi et al., 2023)

(Kandasamy et al., 2023)
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e150f113

Bamboo

Sesame straw

Thevetia neriifolia
Acacia wood

Haematoxylum
campechianum

Sugar cane bagasse

Rice husk

Kesambi wood

Sawdust
Biomass Peels
Pistachio wood
Date Press Cake

Rice Husk
Corn Cob

Baobab fruit shells

Two-step

Two-step

Two-step
Two-step

Two-step

Two-step

Two-step

Two-step

Two-step
Two-step
Single step
Two-step

Single step
Single step

Single step

None

None

None

500 °C, N, atm.

None

None

None

400 °C

None

None

None

500 °C

None

None

None

Materials Advances

ch12
KOH

KOH, Ca(OH),

H;PO,, 400 °C
KOH

H;PO,

ZHC12

NaOH/
CH;COOH/
H;PO,

H,SO,
KOH
H;PO,
NH4NO;
NaOH
NaOH

HCl

H;PO,

700 °C
Calcination
800 °C N, atm.

110 °C, Microwave oven

500 °C

500 °C N, atm.

700 °C

110 °C, oven
800 °C N, atm.
600 °C

800 °C N, atm.
750 °C N, atm

None

None

200-900 °C N, atm

(Cui et al., 2022)

(Y. Zhang et al., 2022)

(Srinivasan et al., 2021)
(Yusop et al., 2021)

(Abatal et al., 2020)

(Abo EIl Naga et al., 2019)

(K. Huang et al., 2023)

(Neolaka et al., 2021)

(Kharrazi et al., 2021)
(Thompson et al., 2020)
(Sajjadi et al., 2018)
(Norouzi et al., 2018)

(Gebrewold et al., 2019)
(Gebrewold et al., 2019)

(Vunain et al., 2017)
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Poplar flour and
walnut shell

Soybean biomass

Single step

Single step

None

None

Materials Advances

None

None

1000 °C

900 °C

(Xu et al., 2023)

(Dong et al., 2023)
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293 Activated carbon is conventionally produced through two primary activation methods: a)
294  physical activation; and b) chemical activation. The physical activation involves two distinct
295  thermal stages. Initially, the carbonaceous precursor undergoes pyrolysis or carbonization at high
296 temperatures, typically between 700-900 °C, in an inert atmosphere to prevent combustion. This
297  step eliminates heteroatoms and releases volatiles, resulting in chars with high carbon content
298  (where increased carbonization temperature enhances carbon content), but limited porosity
299  development. The subsequent stage of physical activation is gasification, entailing the selective
300 removal of the most reactive carbon atoms through controlled gasification reactions to induce the
301  characteristic porosity of activated carbons (Kumar Mishra et al., 2024). The gasification
302 temperature varies depending on the gasification agent utilized, typically water vapor, CO,, or
303  Oy/air. Water vapor or CO, gasification commonly occurs at temperatures ranging around 700—
304 900 °C, whereas gasification using pure O, or air requires much lower temperatures (around 300-
305 450 °C) due to the higher reactivity of O, compared to CO, and water vapor. The use of O,
306 complicates gasification control and porosity development due to its high reactivity and
307  exothermic nature (S. Mishra & Upadhyay, 2021). Generally, CO, serves as the preferred
308 activation gas due to its cleanliness, ease of handling, and facilitation of activation process control

309  owing to its slow reaction rate at elevated temperatures. Jiang et al. used pyrolysis in the presence

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

310 of CO; and N, as a physical activator to obtain activated hybrid willow biomass (C. Jiang et al.,

311 2020). Pallares et al. activated barley straw biomass by regulating the gas flow rate of compressed

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

312 gas cylinders containing N, and CO,, along with steam produced using a steam generator at 150

313  °C (Pallarés et al., 2018).

(cc)

314 On the other hand, the process of chemical activation involves impregnating a biomass
315  material with a chemical reagent and then activating it, whether the material is raw or carbonized.
316  The activation can be achieved in one-step or two-steps. In the one-step process, the raw precursor
317  is mixed with the activating agent, and then is subjected to carbonization. In the two-step process,
318  the pre-carbonized biomass is treated with the activating agent, and then it is again subjected to
319  carbonization. A strong base (NaOH, KOH), acid (H,SO,4, H;PO,4, HCI, HF, etc.), or salt (ZnCl,,
320 CaCl,) are employed as an activating agent. In single-step activation, a strong base such as KOH
321  istypically used (Heidarinejad et al., 2020). After activation, the last step involves the washing to
322 remove the remaining activating agents or reaction byproducts that occlude the newly formed

323  porosity and drying. Ogungbenro et al. synthesized activated carbon form data seed biomass using
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a two-step activation process involving pyrolysis of biomass under CO, atmosphere followed by
Centeno, obtained activated carbon from apple bagasse using pyrolysis under CO, and then
activation with KOH under N, atmosphere (Suarez & Centeno, 2020). A mesoporous activated
carbon from Kenaf (Baek et al., 2019), cashew (Geczo et al., 2021), corn straw (Q. Yang et al.,
2020), sawdust biomass (X. Gao et al., 2018), and Corncob (Y. Liu et al., 2017) was obtained
using a single step pyrolysis under the N, atmosphere in the presence of H;PO, as a chemical
activator. The activated carbon from Jujun grass (Demir et al., 2017), Lecithin (Xing et al., 2019),
and Wheat straw (Dey & Ahmaruzzaman, 2023) biomass was obtained by two-step hydrothermal
carbonization with KOH and H;POy, as a chemical activator. Sangeetha et al. synthesized activation

carbon in the presence of ZnCl, from coconut shell (Sangeetha Piriya et al., 2021).

2.4. Nanostructuring of biomass and its derivatives: The fabrication of these biomaterials with
inorganic nanoparticles such as metal/metal oxides will not only increase their surface area of
contaminant absorption, but also make them an efficient catalyst for studying various organic
contaminant degradation processes (Zhong et al., 2023). The adsorption tendencies of biomass
materials complemented with the catalytic efficiencies of inorganic nanoparticles and generate a
synergistic effect, which is effective in the removal of various contaminants from their aqueous
solution (Mazarji et al., 2023). The Fe is a pure metal and magnetic in nature; thus, a magnetic
biochar can be obtained when Fe is immobilized on biochar. Nano-sized Fe, also known as
nanoscale zero-valent iron (nZVI), is highly unstable in the environment, however, many studies
have confirmed that by coating nZVI on biochar could be an efficient approach to getting a stable
nZVI@biochar composite with simultaneous high reactivity due to dispersive nZVI on biochar
(Singh, 2023). The removal mechanisms of nZVI@biochar include reduction, surface
complexation, and coprecipitation. The magnetic biochar can also be prepared by pre-treatment
and post-treatment of biomass. In the pre-treatment process, pyrolysis of biomass in the presence
of FeCl; or FeCl, is performed. However, in the post-treatment precipitation of biochar with FeSO,
and FeCl; under basic conditions results in immobilization of the iron hydroxides (Fe(OH);) on
biochar (Lu et al., 2020). In literature, the magnetic biochar have been synthesized using different
kinds of methods with various biomass and magnetic mediums. The popular methods including

co-precipitation, thermal decomposition, and/or reduction, and hydrothermal synthesis techniques,
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355  can all be directed to the synthesis of high-quality magnetic biochar. The iron oxides such as Fe;O4
356 and y-Fe, 03, have been studied largely due to their low cost of raw materials and ease of synthesis
357  (Chavali & Nikolova, 2019). Other than Fe;0y,, other metal oxides such as CuO, TiO,, ZnO, MnQO,,
358 (Co030y, etc., have also been immobilized on biomass and its derivative surfaces and have been
359  extensively explored for their environmental remediation applications (Isikgor & Becer, 2015).
360

361 2.5 Comparative analysis of surface modification techniques

362  While a wide range of surface modification strategies have been developed for biomass, their
363 effectiveness, scalability, and environmental impact vary significantly. Chemical modifications
364 (e.g., acid/alkali activation, oxidative treatments) are highly effective in introducing functional
365 groups and creating well-developed porosity, which enhances adsorption and catalytic
366  performance. However, these approaches often require strong reagents (H,SO4, HNO3, KOH, etc.),
367  generate secondary effluents, and may raise concerns regarding environmental safety and process
368  sustainability.

369 In contrast, physical methods such as pyrolysis, hydrothermal carbonization, and microwave
370  heating offer greener and more scalable routes, especially at pilot or industrial levels. These

371  methods minimize the use of hazardous chemicals and often produce by-products like bio-oil and

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

372  syngas that can be valorized. However, their effectiveness in producing high surface areas and

373  tailored functionalities is sometimes limited compared to chemical treatments, often necessitating

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

374  post-treatment or hybrid approaches.

(cc)

375  Biological modifications, employing microbial or enzymatic pretreatments, represent the most
376  eco-friendly strategies, with minimal chemical waste and reduced energy requirements. They can
377  selectively alter lignin, cellulose, or hemicellulose fractions to improve accessibility of active sites.
378  Yet, their relatively slow kinetics, sensitivity to environmental conditions, and difficulties in
379  scaling beyond laboratory studies restrict their current industrial applicability.

380 From a sustainability standpoint, the integration of physico-chemical or bio-assisted hybrid
381  approaches may offer the best compromise—combining the efficiency of chemical treatments
382  with the environmental friendliness of biological methods and the scalability of physical routes.
383  Future research should therefore focus on techno-economic analyses and life-cycle assessments
384 (LCA) to evaluate not only the technical performance but also the overall environmental footprint

385  of each modification pathway.
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3. Structure of biomass adsorbents

The biomass is mainly categorized into two: lignocellulosic and non-lignocellulosic
biomass, having chemical compositions different altogether, with the former being extensively
used for its environmental remediation applications. The lignocellulosic biomass mainly consists
of cellulose, hemicellulose, silica, and lignin. The complex nature of the lignocellulosic biomass
not only provides the structural integrity to the plants, but also contributes to the rigidity and
strength to the overall structure. The sources of lignocellulose biomass include wood, agricultural
residues, and dedicated energy crops (S. Wu et al.,, 2022). On the other hand, the non-
lignocellulosic biomass includes materials like algae, aquatic plants, animal dung, sewage sludge,
and organic waste streams, etc., which contains a diverse array of organic compounds. The
composition of non-lignocellulosic biomass is mainly proteins, lipids, and carbohydrates (Joseph,
2023). The lignocellulosic biomass has a porous structure, and high surface area, making it useful
in the adsorption processes for the removal of recalcitrant pollutants such as heavy metals, dyes,
and organic compounds from water. The abundant hydroxyl and carboxyl groups present in the
lignocellulosic biomass facilitates the binding of contaminants through physical as well as
chemical interactions (Y. Zhou et al., 2015). The algal biomass exhibits a high affinity for
nutrients, such as nitrogen and phosphorus, thus making it suitable for wastewater treatment
applications through processes like nutrient uptake and biofiltration (Joseph, 2023).

The chemical and physical modifications can be applied to the surface of biomass in order
to enhance its properties, and potential applications. The physical modifications affect the surface
morphology and topography of biomass, resulting in change in the surface area, porosity, and
accessibility of active sites (Eldhose et al., 2023). The chemical modification results in change of
composition, and the functional groups on the surface of biomass (Yaashikaa et al., 2020). These
modifications can improve certain properties such as hydrophobicity, thermal stability, and
compatibility with other materials, thus expanding the range of applications in biocomposites,

adsorption, and catalysis.

Biochar, a stable carbon-rich solid product, is obtained through biomass pyrolysis in an
environment with limited oxygen. During this process, the hydroxyl, carboxyl, and carbonyl
groups present in the biomass are removed, resulting in a modified surface chemistry of biochar
with higher carbon content, and lower concentration of oxygen-containing functional groups

compared to the original biomass (Rane et al., 2018). Within biochars, carbon, oxygen, and
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417  hydrogen species comprise both inorganic (like HCO;, COs*, metallic oxides, and hydroxides)
418  and organic components (such as C-C, C=C, C-H, -C-O-H, C=0, C-O-C, COOH, and —C¢Hj).
419 The organic component, resembling a skeleton in biochar, originates from cellulose,
420  hemicellulose, and lignin in the biomass, transforming into aliphatic carbon at lower and
421  intermediate pyrolysis temperatures, and transitioning to aromatic carbon at higher temperatures

422  (P.Zhang et al., 2022) (Figure 4).
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424  Figure 4. Scheme for biochar synthesis from lignocellulosic biomass.
425

426 The surface chemistry of biochar, encompassing surface functional groups, surface charge,
427  and free radicals, play a crucial role in its interaction with organic and inorganic contaminants.
428 These factors provide significant sites for adsorption and catalytic degradation of pollutants.
429  Different sorption mechanisms, such as partitioning, hydrogen bonding, n—r bonding, electrostatic
430 interaction, and pore-filling, rely on the properties of both biochar and pollutants. The surface

431  negative charge across the natural pH range of 4-12 in biochars originates from the breakdown of
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functional groups (such as carboxyl moieties) and their aliphatic/aromatic surface (Gale et al.,
2021). Typically, the biochar surfaces become more negatively charged as the pH of the solution
rises above 4. The electrostatic interactions, regulated by the solution, influence the transport of
biochar particles and ions. Additionally, biochar displays redox activity due to the presence of
electroactive moieties like quinones, phenolic functional groups, polycondensed aromatic sheets,
and redox-active metals, capable of accepting/donating or conducting electrons (Chavali &
Nikolova, 2019). The electrochemical analyses of the biochar indicate that the redox-active
moieties and their electron transfer capacities vary with pyrolysis temperatures, suggesting a
correlation between redox properties and biochar structure. In a biochar-mediated p-nitrophenol
(PNP) decomposition, approximately 20% of PNP degradation occurs via ‘OH radicals produced
from the activation of H,O, by redox-active sites in biochar, while around 80% of PNP degradation
involves direct interaction with reactive sites, likely hydroquinones in biochar, through two one-

electron transfers, leading to the production of reduced PNP (P. Zhang et al., 2023, p.).

Hydrochar, a carbon-rich material produced through hydrothermal carbonization of
biomass, which involves heating biomass in water at high pressure and temperature. Its structure
typically consists of a network of condensed carbon rings, resulting in a material with high carbon
content and significant porosity. The composition of hydrochar includes a mix of carbon,
hydrogen, and oxygen, with some residual inorganic minerals depending on the feedstock used.
Its properties are characterized by increased stability and reduced volatility compared to the
original biomass, making it suitable for applications like water treatment, and energy storage. The
hydrochar obtained from the physical activation process has poor porosity and surface area
compared to one produced from chemical activation procedure. The porous structure of hydrochar
enhances its surface area, contributing to its effectiveness in adsorbing contaminants and
improving its performance in various environmental and industrial applications (Kambo & Dutta,

2015; Masoumi et al., 2021).

Activated Carbon, a carbon material derived from organic materials such as agricultural
residues, wood, or other plant-based sources through a process of carbonization followed by
activation or vice-versa. Its structure features a network of highly porous carbon, including a range
of pore sizes from macropores to micropores, which creates an extensive surface area for

adsorption (Kaur et al., 2024b). The composition predominantly consists of carbon, with varying
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462  amounts of residual ash, minerals, and potentially some remaining organic matter, depending on
463 the original biomass and the activation method used. This porous structure enhances the material's
464  ability to adsorb contaminants from gasses and liquids, making biomass activated carbon a
465  valuable resource for environmental remediation, water treatment, and other applications requiring

466  efficient adsorption (Heidarinejad et al., 2020).

467 Nanostructured biomass, the immobilization of metal/metal oxide nanoparticles on the
468 surface of biomass and its derived materials give metal nanocomposites. There are various
469  methods for nanocomposite synthesis, such as impregnation, precipitation, in-situ reduction, and
470  carbothermal reduction (Sargazi et al., 2019). The metal nanoparticles interact with the functional
471  groups on the biomass surface through various mechanisms, including chemical bonding,
472  electrostatic forces, and van der Waals interactions. The functional groups like hydroxyl, carboxyl,
473  and amino groups on the biomass can form bonds with the nanoparticles or attract them due to
474  their charges. These interactions help integrate the nanoparticles into the biomass, influencing how
475  well they are dispersed and attached. Modification of the surface of either the biomass or the
476  nanoparticles can enhance these interactions, ultimately affecting the composite's properties such

477  as strength and reactivity. The unique properties of biomass, such as its porous structure, high

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

478  surface area, and functional groups stabilizes the metal nanoparticles. In addition, the synergistic

479 interactions between the metal nanoparticles and the biomass renders the biomass-based metal

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

480 nanocomposites with enhanced adsorption and catalytic properties (Kumar et al., 2023).

