Volume 3
Number 11
November 2024

Environmental

cience

Advances

rsc.li/esadvances

-
v
. v -
2 R o
=",

I AVIAN AN ZANNVARS

TR A
AXl Mnswlmm )

ISSN 2754-7000

™ L OYAL SOCIETY PAPER

Francesco Granata et al.
“ OF CH EMISTRY Dissolved oxygen forecasting in the Mississippi River:

advanced ensemble machine learning models




Open Access Article. Published on 30 2024. Downloaded on 12-11-2025 6:26:55.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Environmental Science #® LoYAL SOCIETY
OF CHEMISTRY
Advances -

View Article Online

View Journal | View Issue

W) Checkfor updates Dissolved oxygen forecasting in the Mississippi
N River: advanced ensemble machine learning

Cite this: Environ. Sci.: Adv., 2024, 3,

1537 models

Francesco Granata, & *2 Senlin Zhu@"® and Fabio Di Nunno®

Dissolved oxygen (DO) is an important variable for rivers, which controls many biogeochemical processes
within rivers and the survival of aquatic species. Therefore, accurate forecasting of DO is of great
importance. This study proposes two models, including AR-RBF by leveraging the additive regression
(AR) of radial basis function (RBF) neural networks and MLP-RF by stacking multilayer perceptron (MLP)
and random forest (RF), for the prediction of daily DO with multiple forecast horizons (1 day ahead to 15
days ahead) in the Mississippi River using a long-term observed dataset from the Baton Rouge station.
Two input scenarios were considered: scenario A includes mean water temperature and a certain
number of preceding DO values and scenario B comprises solely the aforementioned number of
preceding DO values while entirely disregarding exogenous variables. The AR-RBF and stacked MLP-RF
models excel in short-term forecasting and offer sufficiently accurate predictions for medium-term
horizons of up to 15 days. For instance, in 3 day ahead predictions, the root mean square error (RMSE)
amounts to 0.28 mg L™, with the mean absolute percentage error (MAPE) hovering around 2.5% in the
worst-case scenario. Similarly, for 15 day ahead forecasts, RMSE remains below 0.93 mg L™, with MAPE
not exceeding 8.2%, even under the worst-case scenario. Both models effectively capture the extreme
values and the fluctuations of DO. However, as the forecasting horizon is extended, both models
experience a decrease in accuracy, which is particularly evident for scenario B when the average water
temperature is not included in the input variables. When examining longer forecasting horizons in the
study, AR-RBF demonstrates a more restrained bias as compared to the stacked MLP-RF model. The
consistently robust performance of the models, in comparison to prior research on DO levels in US
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Environmental significance

Problem/situation: Mississippi River's fluctuating dissolved oxygen (DO) levels affect aquatic ecosystems and biogeochemical processes. Why is it important to
address/understand this? Accurate DO forecasting is vital for ecosystem health, aquatic species survival, and effective river management. Key finding and
implications: our study introduces two DO prediction models, AR-RBF and MLP-RF. Scenario A, considering water temperature and past DO values, significantly
enhances forecast accuracy over scenario B. This emphasizes the need to integrate environmental factors for better river conservation and management. These
models offer promising tools for sustainable river ecosystem management.

1. Introduction From this persp.ective, among the di.fferenF 'Wate':r quality
(WQ) parameters, dissolved oxygen (DO) is a critical indicator,
The degradation of surface and groundwater resources is Pplaying a key role in maintaining the proper functioning of
a matter of great concern on a global scale. In particular, aquatic ecosystems.® There are several factors affecting DO,
development and population growth are accelerating the including temperature and atmospheric pressure, as well as
exploitation of water resources as well as enhancing their anthropic factors. Furthermore, the water absorption capacity
deterioration. of the oxygen and the DO fluctuations are significantly affected
by the environment. In particular, the absorption capacity of
water to oxygen is lower on rainy days, whereas DO fluctuations
are smaller on sunny and windy days.> Over the past few
“Department of Civil and Mechanical Engineering (DICEM), University of Cassino and decades, researchers have extensively studied the intricate and
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outhern 2az10 a? ,mal J-grana ,a@ufllCQSZ o ) non-linear dynamics of DO? to accurately quantify and predict
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dissolved oxygen levels based on hydrological, meteorological,
and water quality parameters.