481

(cc)

482 4. Characterization techniques for biomass and its derived materials:
483 Various characterization techniques or methods are utilized to assess biomass or its
484  nanocomposite materials, including biochar, hydrochars, or activated carbons, tailored to their

485  distinctive chemical, physical, and structural properties.

486  4.1. Characterization techniques for physical/morphological properties: Biomass and its
487  derived materials have different physical properties such a surface area, pore volume, and pore
488  size distribution. The characterization techniques such as microscopy, Brunauer-Emmett-Teller
489 (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray
490 diffraction (XRD), thermogravimetric analysis (TGA) and differential thermal analysis (DTA) etc.
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are used to analyze the physical and structural properties of biomass, biochar, activated carbon and

metal immobilized nanocomposites.

4.1.1. Brunauer-Emmett-Teller analysis: Depending on the activation method employed (physical
or chemical) the BET surface area of biomass undergoes significant changes upon activation. The
surface area of untreated biomass is comparatively higher than the thermal activated material. As
the thermal activation typically leads to a decrease in surface area due to the removal of volatile
matter at higher temperature. On the other hand, the chemical activation tends to increase the BET
surface area by introducing additional pores, and creating a more porous structure. Different types
of BET (Brunauer-Emmett-Teller) isotherms Type I, II, III, or IV are shown by biomass materials
reflecting their diverse structural characteristics and porosities (Sing, 1995). Type I isotherms are
typically observed for the materials with well-defined micropores exhibiting a sharp increase in
adsorption at relatively low pressures followed by a plateau, indicating the presence of a monolayer
adsorption (Bedia et al., 2018). Type II isotherms are characteristic of materials with non-porous
or macroporous structure, and display a gradual increase in adsorption with increasing the relative
pressure. The biomass-derived materials with less defined porosity or larger pore sizes may exhibit
Type Il isotherms (Schlumberger & Thommes, 2021). Type I1I isotherms are commonly associated
with materials having mesoporous structure and exhibit an inflection point in the adsorption curve,
indicating the formation of multilayer adsorption on the mesoporous surfaces. This is often
observed in activated carbons derived from biomass with a significant mesopore volume. The Type
IV isotherm indicates hierarchical porosity, displaying both micropores and mesopores. Oginni, et
al. investigate that the activated carbon obtained from Public Miscanthus (PMBC) and Kanlow
Switchgrass (KSBC) biochar showed type I and type IV isotherms, respectively (Oginni et al.,
2019) (Figure 5). The activated carbons had pore diameters ranging from 2.01 to 4.15 nm. The
activated carbon derived from biomass had larger average pore sizes due to the ordered porous
structure of the biochar precursors. This minimized the impact of the activating agent on enhancing

the porous structure of the final biochar-derived activated carbons (Oginni et al., 2019).
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519  FigureS. (a) N, adsorption/desorption isotherms; and (b) pore size distribution for biochar-derived
520 and biomass-derived activated carbons (Oginni et al., 2019) (Reproduced with permission,
521  Elsevier, 2019).

522

523  4.1.2. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS):
524  SEM-EDS is an outstanding technique that provides both qualitative morphological and elemental
525 information. The SEM image of biochar and activated carbon exhibits irregular structures with

526  high heterogeneous surface properties and irregular dense pores. These surface irregularities play

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

527  an important role in the contaminant removal. The activation processes induced structural changes

528  within the carbon framework, causing it to collapse under high temperatures. The alkali treatment

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

529  serves as a pore-forming agent, initiating the generation of active vapor or CO/CO,, which

530 promotes the formation of pores . These pores not only increase the surface area but also provide

(cc)

531  an abundance of defective sites, facilitating enhanced adsorption and catalytic activities (Girdo et
532 al., 2017). Shao et al. investigated the morphological structure of bamboo and pigeon pea stalks
533  that have a gentle surface with no pores. The biochar prepared at 400 °C and 500 °C from bamboo
534  and pigeon pea stalks had honeycomb-like porous structures. The increase in the pyrolysis
535 temperature to 600 °C causes the pores to crumble and form a channel-like structure (Shao et al.,
536  2022). From SEM analysis of eucalyptus biochar (EC) and eucalyptus derived activated carbon
537  (AC) it was confirmed that the former has small irregular shaped particles, whereas uniform sized
538  particles were observed for the later. The element composition analysis of activated carbon and

539  biochar displayed carbon as the dominant component (72-83%), and oxygen in smaller amounts
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540  (4-23%), along with other trace elements such as P and N in the sample (Maia et al., 2021) (Figure
541  6).
542
Oxygen
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544  Figure 6. The elemental mapping and EDS mass spectrum of (a-e) Eucalyptus activated carbon
545  (AC), and (f-j) Eucalyptus biochar (EC) (Maia et al., 2021) (Reproduced with permission, Elsevier,
546  2021).
547
548  4.1.3. X-ray diffraction analysis: X-ray diffraction (XRD) analysis offers invaluable insights into
549  the structural properties of biomass, and its derived materials. The XRD analysis investigates the
550 crystalline structure of biomass constituents such as cellulose, hemicellulose, and lignin. After
551  pyrolysis, XRD analysis gives information of the structural properties as the conversion of organic
552  materials into a carbon-rich, porous matrix upon activation of biomass. Gale et al. explored the
553  effect of the activation on the structural properties of biomass. The activation of biomass decreases
554  the intensity of cellulosic peaks and the crystallite size. The temperature increase during the
555  activation breaks down the lignocellulosic biomass and generates the turbostratic carbon (t-carbon)
556  with a peak at 26° (20), indicating the potential growth of graphene layers (Gale et al., 2021). Kaur
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557 et al. also investigated the effect of XRD analysis of biomass before and after activation, and they
558  found that significant changes in the phase composition and crystallinity were observed. The
559  untreated biomass showed broad diffraction peaks at 16.2° and 22.1°, indicating the amorphous
560 nature of carbon-containing biomass, attributed to the typical reflection plane (002). However, the
561  XRD patterns after chemical activation of lignocellulosic biomass showed shifted peaks at 16.6°
562  and 23.3°, indicating the presence of crystalline structured graphitic carbons with intense graphitic
563 peak at 20 values of 28.2° and 29.4° was observed in the XRD pattern of activated biomass,
564 indicating a high degree of crystallinity achieved after the activation process. The XRD analysis
565  of these structural changes provides valuable insights into the transformation of biomass during

566  activation (Kaur et al., 2024a) (Figure 7).
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569  Figure 7. XRD pattern of biomass (CS), activated carbon (CSAC), and its metal-immobilized
570  nanocomposites (Kaur et al., 2024a) (Reproduced with permission, Elsevier, 2024).

571

572  4.1.4. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA): The TGA/DTA
573  analysis explains thermal behaviour of biomass and its derived materials. In the TGA analysis, the
574  weight percentage change is monitored as a function of temperature or time under controlled
575  pressure (Y. Chen et al., 2023). The TGA analysis depicts its thermal stability, pore structure, and
576  surface functional groups. With the help of the degradation stages, the TGA elucidates the key

11
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thermal events like dehydration, breakdown of cellulose and lignin and char formation. Further,
the DTA analysis provides information regarding endothermic and exothermic reactions, phase
transitions and chemical reactions within the materials (Nair et al., 2022). The activation of
biomass, with pyrolysis or chemical treatment, leads to a notable increase in its thermal stability.
The changes on the surface of biomass act as thermal stabilizers and inhibit thermal breakdown
reactions and enhance thermal stability. This enhancement may arise from several factors such as
the removal of volatile organic compounds and moisture from the surface of biomass, structural
rearrangement with formation of new chemical bonds, creation of a porous structure, generation
of new functional groups on the surface of biomass during the activation step, and reduction in its
propensity for combustion or decomposition at lower temperature (Demiral et al., 2021). Further,
the immobilization of inorganic materials such as metal/metal oxide nanoparticles on the surface
of biomass and its derived materials also enhance the thermal stability of nanocomposites (Akhtar
et al., 2020). Maia et al. used physico-chemical activation via KOH treatment followed by
pyrolysis to prepare palm fibre biomass derived activated carbon, and used it for the adsorptive
removal of methylene blue dye. In the TGA analysis, it was observed that the thermal stability of
palm fibre biomass derived activated carbon was significantly increased (Maia et al., 2021). Kaur
et al. investigated the higher thermal stability of the cotton shell activated carbon (CSAC) and its
metal nanocomposites compared to the raw CS biomass. The increment in thermal stability is
attributed to the formation of different surface groups at specific sites through the interaction of
oxygen and oxidized gasses, as well as the immobilization of inorganic material on its surface

(Kaur et al., 2024a) (Figure 8).

12
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600  Figure 8. (a) TGA graph for CS, CSAC, ZVC@CSAC, and ZVI@CSAC; (b) DTA curves for CSAC,
601 ZVC@CSAC, and ZVI@CSAC (Kaur et al., 2024a).

602

603  4.2. Characterization techniques for chemical properties: The chemical compositions of
604  cellulose, hemicellulose, and lignin, decides the chemical properties of biomass materials, which
605 further depends on the source material and processing methods to obtain the biomass. When the

606 biomass undergoes activation to produce activated carbon, its chemical properties undergo

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

607  significant change. The activated carbon obtained via chemical treatment possesses a highly

608  porous structure, which increases its surface area and alters its chemical reactivity. This material

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

609 typically exhibits a high carbon content and a reduced amount of impurities like moisture and

610  volatile organic compounds (Demiral et al., 2021). The functional groups present in the precursor

(cc)

611  biomass also have significant impact on the surface chemistry of activated carbon, deciding its
612  adsorption capabilities and reactivity towards different molecules. These properties render
613 activated carbon a versatile material widely used in various applications, such as water
614  purification, air filtration, and adsorptive removal of contaminants from industrial processes
615  (Joseph, 2023). The characterization techniques used for the evaluation of chemical properties of

616  biomass and its derived materials is discussed below:

617  4.2.1. Fourier-transform infrared spectroscopic analysis: The Fourier-transform infrared (FTIR)
618  spectroscopic analysis of biomass can provide important information about the changes in the
619  surface functional groups, before and after the activation process. The untreated biomass usually

620 exhibits specific absorption bands that correspond to functional groups such as hydroxyl (-OH),

13
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carbonyl (C=0), carboxyl (COOH), and aromatic C=C, which are characteristic of cellulose,
hemicellulose, and lignin constituents (Q. Tang et al., 2023). The activation can modify these
absorption bands, indicating structural transformations. It was observed that thermal activation
may leads to dehydration, and thus a decrease in the intensity of the hydroxyl (-OH) peak was
common in the FTIR spectrum, while the formation of new oxygen-containing functional groups
on the activated surface can produce new bands or shift in existing bands. The chemical activation
introduces functional groups from activating agents such as KOH or H;PO,, leading to additional
peaks or changes in the peak intensities in the FTIR spectra. The disappearance or reduction of
specific peaks associated with the organic functional groups suggested the removal of volatile
matter or the breakdown of organic compounds during activation. Vunain et al. prepared activated
carbon from raw baobab fruit shell biomass using H;PO,4 chemical activation process. The FTIR
spectrum of raw baobab fruit shell exhibits strong peaks associated with hydroxyl (-OH) and
carbonyl (C=0) groups of lignocellulose framework. After chemical activation with H3PO,
followed by carbonization, these peaks either disappeared or shifted, with the appearance of peaks

associated with the activated carbon (Vunain et al., 2017) (Figure 9).

Raw baobab fruit shell
Baobab fruit shell derived AC

Commercial AC
ml

% Transmittance

o L) " L) | ] = ] = ) L) -
4000 3500 3000 2500 2000 1500 1000
Wavenumber, em™!
Figure 9. The FTIR spectra of raw baobab fruit shell biomass and its activated carbon in
comparison with commercial activated carbon (Vunain et al., 2017) (Reproduced under Creative

Commons Attribution (CC BY) license http://creativecommons.org/licenses/by/4.0/).
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641

642  4.2.2. X-ray Photoelectron Spectroscopy analysis: The X-ray Photoelectron Spectroscopy (XPS)
643  is a powerful analytical technique used to provide valuable insights into the chemical composition
644  and surface functionalities of biomass and its activated carbon by measuring the binding energies
645  of electrons emitted from the sample on exposure to X-rays (Gale et al., 2021). The surface
646  elemental composition of biomass including carbon, oxygen, nitrogen, and other trace elements,
647  if present, can be evaluated using XPS analysis. It also provides information about the functional
648  groups such as hydroxyl (-OH), carbonyl (C=0), and carboxyl (-COOH) groups, which are
649 important for defining its reactivity and potential applications. On the other hand, XPS analysis of
650 activated carbon describes the changes in the surface chemistry with the activation process. When
651  compared to the biomass precursor, the activated carbon displayed a higher carbon content with
652 reduced oxygen functionalities during activation. The XPS can determine the changes in the
653  elemental composition and functional groups, thus providing significant information about the
654  structure-property relationships of derived activated carbon and its suitability for applications such
655  asadsorption or catalysis (Kaur et al., 2024a). Gale et al. explored the elemental analysis and effect
656  of pyrolysis temperature on the oxygen-containing functional groups of biochar materials, prior to

657  and after activation with KOH. The XPS analysis revealed that the activation process results in

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

658  decreased C-O content of the biochars and activated carbons (Gale et al., 2021). Zhang et al.

659 compared the elemental composition of carbonized coconut fibres, and the activated carbon

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

660  prepared after its KOH treatments. The KOH activation of coconut fibre results in an increase in

(cc)

661  oxygen-containing functionalities (L. Zhang et al., 2018) (Figure 10).
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Figure 10. XPS diagram about C1S and O1S of carbonized coconut fibres and activated carbon
fibres. (a) and (b) are the Cls XPS spectra and (c) and (d) are the Ols XPS spectra of the two
samples (L. Zhang et al, 2018) (Reproduced under Creative Commons Attribution-

NonCommercial 3.0 Unported Licence).

5. Mechanism involved in contaminant removal

The mechanism of contaminant removal in biomass and its derived materials mainly
involves the adsorption process, wherein the contaminants are physically or chemically bound to
the surface of the biomass adsorbents. In biomass, the porous structure and surface functional
groups facilitate the adsorption of contaminants from water or air to the surface through
electrostatic forces, van der Waals interactions, or chemical bonding, thus effectively removing
them from the surrounding medium (X. Liu et al., 2024). The activated carbons, derived from

carbonaceous biomass possess an extensive surface area and a high degree of microporosity, which
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676  enhances their adsorption capacities (Rane et al., 2018). Further, the functionalities present on the
677  surface of biomass and its activated carbons may undergo chemical reactions with certain
678  contaminants, or help in the activation of certain oxidizing agents for further aiding in their
679 removal (Tran et al., 2020). In this section, a general discussion on the various mechanisms
680 involved in the contaminant removal process by biomass and derived materials has been

681  performed.

682  5.1. Adsorptive removal: The adsorption mechanism with biomass involves the adherence of
683  contaminant molecules or ions from aqueous solution onto the surface of a solid substrate. When
684  biomass is used as the substrate, its porous structure provides ample surface area for the adsorption
685  to occur (Nayak et al., 2024). Biomass can be modified to enhance its adsorption properties by
686 treating it with acids or bases, which can alter its surface chemistry and increase its affinity for
687  specific pollutants or molecules. The acid-modified biomass tends to increase the number of
688  surface acidic functional groups, while base-modified biomass increases basic functional groups,
689  thereby enhancing adsorption capabilities. Materials derived from biomass, such as biochar and
690 activated carbon, exhibit excellent adsorption potential due to their high surface area and porous
691  structure (Heidarinejad et al., 2020). Biochar, a carbon-rich material obtained from the pyrolysis

692  of biomass, possesses a stable structure and a high surface area and porosity derived from

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

693  pyrolysis, enhances absorption through m-m interactions and hydrogen bonding, particularly

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

694  effective for organic pollutants. Activated carbon, produced by the activation of carbonaceous

695 materials, undergoes additional processing to create a highly porous structure with active

(cc)

696  functional groups which enhance adsorption properties . Activated carbon, with its extensive
697  microporous and mesoporous structure, facilitates multilayer adsorption through van der Waals
698 forces, m-m interactions, and electrostatic attractions (X. Liu et al., 2024). Understanding these
699  surface mechanisms is crucial for optimizing the design of adsorbents and advancing wastewater
700 treatment technologies for effective contaminant removal. Tran et al. suggested the adsorptive
701 removal of paracetamol (PRC), pharmaceutical contaminant, on the surface of biochar with
702  included pore-filling, Yoshida hydrogen bonding, dipole-dipole interactions, van der Waals forces,
703  and m-m interactions (Tran et al., 2020) (Figure 11).