These predictions can be conducted using different
approaches. Among these, physically-based models produce
deterministic equations derived from the fundamental laws of
physics, such as the conservation laws. These models simulate
the biotic and abiotic processes governing the environmental
system under study. Despite their robustness, physically-based
models are generally time and cost-consuming due to the
complexity of these processes and the extensive data require-
ments for calibration and validation. The inherent complexities
of biotic interactions and abiotic conditions often cannot be
fully captured, resulting in limitations in their practical
applicability.*

In contrast, statistical models, which are grounded in
historical data, identify patterns and relationships between
input and output variables. While these models are less
resource-intensive and faster to implement, they usually lack
accuracy due to several factors, including natural data noise,
incomplete data, and limited spatial resolution.® Additionally,
statistical models are typically constrained by the assumptions
of linearity and normality, which may not adequately represent
the non-linear and dynamic nature of environmental processes.

To overcome the high uncertainty and complexity associated
with environmental and hydrological processes, researchers
have increasingly adopted data-driven approaches in recent
years. Among these, artificial intelligence (AI) algorithms,
particularly machine learning (ML) and deep learning (DL)
methods, have gained prominence. These approaches do not
require explicit definitions of the relationships between input
and target variables, allowing for fast processing and the ability
to handle complex, non-linear interactions within the data.’
Specifically, ML and DL algorithms can be employed individu-
ally or in ensemble forms, combining multiple models to
enhance forecasting performance.””

Recent studies have extensively explored the use of ML
models for predicting DO levels in various aquatic environ-
ments. Asadollahfardi et al.*® explored the modelling of DO in
the Amir Kabir reservoir in Iran using artificial neural networks.
This study demonstrated the applicability of neural networks in
predicting DO levels in reservoirs, emphasizing the potential of
Al methods in various aquatic environments. Abba et al.™
employed four different Al-based models, namely, the long
short-term memory neural network (LSTM), extreme learning
machine (ELM), Hammerstein-Wiener (HW), and general
regression neural network (GRNN), for predicting DO concen-
trations in the Kinta River, Malaysia, using water quality
parameters as inputs. They further developed ensemble models
combining these individual models, with the HW-RF ensemble
model demonstrating the best predictive skill. While this study
highlighted the potential of ensemble models in improving
prediction accuracy, it primarily focused on combining
multiple simple models without addressing the complexity of
dynamic environmental interactions. Building on this, Chen
et al.*> developed a hybrid model incorporating an attention
mechanism (AT) with LSTM to predict DO levels in the Burnett
River, Australia. Including AT significantly enhanced the LSTM
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model's prediction performance by focusing on relevant parts of
the input data. However, this approach still faced challenges in
dealing with large-scale datasets and diverse environmental
conditions. Maroufpoor et al.*® introduced various neuro-fuzzy
(NF) hybrid models, including NF with grey wolf optimizer
(NF-GWO), subtractive clustering (NF-SC), and c-mean (NF-
FCM), for predicting DO in California rivers. They identified
that the NF-GWO model with all variables as input provided the
best performance. This study addressed the challenge of opti-
mizing input variable combinations, but the models’ general-
izability to other regions with different environmental
conditions remained limited. Huan et al.** tackled the issue of
missing data by using a random forest (RF) model for data
interpolation before applying various ML models, such as the
adaptive neuro fuzzy inference system (ANFIS) and radial basis
function-artificial neural network (RBF-ANN), for multi-step
ahead DO predictions in the Jiangnan Canal, China. Their
results showed that the attention-based GRU model out-
performed all other models. However, the interpolation of
missing data introduced additional uncertainty, and the study
did not fully explore the impact of exogenous factors. Li et al.*®
addressed the problem of selecting optimal input parameters by
applying principal component analysis (PCA) before using
a hybrid model of improved particle swarm optimization (IPSO)
and least squares support vector machine (LSSVM) for DO
prediction in the Yangtze River Estuary, China. They identified
eight key parameters that significantly influenced DO levels,
thus refining the input selection process. Despite this, the
model's performance in scenarios with limited data or varying
temporal scales was not thoroughly investigated.

These studies collectively advance the understanding of ML
applications in DO prediction by addressing various challenges,
such as model complexity, input optimization, handling
temporal dependencies, and managing missing data. However,
several limitations persist: the primary limitation being the
restricted ability of existing models to achieve highly accurate
forecasts for extended horizons (beyond 7 days) while consid-
ering only the mean water temperature as the sole exogenous
variable. This limitation highlights the need for models that can
enhance prediction accuracy across various extended fore-
casting horizons and handle varying data quality and
availability.