704
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Figure 11. The schematic of the mechanism of adsorptive removal of paracetamol onto biochar

(Tran et al., 2020) (Reproduced with permission, Elsevier, 2020).

Vo et al. investigated the removal mechanism of Cr(VI) onto biochar and activated carbon.
The Cr(VI) removal predominantly relies on the adsorption-coupled reduction, whereby the Cr(VI)
ions are partially reduced to Cr(III) ions during the adsorption process. The process of chromium
adsorption on biochar and activated carbon is multifaceted, driven primarily by electrostatic forces
that attract Cr(III) ions to the surface. This attraction encompasses several mechanisms, including

complexation, Cn—cation interaction, cation exchange, and pore filling (Vo et al., 2019) (Figure

12).
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718
719  Figure 12. The schematic of reductive adsorption of Cr(VI) onto biochar and activated carbon (Vo

720 et al., 2019) (Reproduced under Creative Commons Attribution (CC BY) license

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

721  http://creativecommons.org/licenses/by/4.0/).
722
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723  5.2. Degradative removal: Biomass-derived materials and nanocomposites offer another

(cc)

724  promising feature as catalysts in the advanced oxidation processes (AOPs). These materials
725  efficiently generate a spectrum of reactive oxygen species (ROS), including sulfate radical (SO4-
726 ), hydroxyl radical (OH), superoxide radicals (O,"), and singlet oxygen ('0O,), through mechanisms
727  such as Fenton-like reactions or single electron transfer processes (Rani et al., 2025b). These
728  highly reactive oxygen species play a primary role in the oxidative degradation of diverse
729  recalcitrant contaminants (Kaur et al., 2024a). Further, the surface functional groups present in the
730  biomass-derived materials, such as biochar and activated carbons or immobilized metals, serve as
731 activators for various oxidizing agents like persulfate (PS), peroxymonosulfate (PMS), and
732 hydrogen peroxide (H,0O,), promoting the generation of radical species and thereby enhancing the
733  oxidative degradation process (Mazarji et al., 2023)
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Tang et al. investigated two possible pathways involving radical and non-radical processes
for the degradation of tetracycline (TC) in the FeO,@N-BC/PMS system (Figure 13). The N-
biochar contains surface graphite N and pyridine N, which increases the electron density and hence
facilitates the PMS decomposition by the generation of 'O, (Eq. 1). Further, the electron pair of
pyridine N transfers m-electrons to PMS to generate SO, and ‘OH (Eq. 2-3). The FeOy
nanoparticle on the surface of the biochar also activates PMS to generate various reactive species
(Eq. 4-8). These reactive oxygen species collectively contribute to the degradation of TC in the

FeO,@N-BC/PMS system (Q. Tang et al., 2023).

Generation of non-radical oxygen species

HSOs' + SO52' - SO42' + HSO4' + 102 (1)
HSOs + 1t electrons = SO, ~ + OH- (2)
HSOs + 7 electrons — SO4* + *OH (3)

Generation of radical oxygen species:

Fe® + O, + H" » Fe?* + H,0, 4)
Fe*" + HSOs - Fe?' + SO, + OH- ®)
Fe?* + H,0, » Fe’* + "OH + OH- (6)
SO4 + H,0 » SO +-OH + H* (7)
*OH + H,0, » H" + O, + H,0 (8)
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% 753  Figure 13. The mechanism for tetracycline (TC) degradation via radical and non-radical pathways
% 754  in the FeO,@N-BC/PMS system (Q. Tang et al., 2023) (Reproduced with permission, Elsevier,
2 755  2023).

756  Despite these advances, the catalytic degradation field remains underdeveloped in several aspects.

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

757  Most current studies emphasize radical-mediated degradation ((OH and SO,~), while non-radical

(cc)

758  pathways such as 'O, generation, surface-bound electron transfer, and direct oxidation are
759  relatively less explored, despite their potential for greater selectivity and stability under real
760  environmental conditions. In addition, the contribution of redox-active moieties (e.g., quinones,
761  phenolic groups, graphitic N sites) to catalytic performance remains poorly defined, and requires
762 more systematic investigation using advanced in situ spectroscopic and electrochemical
763  techniques. Furthermore, much of the existing research is conducted in simplified laboratory
764  settings, with limited evaluation of catalyst regeneration, long-term stability, or performance in
765  complex wastewater matrices. Addressing these knowledge gaps will be essential for translating

766  biomass-derived catalysts into practical, scalable, and sustainable degradation technologies.

767
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5.3. Synergy between adsorption and degradation mechanism: In biomass derived
nanocomposite materials, the synergy between adsorption efficiencies of biomass derivatives and
catalytic efficiencies of metal nanoparticles maximizes the contaminant removal efficiencies. The
porous nature of biomass, biochar, and activated carbon in nanocomposites amplifies the surface
area, ensuring extensive contact between contaminants and the active sites, where the metal
nanoparticle mediated chemical reactions break them down. The synergistic interaction enhances
the overall performance of the composite material, leading to improved removal efficiency and
degradation rates compared to individual components. Kumar et al. investigated the synergistic
effect in lignocellulosic biomass and manganese oxide (MnQO;) nanoparticles for the removal of

crystal violet under a range of pH (Kumar et al., 2023) (Figure 14).
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Figure 14. Synergistic effect originating from the surface adsorptive removal with pistachio

biomass (PS),

and oxidative degradation with MnO, nanoparticles in the MnO,@PS

nanocomposite (Kumar et al., 2023) (Reproduced with permission, Springer Nature, 2023).

6. Environmental remediation application of biomass and its surface modified derivative

Biomass and its surface-modified derivatives find extensive application in environmental

remediation processes, serving as versatile and sustainable tools for addressing pollution
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787  challenges. Their porous structure, abundant surface functional groups, and diverse chemical
788  compositions make them effective adsorbents for a wide range of contaminants in soil, water, and
789 air. The surface modification techniques, such as chemical activation or carbonization,
790 impregnation with metal nanoparticles, further enhance their adsorption capacity, selectivity, and
791  reusability. These modified biomass materials exhibit improved performance in removing heavy
792  metals, organic pollutants, and even emerging contaminants like pharmaceuticals and personal
793  care products (PPCP’s). Further, the biomass-based materials can be utilized in the catalytic
794  degradation of pollutants through advanced oxidation processes, via exploiting their catalytic
795  activity and reactive surface sites. In this review section, we will explore the environmental
796  remediation applications, beginning with raw biomass and advancing to surface-modified biomass
797  derivatives and metal-immobilized nanocomposites. Throughout this discussion, we will examine

798  the diverse mechanisms employed for the removal of various organic/inorganic contaminants.
799 6.1 Raw biomass as environmental remediation agent

800 Raw biomass holds immense potential as an environmental remediation agent due to its
801  ease of availability and eco-friendly nature (Table SI 1). Its properties, including high surface area

802 and diverse surface functionalities, enables effective adsorption of contaminants from various

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

803 environmental sources. Further, the biodegradable nature of these raw biomasses ensures a

804  minimal environmental impact (Kainth et al., 2024).

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

805 6.1.1. Organic contaminant removal: The removal of organic pollutants, including

(cc)

806  pharmaceutical drugs and dyes, is a critical challenge due to their widespread presence and the
807  detrimental effects on the ecosystems as well as human health. The dyes and the pharmaceutical
808  drugs are often introduced into water bodies through wastewater discharge or improper disposal,
809  which can lead to antibiotic resistance, disrupt endocrine systems, and cause adverse health effects
810 in aquatic organisms and humans. Biomass-based remediation approaches emerge as promising

811  strategies in addressing these issues.

812 Perez-Millan et al. studied the removal of reactive blue 19 (RB19) and basic blue 3 (BB3)
813  dyes from water using coconut endocarp (CE) and sugarcane bagasse (SB). The DFT modelling
814  and characterization reveal that the sulfonate group of these dye molecules and the nitrogen present

815 in the phenoxazine were found to be the highly reactive areas to interact with the hydroxyl and
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carboxyl groups of the biomass surface (Pérez-Millan et al., 2023). Kaur et al. performed a study
on the adsorption of methylene blue dye onto rice husk biomass. The Redlich-Peterson isotherm
provides the best fit of adsorption equilibrium data, indicating a multilayer adsorption with a non-
uniform distribution of adsorption heat and affinities over a heterogeneous surface (Kaur, Kalpana,
et al., 2023). The maximum monolayer adsorption capacity was found to be 71.28 mg/g. The best
correlation of kinetics results with pseudo-second-order kinetic models suggesting a chemical
adsorption process. Kaur et al. further explored the utilization of cotton shell (CS) biomass for the
adsorption of terbinafine hydrochloride (TBH). The adsorption efficiency of cotton shell biomass
for TBH was 47.2 mg/g under optimal experimental conditions (Kaur, Hussain, et al., 2023).
Yardimici et al. investigated the adsorption of methylene blue using cinnamon bark biomass (CB).
The best fitting of adsorption data using Langmuir isotherm exhibits the monolayer maximum
adsorption capacity of 123.25 mg/g. The experiment results also suggested the adsorption process
to be of physical nature (Yardimc1 & Kanmaz, 2023). Al-Mokhalelati et al. evaluated the
adsorption efficiency of sugarcane bagasse for the removal of methylene blue (MB) dye. The best
correlation of Langmuir isotherm and Halsey adsorption isotherms with equilibrium data indicates
the favourability of multilayer sorption. The thermodynamics study reveals that the adsorption
process is spontaneous and endothermic in nature (Al-Mokhalelati et al., 2021). Tang et al.
investigated the removal efficiency of methylene blue (MB) with walnut -shell biomass. The
adsorption of MB onto walnut shell biomass was chemical in nature, as described using the
Dubinin-Radushkevich isotherm model and pseudo-second-order kinetic model. The
thermodynamic data indicated that the adsorption was favourable, spontaneous, and exothermic in
nature (R. Tang et al., 2017). Uddin et al. used mango leaf biomass for the adsorption of MB dye.
The Langmuir isotherm describes the best fitting for the experimental equilibrium data with
maximum monolayer adsorption capacity of 156 mg/g. Further, the removal of MB with mango
leaf biomass follows a pseudo second order kinetics (Uddin et al., 2021). Deng et al determined
the effect of cotton stalk biomass (CS) for the removal of methylene blue dye (MB). The
equilibrium adsorption efficiency of Methylene Blue (MB) onto the cotton shell reached 147.06
mg/g under optimal experimental conditions. The equilibrium adsorption and kinetics data were
best fitted with Langmuir and pseudo-second order models, respectively (H. Deng et al., 2011).
Ertas et al. studied methylene blue (MB) adsorption using cotton waste (CW), cotton stalk (CS),
and cotton dust (CD). The cotton dust was the most effective in MB removal. The CS adsorption
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847  data fit both Freundlich (R* = 0.967) and Langmuir (R? = 0.997) isotherms, while CW and CD fit
848  Freundlich. The thermodynamic parameters showed positive AG® for CS and negative for CW and
849  CD, with positive AH° and AS° for all sorbents (Ertas et al., 2010).

850

851  6.2.2. Inorganic contaminant removal: Inorganic contamination, particularly heavy metals, poses
852  a significant threat to environmental and human health due to their persistence and toxicity. The
853  biomass can effectively remove heavy metals from aqueous solutions due to its metal-binding
854  capabilities through processes such as adsorption, precipitation, or ion exchange. These eco-
855  friendly approaches not only mitigates pollution, but also offers a sustainable means of metal
856  recovery and recycling, contributing to both environmental remediation and resource conservation
857  efforts (Ali Redha, 2020).

858 Kebir et al. studied chromate adsorption onto red peanut skin (RPS) in a fixed-bed column.
859  The optimal conditions were 100 mg/L Cr(VI) concentration and a 10 cm bed height, with high
860  column adsorption capacity. The Bohart-Adams model (R* > 0.98) indicated surface diffusion as
861  the rate-limiting step. The RPS demonstrated a Cr(VI) removal capacity of 26.23 mg/g at pH 5.35,
862  with electrostatic interactions being crucial in the adsorption process (Kebir et al., 2023).

863  Mahmood-ul-Hassan et al. studied heavy metal adsorption (Cd, Cr, Pb) using banana stalks, corn

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

864  cob, and sunflower achene. The Langmuir model showed banana stalks had the highest Pb
865  adsorption (21-60 mg/g), with the order of sorption capacities being Pb > Cr > Cd (Mahmood-ul-

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

866  Hassanetal.,2015). Akram et al. used cotton shell biomass for lead (Pb) removal from wastewater,

(cc)

867  achieving up to 90% efficiency in 90 min with a 1000 mg/L dose and 1 mg/L Pb concentration.
868 The Freundlich isotherm model best describes Pb sorption. The SEM analysis revealed a
869  microporous structure with a 45 m*g BET surface area and 2.3 mm pore size, involving
870  complexation and ion exchange mechanisms (Akram et al., 2019). Ye et al. studied the adsorptive
871  removal of cadmium (Cd) with rice husk biomass. The equilibrium adsorption data was best fit
872  with Langmuir isotherm with Cd(II) adsorption capacity of 73.96 mg/g at pH 6.5 (Ye et al., 2010).
873  Cao et al. used wheat straw biomass for the adsorptive removal of lead from wastewater. The
874  results indicate that the Pb(II) adsorption capacities at an adsorbent dosage of 0.2 g/L. onto wheat
875 straw biomass was 46.33 mg/g. The adsorption mechanism involves processes such as ion
876  exchange and precipitation (Cao et al., 2019). Banerjee and coworkers investigated the adsorption

877  of Cr(VI) onto a pistachio shell with a fixed bed column. The experimental results indicate that
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adsorption capacity increases with increase in column bed depth (Banerjee et al., 2018).
Ezeonuegbu et al. studied sugarcane bagasse for Pb(Il) and Ni(Il) removal from untreated
wastewater. The Freundlich and pseudo-second order models best describe the adsorption
isotherms and kinetics for Pb(II) and Ni(II), with capacities of 1.61 mg/g and 123.46 mg/g,
respectively (Ezeonuegbu et al., 2021). Varsihini et al. investigated cerium(III) biosorption using
prawn carapace (PC) and corn style (CS). The maximum adsorption capacities were 218.3 mg/g
for PC and 180.2 mg/g for CS. The Freundlich and Langmuir models best fit PC and CS data,
respectively, with physisorption indicated and the process found to be endothermic and

spontaneous (Varsihini C et al., 2014).
6.2 Surface modified biomass as environmental remediation agent.

Surface modification of raw biomass via physical, chemical or physicochemical activation
processes results in increased removal efficiencies of the biomass. This section of the review will
discuss the environmental remediation applications of surface modified biomass with special
emphasis on the mechanistic aspects and methodologies used for evaluating the enhanced surface

efficacies (Table SI 2).

6.2.1. Physical modified biomass: Physical modification of biomass includes its conversion to
biochar or hydrochar. This conversion process involves various physical modifications such as
pyrolysis, size reduction, hydrothermal treatment, etc., intended to improve the quality of the
resulting biochar or hydrochar such as surface area, density, stability and purity, and thus to
enhance the efficiency of the contaminant removal process (Masoumi et al., 2021). This part of
review discusses various literature reports on the use of physically modified biomass for
environmental contaminant removal.

Ju et al. explored the use of biochar derived from tobacco stalks for removing
sulfamethazine (SMT) through a dual approach of adsorption and degradation. The
characterization revealed that this biochar had a porous structure with a high specific surface area
of 905.6 m?/g and active functional groups on its surface. These features significantly enhanced
SMT removal, facilitated by the generation of hydroxyl radicals (OH) observed in the EPR
spectrum, which played a crucial role in the degradation of SMT (Ju et al., 2023). Dias et al.
examined biochars made from pine nut shells for adsorbing Methylene blue (MB) dye. They found
that pyrolysis temperature influenced the thermal stability and weight loss of the biochar, with
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908 remaining mass percentages of 78%, 45%, 41%, 36%, and 32% at temperatures of 221 °C, 309 °C,
909 350 °C, 420 °C, and 488 °C, respectively. Adsorption experiments showed that biochar produced
910 at lower pyrolysis temperatures had higher removal efficiency, achieving up to 53.9 mg/g (Dias et
911  al., 2024). Liu et al. studied shiitake mushroom bran biochar prepared at various pyrolysis
912  temperatures (300 °C, 500 °C, 700 °C) for tetracycline removal. The research revealed that the
913  surface chemistry of the biochar varied with temperature. The adsorption data for BC300 and
914 BCS500 fit the Langmuir isotherm, indicating monolayer adsorption, while BC700 fit the
915  Freundlich isotherm, suggesting heterogeneous adsorption. The kinetic studies indicated that the
916  pseudo second-order model best described the adsorption, signifying chemisorption across all
917  biochar (X. Liu et al., 2023). Qin et al. assessed biochar from rape straw, activated with KOH, for
918 tetracycline (TC) removal. This biochar had a specific surface area of 1531 m?/g, abundant oxygen-
919  containing functional groups, and a graphite-like structure. The adsorption data matched both
920  pseudo second-order kinetics and the Freundlich isotherm, indicating a chemisorption process and
921  heterogeneous adsorption. The thermodynamic analysis showed that TC adsorption was
922  spontaneous and endothermic, with hydrogen bonding, electrostatic interactions, and pi-pi
923  interactions contributing to the adsorption mechanism (Y. Qin et al., 2022). Tomczyk et al.

924  investigated tetracycline removal using sunflower biomass-derived biochar, modified with vitamin

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

925 C, hydrogen peroxide, and silver nanoparticles. Although modifications decreased the biochar's

926  surface area and pore volume, they increased the presence of acidic and basic functional groups,

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

927 enhancing electrostatic interactions with tetracycline. The vitamin C-modified biochar

(cc)

928 demonstrated superior adsorption efficiency compared to other modifications (Tomczyk &
929  Szewczuk-Karpisz, 2022). Chen et al. studied tannic acid-modified rice straw biochar for
930 tetracycline removal. The modification increased oxygen-containing functions on the biochar
931  surface, improving adsorption capacity. Adsorption followed the Freundlich and Elovich models,
932  suggesting physisorption through electrostatic interactions, pi-pi interactions, and hydrogen
933 bonding (J. Chen et al., 2021). Hoslet et al. analysed biochar from food and plant waste for
934  tetracycline removal. Produced via pyrolysis at 300 °C, the biochar achieved an adsorption
935  capacity of 9.45 mg/g for tetracycline. The kinetic and isotherm models indicated an Elovich
936  kinetics and Freundlich isotherm, reflecting a combination of chemisorption and heterogeneous
937  adsorption (Hoslett et al., 2021). Zhang et al. investigated cow manure biochar for tetracycline
938 removal. Biochar produced at 300 °C, 500 °C, and 700 °C showed differences in surface area,
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charge, and pore volume. The adsorption mechanism involved electrostatic interactions, hydrogen
bonding, pore filling, and pi-pi interactions. Freundlich and pseudo-second-order kinetics models
best described the adsorption, suggesting heterogeneous surface properties and chemical
adsorption (P. Zhang et al., 2019). Chen et al. evaluated the biochar from pomelo peels, activated
with KOH, for carbamazepine removal. Characterizations indicated that activation temperature
affected biochar morphology. Adsorption data fit the pseudo-second-order kinetics and Langmuir
isotherm models, suggesting physisorption through intra-particle diffusion. Thermodynamic

analysis showed the adsorption process was spontaneous and exothermic (D. Chen et al., 2017).

Cao and colleagues studied the adsorption of Pb(Il) using different wheat straw-based
materials: acid-modified wheat straw (WS), wheat straw biochar (WS-BC), and ball-milled wheat
straw biochar (WS-BC+BM). They found that pyrolysis and ball milling significantly enhanced
Pb(II) removal, with capacities of 46.33 mg/L for WS, 119.55 mg/L for WS-BC, and 134.68 mg/L
for WS-BC+BM. Pb(Il) removal was primarily driven by ion exchange, precipitation, and
complexation with acid functional groups (AFGs). The carbonization and ball milling improved
ion exchange and precipitation, but high adsorbent concentrations led to competition between these
mechanisms. Further, the acid modification increased Pb(II) complexation, as indicated by FTIR

peak shifts showing changes in AFG bond energies (Cao et al., 2019).

6.2.2. Chemical modified biomass:

Chemical modification of biomass involves changing its chemical composition through
various chemical treatments to improve its properties, typically focusing on increasing surface area
or porosity. Chemical activation of biomass can involve agents such as mineral acids and oxidants,
including HNO;, H,0,, HCIO, H,SO,, H;PO,4, and HCI, as well as alkalis like NaOH, KOH, LiOH,
Na,Si03, Na,COs, and various oxides. Depending on the type of reagent used, the surface of the
biomass may develop either positive or negative charges and thus can be used for the remediation
of target contaminants. This section of the review provides a summary of the literature on

chemically activated biomass and its applications in environmental remediation.

Kaur et al. studied how varying sodium hydroxide (NaOH) treatment parameters affect the
efficiency of rice husk in adsorbing methylene blue (MB) from water. NaOH-treated rice husks

were prepared by adjusting NaOH concentration, treatment time, and temperature. The results
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968  showed that the higher NaOH concentration, longer treatment duration, and increased temperature
969  improved the adsorption process. The maximum monolayer adsorption capacity for NaOH-treated
970  rice husk was 123.39 mg/g, compared to 71.28 mg/g for untreated husk (Kaur, Kalpana, et al.,
971  2023). Yang et al. developed porous biosorbents from hickory wood using a one-step ball milling
972  process with acidic or alkaline treatments. These modifications enhanced the biomass's oxygen-
973  containing functional groups, porous structure, and capacity to remove crystal violet (CV, 476.4
974 mg/g) and Congo red (CR, 221.8 mg/g) dyes from water at neutral pH. The adsorption followed
975  Freundlich isotherm and pseudo second-order kinetic models, indicating surface complexation (X.
976  Yangetal., 2022). Jiang et al. created activated carbon from seaweed biomass (SWAC) via NaOH
977  activation for methylene blue removal, achieving a high specific surface area of 1238.491 mg/g
978  and a 98.56% MB removal efficiency at 30 °C and pH 5. The high adsorption capacity is linked to
979  graphitic N sites and interactions such as m-m stacking and electrostatic forces (D. Jiang et al.,
980  2023). Homagai et al. evaluated chemically modified rice husks for crystal violet removal, finding
981  adsorption capacities of 62.85 mg/g for charred rice husk, and 90.02 mg/g for xanthate rice husk
982  atpH 10 (Homagai et al., 2022). Al-Mokhalelati et al. examined the sugarcane bagasse (SB) before
983 and after alkaline treatment, and observed temperature-dependent MB adsorption increase

984  (Al-Mokhalelati et al., 2021). Deng et al. examined cotton stalk (CS), cotton stalk treated with

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

985  sulphuric acid (SCS), and cotton stalk treated with phosphoric acid (PCS) for their effectiveness

986 inremoving methylene blue (MB) from aqueous solutions. The study revealed that the porosity of

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

987  activated materials can be easily regulated by employing different activation agents. The initial pH

(cc)

988  of the aqueous solution minimally influenced the adsorption capacity of both SCS and PCS,
989  whereas it significantly affected the removal efficiency of CS. The MB adsorption capacity
990 followed the order of SCS > PCS > CS (H. Deng et al., 2011).

991 Mahmood et al. evaluated the adsorption effectiveness of unmodified and chemically
992  modified banana stalks, corn cobs, and sunflower achenes for cadmium (Cd), chromium (Cr), and
993 lead (Pb) in wastewater. The modifications involved treating the agricultural wastes with sodium
994  hydroxide (NaOH) combined with nitric acid (HNO3) and sulfuric acid (H,SO,) to boost their
995  adsorption capabilities. The results showed that NaOH-modified materials had better adsorption
996  capacity than those modified with acids. The highest adsorption capacities were observed in the
997  order of Pb > Cr> Cd. The enhancement in Pb adsorption capacity was most significant in banana

998  stalks (117%) and corn cobs (62%), while sunflower achenes showed only a 34% increase,
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possibly due to their higher lignin content. This suggests that chemical modification improved
adsorption through increased active binding sites and new functional groups (Mahmood-ul-Hassan
et al., 2015). Ye et al. tested natural and alkali-modified rice husks for Cd(Il) removal. The
modified rice husks showed enhanced Cd(II) adsorption (125.94 mg/g) compared to natural rice
husks (73.96 mg/g) due to structural changes from alkali treatment (Ye et al., 2010). Yardimci and
Kanmaz studied the use of waste cinnamon bark biomass (CB) and manganese dioxide-
immobilized CB (MnO,@CB) for methylene blue (MB) dye removal. The MnO,@CB with a
higher surface area (145.2 m?/g) compared to CB (45.59 m?/g), demonstrated better adsorption
capacity. The Langmuir isotherm best fitted CB data, while MnO,@CB followed the Freundlich
isotherm, with both adsorbents showing kinetics best described by the pseudo-second-order model

(Yardime1 & Kanmaz, 2023).

6.2.3. Physico-chemical modified biomass: Physico-chemical modification of biomass involves
a combination of physical and chemical treatment processes. The modification led to changes in
biomass properties such as increased surface area, enhanced reactivity, improved stability, or
altered chemical composition (Gale et al., 2021). This section of the review discusses literature on
physico-chemically modified biomass and its applications in various environmental remediation

efforts.

6.2.3.1. Organic contaminant removal

Yurtay and Kili¢ investigated the production of activated carbon (AC) from agricultural
residues such as hazelnut shells (HS), rice husks (RH), and corn stalks (CS) using chemical
activation with potassium hydroxide (KOH) and carbonization at 950 °C. This study aimed to
explore the effectiveness of these ACs in removing metronidazole from aqueous solutions. The
BET analysis revealed significant improvements in surface area of hazelnut shell AC (1650 m?/g),
rice husk AC (2573 m?/g), and corn stalk AC (2304 m?/g) due to chemical activation. The
adsorption isotherms showed that both HS-AC and RH-AC best fit the Langmuir model, while
CS-AC was best described by the Freundlich model. The kinetic studies indicated that the pseudo-
second-order model was the most accurate for metronidazole adsorption. Thermodynamic analysis
confirmed that the adsorption process was exothermic and spontaneous (Yurtay & Kilig, 2023).
Bouzidi et al. examined the adsorption of ibuprofen (IBP) and paracetamol (PCM) using activated
carbon derived from Erythrina speciosa tree pods activated with zinc chloride (ZnCl,). The AC
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1029  displayed a high BET surface area of 795.1 m?/g. The double-layer model (DLM) suggested multi-
1030  molecular adsorption for both IBP and PCM, indicating the simultaneous accommodation of each
1031  functional group on the adsorbent’s surface. The energy evaluations indicated that the adsorption
1032  was predominantly physical (Bouzidi et al., 2023). Astuti et al. developed activated carbon from
1033  pineapple leaves, cocoa shells, and coconut shells using microwave heating and ZnCl, activation.
1034  This method created a template effect that resulted in uniformly distributed pores. The specific
1035  surface area and porosity were enhanced, with the average pore sizes being 2.41 nm for coconut
1036  shell AC, 1.75 nm for cocoa shell AC, and 1.79 nm for pineapple crown leaf AC. All four activated
1037  carbons showed the best fit with the Langmuir isotherm for methyl violet adsorption (Astuti et al.,
1038  2023). Kandasamy and colleagues evaluated the effectiveness of carbons derived from goat and
1039  sheep dung, activated with KOH and ZnCl, using a hydrothermal method, for methylene blue dye
1040 removal. The KOH-activated carbon from goat dung achieved a 99.6% removal rate with a
1041  maximum adsorption capacity of 24.81 mg/g. Adsorption equilibrium data best fit the Freundlich
1042 model for ZnCl,-activated carbon, the Langmuir model for KOH-activated carbon, and the
1043  Dubinin-Radushkevich model for hydrothermally carbonized carbon. The pseudo-second-order
1044  model described the kinetic data well, indicating a chemisorption process (Kandasamy et al.,

1045  2023). Cui et al. employed bamboo-derived activated carbon aerogel (BACA) for tetracycline

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

1046  hydrochloride (TCH) removal. Synthesized through KOH activation of bamboo cellulose aerogel,

1047 BACA demonstrated a strong fit with the Langmuir isotherm and pseudo-second-order kinetics,

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

1048 indicating monolayer adsorption and chemisorption. Thermodynamic analysis suggested that the

(cc)

1049  adsorption process was spontaneous and endothermic (Cui et al., 2022).

1050 Al Sarjidi et al. explored the removal of various emerging pollutants such as diclofenac,
1051  amoxicillin, carbamazepine, and ciprofloxacin using activated carbon derived from pomegranate
1052  peels, with laccase immobilization (LMPP). When compared to unloaded pomegranate peel-
1053  derived AC (MPP), LMPP demonstrated superior pollutant removal efficiency. The adsorption
1054  process followed the Langmuir isotherm and first-order kinetics, also characterized as spontaneous
1055  and endothermic (Al-sareji et al., 2023). Zhang et al. synthesized amorphous activated carbon from
1056  sesame straw using KOH and Ca(OH), co-activation. The activated carbon exhibited a surface
1057  area of 935 m?/g and high adsorption capacities for ofloxacin, ciprofloxacin, and enrofloxacin. The
1058  kinetic and adsorption data indicated heterogeneous and multilayer adsorption, with the pseudo-

1059  second-order and Sips models providing the best fits. The DFT calculations revealed hydrogen
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bonding, electrostatic interactions, and m-m interactions as key mechanisms in drug removal (Y.
Zhang et al., 2022). Srinivasan et al. evaluated activated carbon from Thevetia neriifolia Juss wood
for adsorbing direct orange 102 dye (DO102). The adsorption capacity increased with temperature,
suggesting an endothermic process. The pseudo-second-order model provided a more accurate fit
compared to the pseudo-first-order model, and the Langmuir model best described the adsorption
with capacities ranging from 9.44 mg/g to 33 mg/g (Yusop et al., 2021). Yusop et al. studied the
adsorptive removal of methylene blue using activated carbon derived from Acacia wood (AWAC).
The AWAC exhibited a BET surface area of 1045.56 m?/g and a mesopore surface area of 689.77
m?/g. The adsorption followed the Langmuir isotherm and pseudo-second-order kinetics, with film
diffusion being the main process. The Langmuir monolayer capacity was 338.29 mg/g, and the
process was exothermic (Yusop et al., 2021). Piriya and colleagues investigated malachite green
adsorption on zinc chloride-activated carbon from coconut. The activation process increased
surface area to 544.66 m?/g and adsorption capacity to 39.683 mg/g. The Freundlich isotherm and
intraparticle diffusion model best described the data. The coconut shell AC showed effective dye
removal from industrial effluents, suggesting it as a viable alternative to commercial activated

carbon (Sangeetha Piriya et al., 2021).

Baloo et al. compared activated carbons from empty fruit bunches (EFB) and mesocarp
fibers (MF) of oil palm for removing methylene blue (MB) and Acid Orange 10 (AO10). The MF
AC had a higher BET surface area (552.7222 m?/g) compared to EFB (35.6328 m?/g). The
adsorption of dyes followed the pseudo-second-order kinetic model, with the Langmuir model
better representing MB adsorption for MF (Baloo et al., 2021). Abatal et al. created a carbonaceous
material from Haematoxylum campechianum bark using phosphoric acid activation and thermal
treatment at 500 °C. This material, with a mixed graphitized/amorphous phase, showed high
adsorption capacities for phenol, 4-chlorophenol, and 4-nitrophenol. The Langmuir model
provided the best fit, with a maximum phenol adsorption capacity of 94.09 mg/g (Abatal et al.,
2020). Geczo et al. derived activated carbon from cashew nut shells using H;PO, activation. The
study highlighted the importance of acidic groups in acetaminophen removal, showing that highly
acidic groups facilitated hydrolysis while lower concentrations led to physisorption (Geczo et al.,
2021). Yang et al. utilized one-step H;PO, activation to produce porous carbon from corn straw
for tetracycline removal. The AC showed a high surface area of 463.89 m?/g and demonstrated

excellent adsorption performance. Both pseudo-second-order and Langmuir models fit the data
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1091  well, with the process being endothermic and spontaneous (Q. Yang et al., 2020). Abo El Naga et
1092  al. examined sugar cane bagasse-derived activated carbon (SCG-AC) for diclofenac sodium
1093  removal. The SCG-AC, produced via ZnCl, activation, showed good fits with the Langmuir and
1094  pseudo-second-order models. The pH influenced the adsorption mechanism, with hydrophobic
1095 interactions dominating at low pH and electrostatic/hydrogen bonding at moderate pH (Abo El
1096  Nagaetal., 2019).

1097 El Mouchtari et al. developed a bio-composite material for removing pharmaceuticals from
1098  water. This composite, combining activated carbon from Argania Spinosa nutshells and
1099 commercial TiO,, demonstrated high efficacy for diclofenac, carbamazepine, and
1100  sulfamethoxazole removal through adsorption and photodegradation (El Mouchtari et al., 2020).
1101 Darweesh and Ahmed synthesized granular activated carbon from Phoenix dactylifera L. stones
1102  using microwave-assisted KOH activation. This material exhibited a high levofloxacin adsorption
1103  capacity of 100.38 mg/g. The adsorption process was influenced by initial levofloxacin
1104  concentration and flow rate, with the Thomas and Yoon-Nelson models providing better fits than
1105  Adams-Bohart (Darweesh & Ahmed, 2017). Jung et al. produced granular activated carbon from
1106  spent coffee grounds using calcium-alginate beads. This material effectively removed Acid Orange

1107 7 (AO7) and methylene blue (MB) from water, with adsorption controlled by pore diffusion. The

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

1108  carbon showed high capacity and was effective in both environmental and economic terms (Jung
1109 etal., 2016).
1110
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1111 6.2.3.2. Inorganic contaminant removal

1112 Elewa and colleagues studied activated carbons (AC) from rice husk for removing Fe(III)
1113  and Mn(II) from aqueous solutions. The AC was produced at 700 °C in an electric furnace with
1114  activation with NaOH (AC-1), acetic acid (AC-2), phosphoric acid (AC-3), and without chemical
1115  activation (AC-4). The AC-4 showed superior efficiency compared to the other. The adsorption
1116  followed pseudo-second-order kinetics and Langmuir isotherm, with an endothermic process
1117  (Elewa et al., 2023). Huang et al. prepared N, P co-doped activated carbon from cabbage waste
1118  using H3POy, activation via hydrothermal method. The carbon, with a high BET surface area (1400
1119  m?/g), showed over 97.5% efficiency in adsorbing antibiotics within 10 min, with adsorption being
1120  achemical process (K. Huang et al., 2023). Neolaka and colleagues synthesized activated Carbon
1121  Mesopore Adsorbent (ACMA) from Kesambi wood for Pb(II) removal. The characterization
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analysis confirmed the presence of oxygenated functional groups with carbon and oxygen as
predominant elements, a rough surface with amorphous structure, low crystallinity, and
mesoporous size. The adsorption followed the pseudo second-order model and Langmuir isotherm
signifying a homogeneously energetic adsorbent surface. Thermodynamic studies suggest
processes being exothermic and spontaneous (Neolaka et al., 2021). Kharrazi and colleagues
studied adsorbent carbons from Elm tree sawdust treated with various chemicals to remove Pb(II)
and Cr(VI) from water. Acid treatment enhanced Cr(VI) absorption, while alkali treatment
improved Pb(II) adsorption, with a pseudo-second-order model best describing the process.
Treatment with MgCl, resulted in a mesoporous AC capable of absorbing Pb(II) up to 1430 mg/g
(Kharrazi et al., 2021). Thompson et al. found H3PO4-activated biomass (groundnut shell, yam
peels, cassava peels) as a cost-effective alternative for Pb?* removal from wastewater. The process
was endothermic, rapid, and best fit the pseudo second-order model. The optimal temperature for
ion removal from yam peels and groundnut shells was identified as 60 °C, while temperature
exerted no discernible effect on the adsorption process of cassava peels (Thompson et al., 2020).
Wang et al. studied Cr(VI) adsorption on coconut shell-derived Granular Activated Carbon (GAC),
finding a redox reaction that forms a Cr,O5 layer on GAC, limiting Cr(VI) uptake. It was suggested
that nanoscale AC or porous nanoscale AC pellets could offer promising solutions for effective
Cr(VI) water treatment applications (Y. Wang et al., 2020). Salomon-Negrete and colleagues
developed avocado-based adsorbents for fluoride removal through pyrolysis, finding that
pyrolyzed adsorbents outperformed CO2-activated ones. Fluoride adsorption was influenced by
carbonization temperature and involved silicon-based ligand exchange and -electrostatic
interactions (Salomon-Negrete et al., 2018). Sajjad et al. synthesized activated carbon from
pistachio wood waste using NH4NO; activation, showing it has a higher surface area with well-
developed pores for better Hg?" adsorption than commercial carbon, making it a cost-effective,
efficient adsorbent for hazardous metals (Sajjadi et al., 2018). Norouzi et al. converted Date Press
Cake into activated carbon using NaOH, achieving a high surface area (2025.9 m*/g) and Cr(VI)
adsorption capacity (282.8 mg/g), best described by Elovich and Redlich-Peterson models
(Norouzi et al., 2018). Gebrewold and colleagues evaluated chemically modified rice husk and
corn cob activated carbon for fluoride adsorption. They found Langmuir and pseudo-second-order
models best fit the data, with adsorption influenced by intraparticle and surface diffusion

(Gebrewold et al., 2019). Vunain et al. found that activated carbon from baobab fruit shells,
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1153  chemically activated with phosphoric acid was more economical compared to commercially
1154  available activated carbon, and efficiently removes Cu?*ions from aqueous solution (Vunain et al.,
1155  2017). Thamarai et al. investigates Pb(I[) removal using Physically Modified (PMSB) and
1156  Chemically Modified Seaweed Biosorbents (CMSB). Optimal conditions were 303 K, pH 5.0, and
1157  dosages of 2.5 g/LL (PMSB) and 1 g/L (CMSB), with contact times of 80 and 40 min. Maximum
1158  adsorption capacities were 149.8 mg/g (PMSB) and 175.5 mg/g (CMSB) (Thamarai et al., 2024a).
1159  Further, the Cd(IT) removal was also compared using CMSB and PMSB. The CMSB (19.682 m?/g)
1160  and PMSB (14.803 m*g) showed optimal adsorption at 303 K, pH 6.0, with dosages of 1 g/LL and
1161 2.5 g/L. The maximum capacities reached 181.6 mg/g (PMSB) and 151.2 mg/g (CMSB), following
1162  Langmuir isotherm and pseudo-second-order kinetics (Thamarai et al., 2024c).

1163 The free radicals, generated during the charring process, also play a crucial role in biochar's
1164  surface chemistry. The surface free radicals can react with certain chemical substances, like
1165  hydrogen peroxide and persulfate, thereby facilitating the degradation of organic contaminants
1166  (Xing et al., 2019). This mechanism, primarily driven by electrochemical analysis, indicates that
1167  high-temperature-pyrolysis-derived biochar possess electron-accepting capabilities mediated by
1168  free radicals. The biochar not only facilitates the degradation or transformation of pollutants by

1169  serving as a catalyst for electron transfer, but can also directly react with pollutants, significantly

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

1170  impacting their environmental fate. Although a limited relevant literature is available, surface

1171 redox-active moieties predominantly contribute to biochar's redox activity. These moieties activate

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

1172  certain oxidants to produce reactive radicals like ‘OH and SO, - and can also directly engage with

(cc)

1173  pollutants through non-radical pathways (Q. Tang et al., 2023).

1174 Zhou et al. created biochar from a-cellulose and sodium lignosulfonate via microwave
1175  pyrolysis, achieving 99.9% oxytetracycline degradation in 15 min. The removal pathway was
1176  based on a non-free radical pathway involving 'O, as the main active species responsible for OTC
1177  removal, that was promoted by enriched thiophene S and C = O groups. The enrichment of carbon
1178  vacancies further improved the removal of pollutant through direct electron transfer that
1179  accelerated the PMS activation (Q. Zhou et al., 2024). Xu et al. studied poplar flour (PF) and
1180  walnut shell flour (WSF) biochar, finding that higher pyrolysis temperatures improved their
1181  performance in activating peroxymonosulfate (PMS) for diclofenac (DCF) removal. Poplar
1182  biochar (PB) outperformed walnut shell biochar (WSB) due to better porosity, functional groups,

1183  and conductivity. The non-radical mechanism, including singlet oxygen ('O,) and electron
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transfer, was key to DCF degradation (Xu et al., 2023). Dong et al. investigated N-doped biochar
(N-biochar) from soybean biomass for atrazine removal via enhanced catalytic ozonation. The key
factors included delocalized m-electrons and functional groups that generated reactive oxygen
species (ROS) like hydroxyl radicals (‘OH) and singlet oxygen ('O,) (Dong et al., 2023). Zeng et
al. studied plant-based biochar (PBC) for tetracycline (TC) degradation via peroxymonosulfate
(PMS) activation, noting a large surface area (725 m?/g) and effective pyrrolic-N in enhancing
PMS activation and degrading TC in a non-radical reaction pathway (Zeng et al., 2023). Hou et al.
synthesized graphene/biochar composites for persulfate (PS) activation and phenol degradation,
with non-radical pathways and n-n* EDA interactions playing crucial roles (Hou et al., 2023). Dai
et al. studied periodate-based advanced oxidation for BPA degradation using wheat straw-derived
biochar. A metastable C-PI* intermediate was identified as the primary oxidant, with BPA
donating electrons. The DFT calculations confirmed strong van der Waals interactions between PI
and biochar with an observed synergistic effect, whereby an adsorption takes place on the biochar
surface, while the PI facilitates the degradation of BPA (Dai et al., 2023). Wang and Chen
synthesized a nitrogen-doped biochar from pomelo peel, achieving 95% sulfamethoxazole
removal in 30 min via PMS activation, with high activity due to graphitic and pyrrolic N, carbonyl
groups, and a large surface area (738 m?/g) (W. Wang & Chen, 2022). Gao et al. investigated BPA
degradation using ferric chloride-modified rice husk biochar activated by PMS. With 1.0 g/L
catalyst and 1.6 g/LL PMS, over 97% of 20 mg/L BPA was removed in 150 min, involving SOy~,
‘OH, O,", and 'O, (Y. Gao et al., 2022). Hu et al. studied tetracycline hydrochloride (TCH)
degradation using biochar from passion fruit shells pyrolyzed at 900 °C under N,. The metal-free
biochar activated PMS, achieving 90.9% TCH removal via singlet oxygen-mediated oxidation and
non-radical pathways, including direct electron transfer and O, /'O, generation (Hu et al., 2021).
Cai et al. studied pyrrolic N-rich biochar from waste bean dregs for BPA removal, finding that N-
Biochar/PDS was most effective under neutral and acidic conditions. The ESR and quenching tests
showed SO4-, ‘OH, and 'O, had minimal impact. The DFT results revealed enhanced electron
donation and charge density in N-Biochar, improving PDS activation and ROS formation (Cai et
al., 2021). Xu et al. developed a cost-effective N-doped biochar from sawdust via single-step
calcination. The biochar, with high graphitic and pyridinic nitrogen, activates PMS for degrading
BPA, phenol, acetaminophen, and sulfamethoxazole. The EPR and quenching tests identified
ROS, especially singlet oxygen, as key in degradation (Xu et al., 2020). Ding et al. studied nitrogen
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1215  and sulphur-doped rice straw biochar for metolachlor degradation using PMS. N-doping improved
1216  PMS interaction, while S-doping disrupted charge balance. The DFT showed hydroxyl radicals
1217  and singlet oxygen were crucial, with HPLC-TOF-MS revealing the degradation pathways through
1218  hydroxylation, hydrolytic dechlorination, N-dealkylation, dehydroxylation, demethylation, and
1219  amide bond cleavage mechanism (Ding et al., 2020). Li et al. used biomass-derived activated
1220 carbon (BAC) for sulfamethoxazole removal with PDS. The BAC-PDS complex facilitated
1221  electron transfer, with EPR detecting ROS like ‘OH, SO,4-, and 'O,. In real water, common anions
1222  had minimal impact on SMX degradation, providing insights into ROS generation (Y. Li et al.,
1223 2023).

1224

1225  6.2.4. Nanostructured biomass

1226 The immobilization of metal or metal oxide nanoparticles on the surface of the biomass
1227 and its derived materials such as biochar, hydrochar and activated carbon, holds significant
1228  importance for various applications, particularly in the fields of environmental remediation, and
1229  catalysis. This process involves the deposition of nanoparticles onto the surface of these

1230  carbonaceous materials through various methods such as carbothermal reduction, hydrothermal

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

1231 method, etc. (Singh, 2023). The biomass derived materials have ample surface area and functional

1232  groups for the immobilization of nanoparticles, facilitating strong interactions and stability. The

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

1233  metal or metal oxide nanoparticles, such as iron, copper, silver, titanium dioxide, manganese oxide,

(cc)

1234  etc. can be selectively deposited onto the surface of biomass derived materials to impart specific
1235  properties or functionalities (Kaur et al., 2024a). For instance, metal nanoparticles immobilized on
1236  activated carbon can serve as highly efficient catalysts for organic transformations, while metal
1237  oxide nanoparticles supported on biochar can act as effective adsorbents for pollutant removal in
1238  water treatment applications. The immobilization of nanoparticles on the carbonaceous materials
1239  not only enhances their stability and reusability but also expands their range of applications,
1240  contributing to the development of sustainable and efficient technologies for various
1241  environmental and industrial challenges (Table SI 3) (Kumar et al., 2023). The incorporation of
1242  nanoparticles onto biomass or its carbon-rich derivatives significantly alters their physicochemical
1243  properties, thereby enhancing their remediation performance. Nanostructuring contributes to: (a)

1244  increased surface area and hierarchical porosity provide abundant active sites for pollutant binding,
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while functional groups on nanoparticles (e.g., -OH, —O—, metal oxides) strengthen interactions
through hydrogen bonding, electrostatic attraction, or n—r stacking; (b) metal and metal oxide
nanoparticles act as catalytic centers, activating oxidants such as H,O,, persulfate, or PMS, and
generating reactive oxygen species (ROS) such as -OH, SO4~, O,, '0,. The porous biomass matrix
supports nanoparticle dispersion and prevents agglomeration, ensuring sustained catalytic activity;
(c) biomass facilitates pre-concentration of pollutants onto its surface, while immobilized
nanoparticles drive catalytic degradation, leading to faster and more complete removal compared
to either mechanism alone; (d) carbonized biomass with graphitic domains can act as an electron

shuttle, accelerating redox reactions at nanoparticle sites and enhancing pollutant breakdown.

6.2.4.1. Raw biomass immobilized with metal/metal oxide nanoparticles

Kaur et al. studied the adsorption of terbinafine hydrochloride (TBH) using cotton shell
powder (CS), nano zerovalent copper (nZVC), and zerovalent copper on CS (ZVC@CS).
ZVC@CS effectively concentrated or removed TBH under acidic conditions (pH < 5) through
hydrophobic and electrostatic interactions. Analysis revealed external mass transport as the
limiting step for TBH adsorption, with ZVC@CS achieving a qumax 0of 285.3 mg/g, better than other
adsorbents (Kaur, Hussain, et al., 2023). Kumar et al. also studied how pistachio shell biomass
combined with nano-MnO, (nMPP) affects crystal violet (CV) removal. The adsorption capacity
of pistachio shell works synergistically with oxidative degradation efficacy of MnO, to enhance
CV removal. Under acidic conditions, oxidative CV degradation occurs via -OH radicals from
nMPP, while neutral pH conditions show CV adsorption. This combination shows promise for
organic contaminant remediation in water (Kumar et al., 2023). Kumar et al. evaluated the
nanocomposite of pistachio shell powder combined with nano-zerovalent copper for the chromium
remediation. The immobilized nano-copper (ZVC@PS) showed superior Cr(VI) adsorption (110.9
mg/g) compared to pistachio shell powder alone (27.95 mg/g). The XPS and spectroscopy
confirmed the presence of synergistic effect from Cr(VI) adsorption and reduction to Cr(III),
enhancing remediation efficiency (Kumar et al., 2021). Kaur et al. explored a synergistic approach
combining pistachio shell powder adsorption with ZVI or ZVC in Fenton-like and PMS activation
processes to enhance tetracycline (TCH) degradation. ZVI@PS-PMS showed superior
performance with high contaminant removal, faster degradation (0.34 min!), and 86% COD
removal, due to effective adsorption, catalysis, and PMS activation for advanced oxidation (Kaur,

Kumar, et al., 2023) (Table SI 4).
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1276

1277  6.2.4.2 Surface modified biomass immobilized with metal/metal oxide nanoparticles

1278  Surface-modified biomass immobilized with metal/metal oxide nanoparticles offers a promising
1279  approach for environmental remediation, combining the high surface area and reactivity of
1280  nanoparticles with the renewable, sustainable properties of biomass to enhance pollutant removal
1281  and treatment efficiency (Table 2). Further, the catalytic efficiencies of these metal/metal oxide
1282  nanoparticles in advanced oxidation processes significantly enhance the overall pollutant removal
1283  processes (Table 3).

1284  6.2.4.2.1. Adsorptive removal

1285 Sutradhar et al. synthesized biochar from pre-roasted sunflower seed shells (SFS) and
1286  peanut shells (PNS) using direct pyrolysis and assessed their effectiveness for textile dye removal
1287  from wastewater. The FTIR and XRD analysis showed degradation of cellulosic and lignin
1288  components, and XPS indicated a 13.8% increase in C-C/C=C in SFS and 22.6% in PNS biochar,
1289  reflecting polyaromatic structure condensation. The PNS biochar demonstrated superior dye
1290 removal efficiency, enhanced by pyridinic-N, graphitic-N, hydrogen bonding, and electrostatic
1291  interactions (Sutradhar et al., 2024). Qu et al. evaluated the rice straw-derived biochar (BC) for

1292  ciprofloxacin (CIP) removal from water, finding a maximum Langmuir adsorption capacity of

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

1293  747.64 mg/g at pH 5. The adsorption involved C=O groups facilitating electrostatic, n-n, and

1294  hydrogen bond interactions. Incorporating TiO, to create Ti-RSB composite with enhanced

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

1295  photocatalytic performance, and CIP removal efficiency across pH 5-9, owing to improved biochar

(cc)

1296  surface functionality (K. Qu et al., 2023). Sen synthesized a magnetic bamboo charcoal iron oxide
1297  nanocomposite for removing the cationic methylene blue (MB) dye from synthetic wastewater.
1298  The pseudo-second-order model described batch adsorption kinetics well. Both Freundlich and
1299  Langmuir isotherms fit the equilibrium data, with a maximum capacity of 111.11 mg/g. The
1300 composite's 80.25% desorption efficiency suggests its potential for treating industrial dye effluents
1301  (Sen, 2023). Nascimento et al. assessed magnetic nanohybrids of sugar cane straw biochar and
1302  Fe;04 (Fes04@BC) for removing congo red (CR) and indigo carmine (IC) dyes. Adsorption
1303  process following pseudo-second-order and Elovich models, involved chemisorption and was best
1304  described by the Sips model, with endothermic and favourable thermodynamics (Do Nascimento

1305 etal., 2023).
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Dai et al. studied the impact of modification and magnetization on rice straw-derived
biochar for tetracycline (TC) removal. Enhanced surface area and pore volume improved hydrogen
bonding and pore-filling effects, achieving an adsorption capacity of 98.33 mg/g (Dai et al., 2020).
Hao et al. investigated hazelnut shell biomass-derived biochar with zerovalent iron (ZVI@HS) for
removing oxytetracycline, chlortetracycline, and tetracycline. The adsorption process followed
Langmuir isotherm and pseudo-second-order kinetics, with up to 95% removal efficiency,
indicating spontaneous and endothermic processes (Hao et al., 2021). Nyirenda et al. used
sulphuric acid to create activated carbon from maize cobs, then deposited silver on silica
nanoparticles to form the Ag-SiO,@AC nanocomposite. This composite efficiently removed Pb?*,
Cd?**, Cu?*, and Zn?" from solutions, with maximum adsorption capacities of 81.30, 87.72, 84.75,
and 81.97 mg/g, respectively. The adsorption process was spontaneous, endothermic, and physical
in nature (Nyirenda et al., 2022). Masoudian and colleagues efficiently removed Congo Red and
Phenol Red dyes from water using TiO, nanoparticles on activated carbon from watermelon rind.
The dye removal followed the Langmuir equation and second-order kinetics (Masoudian et al.,
2019). Altintig et al. created magnetic activated carbon (Fe@AC) from ZnCl,-activated corn shell,
showing high Methylene Blue adsorption (357.1 mg/g) with fast uptake, endothermic process, and
good reusability up to four cycles (Altintig et al., 2017). Saini et al. prepared zinc oxide-loaded
activated carbon (ZnO@AC) via hydrothermal synthesis to remove Orange G (OG) and
Rhodamine B (Rh-B) dyes. The Langmuir model best fit the adsorption isotherms, with capacities
of 153.8 mg/g for OG and 128.2 mg/g for Rh-B. The adsorption followed the pseudo-second-order
model, and thermodynamic studies indicated spontaneous, and endothermic removal of dyes (Saini

et al., 2017).

Liu et al. evaluated magnetic zerovalent iron-supported biochar from peanut hull for
chromium (VI) and trichloroethane (TCE) removal. The mechanisms included pore-filling,
hydrophobic partitioning, and reductive degradation. The XPS showed Cr(VI) reduction to Cr(III)
and a redox reaction with a decrease in Fe® peak, suggesting effective, cost-efficient water
treatment (Y. Liu et al., 2019). Qian et al. conducted an investigation into the reduction and
adsorption of hexavalent chromium using a combination of palladium (Pd) and silicon-rich biochar
derived from rape straw, supported by nanoscale zerovalent iron (nZVI). The presence of silicon
and Pd facilitated the reduction of Cr(VI), attributed to the Fe® crystallinity within the structures

of nZVI (Qian et al., 2019). Zhang et al. investigated the adsorption and reduction of uranium
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using biochar-supported zerovalent iron (ZVI@BC) prepared through an environmentally friendly
carbothermal reduction process. The maximum adsorption capacity reached 55.58 mg/g, with the
Langmuir isotherm providing the best fit. Moreover, X-ray photoelectron spectroscopy (XPS)
spectra obtained after adsorption revealed simultaneous occurrences of adsorption and reduction,

as both U(IV) and U(VI) were detected in the spectra (H. Zhang et al., 2019).
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Materials Advances

Optimized condition % Removal Ref.
Nanocomposite Contaminant pH Dose (g/L) Conc. Time
(g/L) (min)
Fe@BC Methylene blue 10 0.4 0.02 120 80.25 (Sen, 2023)
Fe;0,@BC Congo red 7 0.2 0.01 1440 72 (Do Nascimento et al.,
Fe;04,@BC Indigo carmine 10 0.2 0.01 1440 27 2029
Fe-BC Tetracycline 3-10 1.2 0.05 60 98.3 (Dai et al., 2020)
ZVI@HS Oxytetracycline 6.5 4 0.4 60 96.7 (Hao et al., 2021)
ZVI@HS Chlortetracycline 6.5 4 0.4 60 95.5
ZVI@HS Tetracycline 6.5 4 0.4 60 95
Fe/Pd@RS 1,2,4- 5.58 0.16 0.01 2880 98.8 (Shang et al., 2020)
Trichlorobenzene
ZV1@PH Chromium, 4.4 1 0.3 6000 100 (Y. Liu et al., 2019)
ZV1@PH Trichloroethene 4.4 1 0.3 6000 100
Pd/Fe@CS Trichlorobenzene 3.7- 0.1 0.1 1440 93 (L. Han et al., 2019)
10.3
Co/Fe@MB Cefotaxime 6 0.5 0.02 380 99.46 (H. Wuetal., 2018)
Fe@PSd Sulfamethoxazole 4.5 0.004 0.02 1440 55.6 (Reguyal & Sarmah,
2018)
Ag/Fe@MB Cefotaxime 6.1 1 0.04 90 91.3 (H. Wuetal., 2017)
Ni/Fe@WS 1,1,1- 6 1 0.2 180 99.3 (H. Liet al., 2017)

Trichloroethane
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(H. Zhang et al., 2019)

(Chai et al., 2023)

(Tian, Peng, et al., 2023)

(Nyirenda et al., 2022)

(B. Zhang & Wang,
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(Masoudian et al., 2019)

(Altintig et al., 2017)
(X. Lietal., 2023)
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6.2.4.2.2. Catalytic removal

Shang et al. tested biochar-supported nanoscale zero-valent iron (nZ V1) and palladium (Pd)
composites for removing 1,2,4-trichlorobenzene (1,2,4-TCB). The modified biochar achieved up
to 98.8% removal, primarily through Fe/Pd nanoparticle reduction and biochar adsorption (Shang
et al., 2020). Han et al. elucidate the impact of Pd/Fe supported by biochar on the elimination of
1,2,4-trichlorobenzene (1,2,4-TCB). A method involving both Pd/Fe electrochemical
dechlorination and biochar adsorption is employed to eradicate trichlorobenzene (L. Han et al.,
2019). Wu et al. studied cefotaxime degradation using Co/Fe bimetallic nanoparticles supported
on modified biochar. The composite efficiently removed cefotaxime (CFX) through adsorption
and degradation, with Co/Fe nanoparticles breaking down adsorbed CFX. The B-lactam ring
instability of CFX under strong reducing agents was analysed via HPLC-ESI-MS (H. Wu et al.,
2018). Reguyal and Sarmah assessed the magnetic biochar (Fe@PSd) from pine sawdust (PSd) for
sulfamethoxazole (SMX) removal. The SMX sorption was pH-dependent, with hydrophobic and
n-n electron interactions significantly influencing the process due to SMX’s aromatic and
heterocyclic structures (Reguyal & Sarmah, 2018). Wu et al. investigated the degradation and
adsorption of Cephalexin (CLX) using Ag/Fe bimetallic nanoparticles supported on modified
biochar. Ag/Fe@MB effectively removed CLX through reduction and adsorption, with
degradation products analysed by LC-MS (H. Wu et al., 2017).

Li et al. evaluated the reductive degradation of 1,1,1-trichloroethane (1,1,1-TCA) using
biochar-supported Ni/Fe bimetallic nanoparticles. Nickel assisted zero-valent iron (ZVI) corrosion
and thus generated atomic hydrogen that forms hydride-like species, enhancing 1,1,1-TCA
reduction. Inorganic ions had minimal effects, but NO;~ and humic acid significantly inhibited
degradation (H. Li et al., 2017). Oh et al. used rice straw biochar-supported zerovalent iron for
removing nitro explosives and halogenated phenols from contaminated water. The XPS showed
no change in Fe’ redox properties after co-pyrolysis. The biochar facilitated contaminant reduction
through Fe® was proved more efficient than direct Fe® reduction due to enhanced electron transfer
mediated by biochar's surface functional groups (Oh et al., 2017). Yi et al. examined
decabromodiphenyl ether degradation using biochar-supported Ni/Fe (BC@Ni/Fe) nanoparticles.
The BC@Ni/Fe showed higher removal efficiency than Ni/Fe alone, with stepwise debromination
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1374  as the primary mechanism, complemented by the adsorption process (Yi et al., 2017). Li et al. used
1375  biochar-supported Fe@BC to activate persulfate (PDS) for degrading Acid Orange 7. The
1376  maximum removal (98%) occurred in 20 min under optimal conditions (50 mg/L AO7, 1 g/LL
1377  catalyst, 20 mM PMS, and pH 6). The process involves electron transfer and a non-radical
1378  pathway, primarily generating singlet oxygen ('O,) for degradation (Z. Li et al., 2024). Qu et al.
1379  assessed the efficiency of CuO-supported biochar (CuO@BC) for activating persulfate (PS) to
1380  degrade bisphenol A (BPA). The free radical and ESR analyses showed involvement of -OH, SO4-
1381 , O,7, and 'O; in the degradation process. The CuO@BC-PS system reduced BPA toxicity to a
1382  significant extent, with no toxicity observed for CuO@BC composite (H. Qu et al., 2023).

1383 Chai et al. used a multi-metal loaded heterogeneous Fenton catalyst (M@BC) for
1384  thiamethoxam (THX) removal, synthesized by pyrolyzing rice straw biomass rich in Fe, Cu, Mn,
1385  and Zn. This mesoporous biochar effectively generated hydroxyl radicals ((OH) for complete THX
1386  degradation (100%). DFT studies helped in identifying the regions with high Fukui index for O,-
1387 and ‘OH attack (Chai et al., 2023). Seo et al. investigated seaweed biomass-derived biochar's
1388  catalytic properties for Sulfadiazine (SDZ) removal. The adsorption process involves both physical
1389  and chemical mechanisms. Pyrolysis enriched the biochar with N, P, and Fe, enhancing SDZ
1390  degradation through peroxydisulfate (PDS) activation. The electron spin resonance (ESR)

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

1391  confirmed reactive oxygen species (ROS) generation, including radicals (O,~, SO4-, ‘OH) and non-
1392  radicals (10,), with non-radical mechanisms dominating, highlighting electron transfer pathways

1393  (Seoetal., 2023). Yang et al. evaluated a modified red mud biochar catalyst (MRBC, Fe@BC) for

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

(cc)

1394  levofloxacin (LFX) degradation in water. MRBC synthesized via acid pretreatment and pyrolysis
1395  at 700 °C, effectively activated peroxydisulfate (PDS), achieving 88.59% LFX removal in 30 min
1396  with minimal Fe leaching (0.049 mg/L). The high performance of the catalyst was due to the
1397  synergy of red mud and biomass, generating reactive oxygen species (ROS) through Fe(Il) and
1398  PDS activation. The quenching experiments and DMPOX presence in EPR confirmed that SO4-
1399 and ‘OH were key to LFX degradation (Z. Yang et al., 2023). Tian et al. used Fe-N biochar from
1400  waste chestnut shells, doped with iron and nitrogen (Fe-N-BC), to activate persulfate (PS) for 98%
1401  oxytetracycline (OTC) degradation in 20 min. The process, dominated by direct electron transfer
1402  and 'O, generation, benefited from Fe-N structure altering electron distribution, enhancing the
1403  efficiency and preventing iron ion leaching (Tian, Cui, et al., 2023). Oxytetracycline removal study

1404  was also evaluated using rice husk-derived biochar (BC), hydrochar (HC), and raw husk (RH) as
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supports for zerovalent iron nanocomposites in PMS-activated AOPs. ZVI@BC achieved 98.3%
removal due to enhanced surface defects and ROS generation. Mechanisms were validated via

scavenger tests, DFT analysis, and HRMS intermediates identification (Kumar et al., 2025)

Tian et al. studied biochar-supported zerovalent iron (ZVI@BC) for adsorbing Cd(II) and
degrading oxytetracycline (OTC). The immobilization of zerovalent iron on the biochar in
ZVI1@BC improved electron transfer and its oxidation efficiency. The Cd(II) adsorption was
monolayer chemisorption, involving electrostatic interactions, ion exchange, and complex
formation, while OTC adsorption was multilayer. The ESR identified hydroxyl radicals (‘OH) as
key in OTC degradation, with LC-MS revealing dealkylation, deamination, and dehydroxylation
as main degradation steps (Tian, Peng, et al., 2023). Tang et al. synthesized nitrogen-doped corn
cob biochar and immobilized it with mixed valence iron (FeOy@N-BC) for tetracycline
degradation via PMS activation. Nitrogen doping prevents Fe® nanoparticle agglomeration,
enhancing electron transfer and PMS activation. The ESR analysis showed reactive oxygen
species, with singlet oxygen ('0,) as dominant in tetracycline removal (Q. Tang et al., 2023). Shi
et al. studied N-doped biochar composite catalysts for Bisphenol A (BPA) degradation using
peroxymonosulfate (PMS) activation. Fe;C/biochar, synthesized by pyrolyzing wood powder with
ferric ferrocyanide, effectively degraded 0.05 mM BPA in 30 min with 0.5 g/L catalyst. The system
generated radicals, high-valent iron-oxo, and non-radical species using both Fe;C and N-doped
biochar. The Fe;C activates PMS efficiently and thus minimizes Fe ion leaching and sludge
formation (Shi et al., 2023). Leichtweis et al. used ZnFe,O,-supported biochar from coffee grounds
for methylene blue dye degradation using H,O, activation. The composite achieved 100% dye
removal compared to pure ZnFe,O4 (~37%). The high efficiency was attributed to biochar's
phenolic, hydroxyl, and carboxylic groups. The radical tests identified h*, O,~, and ‘OH as the

reactive species involved in dye degradation (Leichtweis et al., 2023).

Li et al. developed copper oxide-modified rice straw biochar (CuO@BC) for phenacetin
(PNT) degradation using peroxydisulfate (PDS). CuO@BC showed effective PNT decomposition,
with EPR analysis identifying reactive oxygen species (SO4-, ‘OH, O,-, and '0,) as key in the
process. Scavenger experiments revealed !0, and O, played a key role in PNT removal (W. Li et
al., 2020). Yang et al. synthesized zerovalent iron-supported biochar (nZVI@BC) at 1000 °C, used
for peroxydisulfate (PDS) activation to degrade oxytetracycline (OTC). TOC results showed
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1435  effective CO, conversion, while ESR and quenching identified SO4-, OH, and !0, as key reactive
1436  species in OTC degradation (Y. Yang et al., 2023). Yang et al. used FeS-modified rape straw (RS-
1437  FeS) and its biochar (RSBC-FeS) for oxytetracycline (OTC) removal via H,O, activation. The
1438 maximum removal capacities were 635.66 mg/g (RS-FeS) and 827.80 mg/g (RSBC-FeS), with
1439  degradation rates of 70.14% and 79.35%, respectively. The process involved both radical (SO4-,
1440  -OH, O,°) and non-radical ('0,) pathways, including hydroxylation, dehydration, quinonization,
1441  demethylation, decarbonylation, alcohol oxidation, and ring cleavage (Y. Yang et al., 2022). Jiang
1442  etal. studied Co3;04-MnO, nanoparticles on rice straw biochar (BC) for peroxymonosulfate (PMS)
1443  activation to remove sulfadiazine (SDZ). Nearly 100% SDZ degradation was achieved in 10 min,
1444  primarily via singlet oxygen ('0,) and sulfate radicals (SO,") (Z.-R. Jiang et al., 2022). Sang et al.
1445  developed a catalyst from natural pyrite (FeS,) and rice straw biochar (BC) for ciprofloxacin (CIP)
1446  degradation, using a grinding and calcination method. The FeS,@BC system achieved 96.8% CIP
1447  degradation in 20 min. The catalyst efficacy originates from both free radicals and adsorption
1448  processes. The ESR and quenching experiments identified hydroxyl (-OH), superoxide (O,"), and
1449  sulfate (SO4-) radicals, with -OH being the most effective. The HCO;- significantly impacted CIP
1450  degradation, while Cl-, NOs, and SO4> had no effect. (Sang et al., 2022). Yao et al. studied the
1451  effectiveness of bimetallic Fe and Mo immobilized on nitrogen-doped biochar (Fe-Mo@N-BC)

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

1452  for degrading Orange II. They found that N-doping enhanced metal stability and dispersion. In the

1453  PMS activation process, Fe-Mo nanoparticles transfer electrons to PMS, generating significant

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

1454  ROS. The Fe/Mo bimetallic system facilitates Fe**/Fe?* and Mo®"/Mo*" redox cycles, accelerating

(cc)

1455  PMS activation and organic degradation. The EPR and radical quenching experiments identified
1456  SO,-, ‘OH, and 'O, as key ROS in the process (Yao et al., 2022). Xiong et al. synthesized Co;04
1457  composites on biochar from rape straw for tetracycline hydrochloride (TCH) degradation via
1458  peroxymonosulfate (PMS) activation. The Co;04@BC catalyst achieved 90% TCH removal in 20
1459  min, utilizing both radical (SO4-, ‘OH, O, ) and non-radical pathways. The DFT calculations
1460  showed an electric field at the Co304-BC interface, enhancing electron transfer and the Co?*/Co’*
1461  redox cycle, improving degradation efficiency (Xiong et al., 2022). Xiao et al. developed
1462  bimetallic iron and cerium embedded in nitrogen-enriched porous biochar (Fe-Ce@N-BC) for
1463  metronidazole (MNZ) removal via PMS activation. MNZ degradation reached 97.5% in 60 min.

1464  The nitrogen-enriched biochar increased surface area and porosity, enhancing PMS activation. Fe-
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Ce oxide nanocrystals acted as activation centres, facilitating both radical and non-radical

degradation pathways (Xiao et al., 2022).

Liu et al. studied Fe;O4@NCNTs-BC, a nitrogen-doped magnetic carbon nanotubes-
bridged biochar catalyst, which effectively activates persulfate (PS) for sulfamethoxazole (SMX)
degradation. The quenching and ESR results showed that superoxide radicals (O,) and direct
electron transfer dominates in the process. The Fe;O04@NCNTs-BC/PMS/SMX system
decomposes HSOs™ to generate active radicals, while carbon-PDS* complexes extract electrons
from SMX (T. Liu et al., 2022). Liu et al. explained the excellent PMS activation with cobalt
nanoparticles supported biochar (Co@BC) catalyst for levofloxacin (LVF) degradation. The
Co@BC-PMS activation process showed that superoxide 'O, non-radical, and the electron transfer
mechanisms played the dominant role in LVF degradation, as evidenced by quenching
experiments, electron paramagnetic resonance (EPR) and density functional theory (DFT)
calculations (J. Liu et al., 2022). Chen et al. investigated printing and dyeing sludge (PADS)
biochar as a peroxymonosulfate (PMS) activator for bisphenol A (BPA) removal. Prepared by
pyrolysis at 800 °C for 1.5 h, the biochar achieved 99% BPA removal in 20 min. The radical
trapping experiments indicated that the non-radical pathway, dominated by singlet oxygen ('0,),
was crucial for degradation, with CO, graphite nitrogen, and pyridine nitrogen identified as active
sites for PMS activation (J. Chen et al., 2022). Fu et al. used iron-doped sludge biochar to activate
peroxymonosulfate (PMS) for degrading perfluorooctanoic acid (PFA). In the Fe-BC/PMS system,
singlet oxygen (10,) was generated, facilitated by quinone and pyridinic-N groups. The DFT
calculations indicated that PFA degradation followed a non-radical pathway with 'O, as the main

reactive species (S. Fu et al., 2022).

Huang et al. investigated the persulfate activation (PS) with magnetic rape straw biochar
catalyst for the degradation of tetracycline hydrochloride (TCH) from water. The magnetic biochar
mediated PS activation generates reactive oxygen species such as SO4~, ‘OH, and O, as confirmed
with ESR analysis. The sulfate radical (SO,-), and superoxide radical (O,~) were observed as the
dominant reactive oxygen species for the degradation of TCH (H. Huang et al., 2021). Jiang et al.
studied a zero-valent iron and biochar composite (ZVI@BC) activated by persulfate (PS) for
atrazine degradation. The EPR and quenching experiments revealed SO4~ and -OH as the primary

radicals responsible for degradation. The analysis of iron corrosion products and XPS suggested
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1495  that ZVI@BC-PS activates PS, generating these radicals and altering iron's valence state, which
1496  degrades atrazine. The GC-MS and LC-MS identified degradation pathways including alkyl
1497  oxidation, dealkylation, and dechlorination-hydroxylation, etc. (Z. Jiang et al., 2020). Liu et al.
1498  studied biochar from wheat straw immobilized with cobalt (Co@BC) for activating PMS to
1499  degrade atrazine (ATZ). The biochar enhanced Co@BC efficiency by donating electrons to
1500  generate superoxide radical (O,), converting Co(III) to Co(II). The radical scavenging and EPR
1501  analysis revealed SO, as the dominant reactive species in ATZ degradation (B. Liu et al., 2020).
1502 Li et al. developed a biochar-supported copper oxide composite (CuO@BC) to activate
1503  peroxymonosulfate (PMS) for removing Methylene Blue, Acid Orange 7, Rhodamine B, Atrazine,
1504 and Ciprofloxacin from saline wastewater. The biochar enhanced CuO stability and catalytic
1505  activity. The EPR analysis confirmed singlet oxygen ('O,) as the primary reactive species, with
1506  sulfate radicals (SO4~) and hydroxyl radicals ((OH) also contribute to degradation of pollutants (Z.
1507  Lietal., 2020).

1508 Qin et al. studied the impact of bimetallic (Fe-MgO) supported biochar on persulfate (PS)
1509  activation for sulfamethazine (SMT) degradation. Nearly 99% SMT degradation was achieved
1510  with Fe-MgO@BC-PS activation. The Fe-MgO@BC composite activated PS by leveraging Fe?*,
1511  and biochar’s hydroxyl and carboxyl groups, producing SO,- radicals. The SMT degradation

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

1512  mechanism involved dehydrogenation, bond cracking, and unsaturated bond addition (F. Qin et
1513 al., 2020). Zhang et al. studied ZVI@BC-H;0, activation for sulfamethoxazole (SMX)
1514  degradation. They achieved 99% SMX degradation in 2 h with Fe-impregnated biochar, which

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

(cc)

1515  enhanced H,0, activation. The EPR results showed H,O, generated hydroxyl radicals (-OH)
1516  through interactions with C-OH on biochar. Both radical and non-radical processes contributed to
1517  SMX degradation (X. Zhang et al., 2020). Jiang et al. studied zerovalent iron (ZVI) immobilized
1518  biochar for persulfate (PMS) activation to degrade bisphenol A (BPA). The complete BPA
1519  removal was achieved in 5 min. The quenching and EPR experiments revealed that SO,~ was the
1520  primary radical, crucial for BPA degradation. Additionally, carbon-based materials activated
1521  PMS’s O-O bond, enabling both radical-mediated and non-radical degradation mechanisms (S.-F.
1522  Jiang et al., 2019). Nguyen et al. explored cobalt-impregnated spent coffee ground biochar (Co-
1523  SCQ) for tetracycline (TC) removal. Co-SCG showed high adsorption and catalytic activity, with
1524 SO, identified as the key radical in TC degradation via EPR analysis (V.-T. Nguyen et al., 2019).
1525  Nguyen and Oh studied how biochar enhances phenol degradation in Fe®-persulfate systems. Their


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ma00494b

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

(cc)

1526
1527
1528
1529

1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549

1550
1551
1552
1553
1554
1555

Materials Advances

Page 66 of 113

View Article Online
DOI: 10.1039/D5MA00494B

research shows that Fe® combined with biochar and persulfate significantly boosts oxidation of
contaminants. The radicals generated by electron transfer from Fe? to persulfate involved SO4~
and ‘OH radicals to degrade phenol, with hydroxyl radicals being dominant as confirmed by EPR
and quenching experiments (T. A. Nguyen & Oh, 2019).

Chen et al. developed an in-situ method for tetracycline (TC) removal using biochar (BC)
adsorption and persulfate (PS) oxidation in the Cu@BC-PS system. The process, driven by Cu*!,
effectively degrades TC across various pH levels and high COD concentrations. The XPS, EPR,
and quenching studies show Cu'! on biochar activates PS, with SO, and -OH as key radicals. Cu?*
and TC adsorption are rate-limiting steps (J. Chen et al., 2020). Lia et al. developed magnetically
separable MnFe,0,4 nanoparticles and MnFe,O,/biochar composites to activate hydrogen peroxide
(H,O,) for tetracycline (TC) degradation. The SEM analysis showed spherical MnFe,O4
effectively loaded on biochar. The -OH radicals confirmed by quenching and ESR experiments
drive the TC degradation. The XPS revealed Fe and Mn ions in H,O, activation, while biochar
prevents MnFe,O, aggregation and scavenges excess hydroxyl radicals (Lai et al., 2019). Mao et
al. studied biochar-supported nanoscale zero-valent iron (nZVI@BC) with hydrogen peroxide
(H,0,) for removing organic contaminants, focusing on ciprofloxacin degradation. Their research
showed hydroxyl radicals (OH) were key in oxidation. The theoretical calculations indicated
hydrogen atom abstraction (HAA) contributed 92.3% to the second-order rate constants (k) for
ciprofloxacin oxidation (Mao et al., 2019). Fu et al. investigated graphitized hierarchical porous
biochar from corn parts and synthesized MnFe,O4/BC composites for organic pollutant
degradation via peroxymonosulfate (PMS) activation. The EPR and quenching studies revealed
three degradation pathways: radical-induced oxidation by SO4~ and ‘OH, non-radical oxidation by
10, from PMS decomposition, and electron transfer from organic compounds to PMS via

graphitization structures (H. Fu et al., 2019).

Chen et al. studied Co304 rice straw-derived biochar (BC-Co30,) for peroxymonosulfate
(PMYS) activation, achieving high efficiency in degrading ofloxacin (OFX). The radical scavenging
and EPR analysis showed SO, and ‘OH radicals were involved, with enhanced degradation under
neutral to weak basic conditions and reduced effectiveness in extreme pH (L. Chen et al., 2018).
Deng and colleagues studied biochar-supported nanoscale zero-valent iron (nZVI@BC) for

sulfamethazine removal using a H,O,-activated Fenton-like reaction. The nZVI decomposed H,0,
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1556  into hydroxyl radicals, while biochar adsorbed sulfamethazine, activated H,O,, and prevented
1557  nZVI aggregation, thus enhancing sulfamethazine removal efficacy (J. Deng et al., 2018). Ma and
1558  colleagues developed ZVI@BC via co-pyrolysis of K,FeO4 and bamboo biomass, creating a
1559  material with a high surface area. The study found that lower pH, higher temperature, and CI- ions
1560  improved sulfadiazine degradation, while CO;?- and HPO,4?- impeded it. The free radicals and non-
1561  free radicals, particularly 'O,, played significant roles in the degradation process (Ma et al., 2021).

1562 Zhang and Wang synthesized nanoscale zerovalent iron on activated carbon from coconut
1563  shells (nZVI@AC) using a pulse electrodeposition method, which was simpler and cheaper than
1564  traditional methods. The nZVI@AC achieved 97.94% removal of methyl orange from water by
1565  breaking its azo bonds (B. Zhang & Wang, 2019). Kaur and colleagues used Ficus religiosa bark
1566  extract to immobilize zerovalent copper (ZVC@CSAC) and zerovalent iron (ZVI@CSAC) on
1567  cotton shell activated carbon (CSAC) for activating peroxymonosulfate (PMS) to degrade
1568 Rhodamine B (Rh B) and Crystal Violet (CV) dyes. ZVI@CSAC proved more effective than
1569 ZVC@CSAC in dye removal. The DFT optimizations and HRMS analysis outlined the
1570  degradation pathways. The solution toxicity tests showed intermediates were less toxic than the
1571  original dyes (Kaur et al., 2024a). Chen et al. investigated MnO, loaded on activated carbon
1572  (MnO,/AC) for activating PMS to degrade ciprofloxacin. MnO,/AC showed excellent

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

1573  performance and reusability, with activated carbon enhancing the effectiveness of MnO,. The

1574  Redox cycles among Mn(1l, III, and I'V) species produced reactive oxygen species, predominantly

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

1575  singlet oxygen (63.75%). The PMS adsorption on MnO,/AC was crucial for ciprofloxacin

(cc)

1576  degradation under acidic conditions. The LC-MS analysis identified seven intermediates to
1577  propose the degradation pathway (M. Chen et al., 2024).

1578 Li et al. developed a composite material, BAC/FeO,, combining FeO, nanoparticles with
1579  biomass activated carbon for bisphenol A (BPA) remediation via sulfate radical-based advanced
1580  oxidation processes (AOPs). The BAC/FeO, efficiently degrades BPA by activating
1581  peroxydisulfate (PDS) and the process was influenced by BAC/FeO, dosage and PDS
1582  concentration, showing versatility across pH levels and temperatures. The ESR and quenching
1583  experiments confirmed the involvement of SO, and -OH radicals as key species in degradation
1584  process (X. Li et al., 2021). Yang et al. synthesized CoFe,O4@SAC nanocomposites from the
1585  sludge activated carbon via a simple hydrothermal method. These nanocomposites effectively

1586  degraded norfloxacin (NOR) by activating peroxymonosulfate (PMS) and showed over 90% NOR
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removal after five cycles. The study explored the effects of ClI;, HCO5-, and NOj5™ on the catalysis,
and identified SO,~ and -OH radicals as key to NOR degradation, with XPS revealing redox
couples Co**/Co?" and Fe**/Fe?* in PMS activation (Z. Yang et al., 2020). Loo et al. synthesized
Fe-TiO,@AC from oil palm empty fruit bunches via the sol-gel method. The Fe-TiO, particles
were well-dispersed on the AC support, retaining their anatase phase. The high surface area and
porous structure of AC's improved the adsorption process, while the enhanced electrostatic
interactions and reduced recombination rates, combined with Fe doping, boosted the photocatalytic
activity. Fe-TiO,@AC achieved 97% dye removal after 45 min of light irradiation (Loo et al.,
2021).

Zhao and colleagues found that activated carbon-supported iron (Fe@AC) is a highly
effective catalyst for amoxicillin (AMO) degradation using Persulfate (PS). The complete AMO
breakdown occurred within 10 min, with improved efficiency at higher catalyst dosages and PS
concentrations. The process followed pseudo-first-order kinetics, with an activation energy of
28.11 kJ/mol. The ESR analysis identified hydroxyl and sulfate radicals, with surface-adsorbed
hydroxyl radicals crucial for the degradation of AMO. The Fe@AC-PS system also significantly
reduced the toxicity of degraded AMO, highlighting its practical application potential (Zhao et al.,
2021). Dangwang Dikdim et al. developed a composite, AC/g-C;N,, for photocatalytic atrazine
degradation under visible light with PMS. Incorporating AC effectively mitigated electron-hole
recombination and enhanced the photocatalytic activity of graphitic carbon nitride. Reactive
radical trapping experiments and EPR analysis revealed that sulfate and hydroxyl radicals played
crucial roles in atrazine degradation during the reaction process (Dangwang Dikdim et al., 2019).

Erdem and Erdem studied ciprofloxacin degradation in water using a persulfate activation
process with an activated carbon-supported cobalt catalyst (Co@AC). The synthesized Co@AC
activated persulfate to generate SO4~ and -OH radicals, with SO, being more effective. The kinetic
analysis showed pseudo-first-order kinetics with an activation energy of 62.69 kJ/mol (Erdem &
Erdem, 2023). Nguyen et al. prepared magnetic activated carbon (MAC) using one-pot pyrolysis
of lotus seedpod waste with ZnCl, and FeCl; coactivation. This MAC, with a high surface area
(Sger = 1080 m?/g) and pore volume (Vi = 0.51 cm?/g), effectively activated H,O, for removing
Acid Orange 10, outperformed MAC prepared from single activation using FeCl; only (D. V.
Nguyen et al., 2023). Li et al. found that nZVI supported on biomass-derived porous carbon
(nZVI@AC) removed As(II) from water more effectively and quickly than nZVI@BC and pure
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nZVI. The adsorption kinetics followed the pseudo-second-order model, and the Langmuir model
described isotherms. The removal involved electrostatic interaction, oxidation, and complexation
processes (X. Li et al., 2023). Wang et al. used an affordable single-atom iron catalyst (Fe@N-C)
on nitrogen-doped porous carbon to degrade sulfamethoxazole in water. The DFT calculations
identified nitrogen and oxygen coordination to iron as the active site for PMS activation. The
quenching experiments and ESR analysis showed Fe@N-C enhanced singlet oxygen ('O,)
production, contributing 78.77% to the degradation (C. Wang et al., 2023). Chen et al. synthesized
Co304@N-doped porous carbon (Co3;04@NPC/rGO) using self-assembly and pyrolysis-
oxidation, with graphene oxide and bimetallic zeolite imidazolate frameworks as precursors. The
composite efficiently activates peroxymonosulfate across various pH levels, degrading

sulfamethoxazole in 5 min via both radical and non-radical pathways (Y. Chen et al., 2022).

10
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1629  Table 3. Surface modified biomass nanocomposite mediated advanced oxidation processes for environmental contaminant removal
Optimized condition
. Oxidizing .
Nanocomposite agent Contaminant pH Dose Conc. Time % Removal Ref.
(g/L) (g/L) (min)
ZVC@CSAC PMS Rhodamine B 3 0.05 0.01 60 87.6 (Kaur et
al.,
ZVC@CSAC PMS Crystal violet 3 0.05 0.01 10 99.8 2024a)
ZVI@CSAC PMS Rhodamine B 3 0.05 0.01 60 84.1
ZVI@CSAC PMS Crystal violet 3 0.05 0.01 60 98.3
FeO,@N-BC PMS Tetracycline 6.6 0.2 0.1 10 91.8 (Q. Tang
et al.,
2023)
Cu@BC PS Tetracycline 4 0.5 0.12 270 93.6 (J. Chen
et al.,
2020)
Fe@BC PDS Acid orange 7 6 1 0.05 20 98 (Z.Liet
al., 2024)
CuO-Biochar PS Bisphenol 3.84 0.1 0.01 40 93 (H. Quet
al., 2023)
Fe-N-P@BC PDS Sulfadiazine 6.1 0.2 0.01 60 97.2 (Seo et
al., 2023)
MRBC, Fe@BC PDS Levofloxacin 7 1.6 0.01 30 88.59 (Z. Yang
et al.,
2023)
Fe-N-BC PS Oxytetracycline 7 0.1 0.01 20 98 (Tian,
Cui, et al.,
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1631  6.3. Reusability and Stability of Modified Biomass Materials

1632  In practical environmental remediation, the reusability and stability of biomass-derived materials
1633  are just as critical as their initial adsorption or catalytic efficiency. Materials that quickly lose
1634  activity or suffer structural degradation during repeated use have limited applicability in real-world
1635  scenarios. Thus, systematic evaluation and enhancement of their long-term durability are
1636  indispensable for advancing their practical deployment.

1637

1638  6.3.1. Regeneration and cycling performance

1639 Many modified biomass adsorbents exhibit significant regeneration potential through simple
1640  desorption techniques such as washing with dilute acids, bases, or organic solvents. For instance,
1641  alkali-activated rice husk biochar has retained more than 80% of its dye removal efficiency over
1642  five adsorption—desorption cycles (Kaur et al., 2024b), while iron-immobilized biochars showed
1643  consistent Cr(VI) removal performance across multiple cycles (Zhou et al., 2023). The
1644  regeneration capacity largely depends on the stability of functional groups introduced during
1645  surface modification and the resilience of the porous network to repeated sorption—desorption
1646  stresses.

1647

1648  6.3.2. Thermal and structural stability

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

1649  The thermal stability of biomass-derived adsorbents is strongly influenced by the activation or

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

1650  nanostructuring technique employed. Pyrolysis-derived biochars demonstrate higher carbonization

(cc)

1651  and improved resistance to thermal degradation, while hydrothermal carbonization often results in
1652  hydrochars with moderate stability but abundant oxygenated groups. Further enhancement is
1653  achieved by immobilization of metal or metal oxide nanoparticles (e.g., Fe;04, TiO,, ZnO), which
1654 not only provide catalytic activity but also prevent collapse of pore structures at elevated
1655  temperatures (Kumar et al., 2022). Thermogravimetric analyses have confirmed that chemically
1656  activated carbons and nanocomposites display improved decomposition resistance compared to
1657  raw biomass (Kaur et al., 2024Db).

1658

1659  6.3.3. Chemical stability under operational conditions

1660 In real wastewater systems, pH fluctuations, high ionic strengths, and competing contaminants

1661 may compromise material performance. Acid-modified biochars, for example, may leach
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functional groups under highly alkaline conditions, whereas nanoparticle-loaded composites risk
metal leaching into the environment (Kumar et al., 2025). Stabilization strategies such as covalent
cross-linking, polymer coating, or strong electrostatic immobilization of nanoparticles can
significantly improve long-term chemical resistance (H. Han et al, 2019). However,
comprehensive studies under variable real-world conditions remain limited.

6.3.4. Strategies for enhancing reusability and durability

Surface functionalization with stable moieties (e.g., amine, sulfonic acid groups), hybridization
with inorganic supports (clays, silica, zeolites), and carbonization at optimized conditions have
proven effective in improving reusability (Y. Chen et al., 2022). Additionally, coupling adsorption
with catalytic degradation (as in biochar—metal oxide nanocomposites) reduces fouling of active
sites, thereby extending material lifetime. Developing multifunctional composites that combine
adsorption, photocatalysis, and redox reactivity represents a promising path toward enhanced

stability (H. Han et al., 2019).

6.4. Economic Viability and Scalability of Biomass Modification Techniques

Although biomass itself is an abundant and low-cost feedstock, the economic feasibility of its
modified derivatives depends heavily on the activation and nanostructuring techniques employed.
While many studies emphasize material performance, fewer critically assess the cost and
scalability of these treatments, which are crucial for large-scale deployment.

6.4.1. Cost implications of modification techniques

Chemical activation methods (e.g., acid/alkali treatments, oxidative agents) can substantially
improve porosity and functional group density, but they also incur significant costs from reagent
consumption, high-temperature processing, and post-treatment washing to remove residues.
Additionally, chemical processes generate secondary waste streams requiring careful disposal,
which further adds to operational costs (Kumar et al., 2025). In contrast, physical methods such as
pyrolysis, hydrothermal carbonization, or microwave heating are generally more cost-efficient and
scalable, though they may yield materials with lower surface functionalization unless combined
with post-modification steps (Kaur et al., 2024b).

6.4.2. Scalability considerations

From a scalability perspective, physical methods hold greater promise for industrial adoption due

to their simpler setups, compatibility with bulk biomass feedstocks, and potential to integrate with
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1693  existing waste-to-energy infrastructure. Hydrothermal carbonization, for instance, eliminates the
1694 need for biomass drying and operates under moderate conditions, making it suitable for
1695  continuous-flow systems (Thamarai et al., 2024b). On the other hand, nanostructuring with
1696  metal/metal oxide nanoparticles, although effective for enhancing catalytic and adsorption
1697  performance, raises concerns regarding raw material costs, potential leaching, and complex
1698  synthesis protocols that may hinder scale-up (Kumar et al., 2025).

1699  6.4.3. Strategies for improving economic feasibility

1700  Hybrid approaches that combine low-cost physical methods with selective chemical or biological
1701  modifications may offer a more balanced trade-off between performance and cost. Valorization of
1702  process by-products (e.g., bio-oil, syngas from pyrolysis) could further offset treatment costs
1703  ((Amenaghawon et al., 2021). Moreover, implementing circular economy principles such as
1704  reusing spent adsorbents in energy recovery or soil amendment could enhance the overall
1705  economic and environmental sustainability.

1706

1707  6.5. Real-World and Pilot-Scale Applications of Surface-Modified and Nanostructured
1708 Biomass in Environmental Remediation

1709  While laboratory-scale investigations dominate the literature, several pilot-scale and field

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

1710  applications highlight the feasibility of biomass-derived materials in real environmental systems.

1711 For example, granular walnut shell biochar layered into sand-based constructed wetlands

Open Access Article. Published on 09 2025. Downloaded on 23-10-2025 10:10:16.

1712  effectively neutralized acidity and removed multiple heavy metals from simulated mining-

(cc)

1713  impacted water, while enhancing plant growth and regulating microbial communities (Chen et al.,
1714 2021). In another study, alkali-activated rice husk biochar was tested in a textile wastewater
1715  treatment plant and demonstrated >80% dye removal efficiency, with stable regeneration
1716  performance over multiple cycles (Katheresan et al., 2018). Similarly, hydrothermally carbonized
1717  sewage sludge was applied at field scale to immobilize heavy metals in contaminated soils thus
1718  reducing metal leaching (Wang et al., 2019). Further, a pilot-scale biochar-amended sand filtration
1719  system was evaluated for drinking water treatment and showed significant removal of natural and
1720  heavy metals (Eniola et al., 2023).

1721  These case studies demonstrate that surface-modified biomass can be engineered into scalable

1722  remediation systems such as packed-bed reactors, constructed wetlands, and filtration units.
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Nevertheless, challenges remain in ensuring long-term stability, regeneration, and economic

viability.

7. Future perspectives:

In the future, the modified surface of biomass, its carbon-rich derivatives, and metal
nanocomposites hold significant potential for enhancing environmental remediation applications,
particularly through persulfate (PMS) activation. Advanced material synthesis techniques will be
crucial for fine-tuning catalytic efficiency and durability, as well as for deepening mechanistic
understanding of pollutant degradation pathways. Such mechanistic insights can guide the rational
development of surface-modified materials tailored for specific environmental challenges. Equally
important will be the scaling-up of production methods and their integration into practical
remediation strategies, which requires innovation in reactor design, cost-effectiveness analysis,
and techno-economic feasibility studies. The exploration of multifunctional materials and
prioritization of sustainability in both synthesis and application will further improve adaptability
and long-term effectiveness across diverse environmental matrices.

Looking forward, artificial intelligence (Al) and machine learning (ML) are expected to play
transformative roles in accelerating material design and process optimization. Al-guided
computational approaches can predict pollutant—surface interactions, identify optimal
modification strategies, and reduce reliance on trial-and-error experimentation. Similarly, ML-
driven process control can optimize operating conditions in pilot and full-scale systems, enabling
real-time adjustments that enhance efficiency and lower costs.

Another emerging direction is the integration of biomass valorization into circular economy
frameworks. Agricultural residues, forestry by-products, and municipal wastes can be transformed
into functional remediation materials, turning waste streams into value-added resources. Closed-
loop strategies, where spent adsorbents are regenerated, reused, or repurposed into new products,
will be critical for sustainable deployment. Combining advanced characterization techniques with
AI/ML will also enable deeper insights into adsorption and catalytic mechanisms, thereby guiding
the rational design of next-generation nanostructured biomass composites. Collectively, these
future directions suggest a paradigm shift from conventional modification approaches toward
digitally optimized, multifunctional, and circular bio-based remediation technologies, which hold

promise for addressing global pollution challenges in a sustainable and scalable manner.
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1754

1755 8. Conclusion

1756 The tailored surface modified biomass and its carbon-rich derivatives offer tremendous
1757  potential for enhanced environmental remediation applications. The innovative surface
1758  modification techniques, such as chemical functionalization and nanoparticle deposition on
1759  biomass materials can be engineered to exhibit the superior adsorption and degradation capacities,
1760  selectivity, and stability for various environmental remediations. These modified biomaterials not
1761  only demonstrate the remarkable efficiency for the removal of contaminants, but also present
1762  several advantages, including cost-effectiveness, biodegradability, and sustainability. The
1763  conversion of biomass into the carbon-rich derivatives, such as biochar and activated carbon, not
1764  only mitigates waste, but also creates the valuable materials with exceptional adsorption properties
1765  and pore structures. These carbonaceous materials serve as effective sorbents for a wide range of
1766  contaminants, including inorganic and organic materials. Further immobilization of metal
1767  nanocomposites presents a powerful approach for enhanced environmental remediation
1768  applications, particularly in the activation of persulfate (PMS) for pollutant degradation. The
1769  synergistic interactions between biomass-derived carbon matrices and metal nanoparticles exhibit

1770  the enhanced catalytic activity, stability, and selectivity, thereby offering promising solutions for

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

1771 addressing complex environmental challenges. The incorporation of metal nanoparticles onto

1772  biomass-derived carbon substrates not only enhances the surface area and porosity, but also
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1773  facilitates electron transfer and reactive species generation, leading to efficient activation of PMS

(cc)

1774  and subsequent degradation of various contaminants. The surface modification of biomass allows
1775  for precise control over surface chemistry and functional groups, further optimizing the
1776  performance of these composites for specific contaminant removal.

1777
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