This study aims to address these gaps by evaluating the
effectiveness of a pioneering predictive model, leveraging the
additive regression of radial basis function neural networks
(AR-RBF), in generating accurate short-term (1-3 days) and
medium-term (7-15 days) forecasts of DO concentrations in the
Mississippi River, including regular values, high peaks, and low
peaks (potentially causing hypoxic or anoxic conditions,
stressing or killing aquatic organisms, and disrupting
ecosystem health and biodiversity). It is worth noting that the
low or high levels of DO issues in the Mississippi Delta plain
have been widely investigated in the literature.'®'” However, the
implementation of predictive models focused on the prediction
of the DO in the Mississippi River is relatively rare to date."®

To the best of the authors' knowledge, herein, the AR-RBF
algorithm is employed for the first time to address a water

© 2024 The Author(s). Published by the Royal Society of Chemistry
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quality forecasting problem. This investigation seeks to assess
the AR-RBF model's predictive capability and compare it rigor-
ously with a well-established predictive framework renowned
for its accuracy: the MLP-RF stacked model integrating elastic
net as a meta-learner.

By analyzing the performance of these models, the study
aims to provide comprehensive insights into their respective
merits and limitations in predicting dissolved oxygen levels.
Such insights are crucial for enhancing our understanding of
predictive modelling techniques designed for environmental
monitoring and management within river ecosystems.

Predictive models capable of providing reliable forecasts
empower decision-makers with timely information to imple-
ment proactive measures for monitoring and mitigating
potential oxygen deficits or surpluses. In the context of major
rivers like the Mississippi, which hold significant ecological and
economic importance, precise forecasts enable stakeholders to
anticipate fluctuations in DO levels. This information is
invaluable for informing adaptive management strategies and
supporting sustainable resource management practices. The
utilization of advanced predictive modelling techniques, such
as the AR-RBF model and the MLP-RF stacked model, holds
promise for enhancing the accuracy and timeliness of DO
forecasts. By harnessing the capabilities of these models, envi-
ronmental authorities and stakeholders can proactively address
emerging challenges, optimize resource allocation, and ulti-
mately foster the preservation and restoration of riverine
ecosystems. Thus, the outcomes of this investigation advance
not only scientific knowledge but also offer practical benefits for
environmental management and sustainability efforts in river
ecosystems, underscoring the significance of robust predictive
modelling in contemporary environmental managing practices.

2. Materials and methods

2.1 Additive regression of radial basis function neural
network

Additive regression, an ensemble learning technique, acts as an
advanced metaclassifier, significantly boosting the predictive
capability of basic regression models.” It presents a novel
approach to predicting DO levels in hydrological systems.
Employing an iterative procedure, each model is adjusted to the
residuals left by its predecessor, leading to a gradual refinement
of predictions. Ultimately, the final prediction is derived from
the aggregation of outputs from individual classifiers (Fig. 1b).
The incorporation of a shrinkage parameter plays a crucial role
in preventing overfitting and introducing a smoothing effect.
However, it is important to note that reducing the shrinkage
parameter may result in longer learning times. Despite its
potential, additive regression remains relatively underexplored
in predictive hydrological modelling, with tree models being
more commonly used in existing literature.*®

In this study, the radial basis function neural network (RBF-
NN) algorithm was selected as the base regressor. The RBF-NN
architecture consists of three layers: an input layer, a hidden
layer, and an output layer. The operation of the hidden layer
involves employing radial basis functions to transform input

© 2024 The Author(s). Published by the Royal Society of Chemistry
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data into a higher-dimensional space, thereby simplifying the
regression task. Radial basis functions, mathematical
constructs centered at specific points, exhibit exponential decay
as the distance from the center increases. The initial centers for
Gaussian radial basis functions are determined using the K-
means algorithm. Among the various activation functions
available for the hidden layer, the Gaussian function is
commonly adopted. Typically, the output layer of the RBF
neural network combines activations from the hidden layer
linearly (Fig. 1a). The weights for this combination are deter-
mined through either a least-squares approach or gradient
descent optimization.

A notable advantage of the RBF-NN lies in its reduced
dependence on extensive training data compared to alternative
neural network architectures. This is attributed to the capability
of the hidden layer to extract features effectively, thereby
reducing the dimensionality of the input data. Additionally, the
RBF-NN demonstrates enhanced resilience to overfitting,
making it an attractive option for various modelling tasks.*

2.2 Stacked model of multilayer perceptron and random
forest

Other valuable ensemble models can be obtained using the
stacking methodology; this typically comprises multiple layers.
In the initial layer, diverse base models employing different
algorithms are developed using the training dataset. The
outputs of these base models serve as input features for the
subsequent layer, which acts as the meta-learner, integrating
outputs from the base models to formulate the final prediction.
The stacked ensemble model utilized in this research incorpo-
rates the multilayer perceptron (MLP) and random forest (RF)
algorithms as base models, with the elastic net (EN) algorithm
selected as the meta-learner (Fig. 2c).

The MLP is a type of feedforward neural network character-
ized by its stratified architecture.”® It encompasses an input
layer, one or more hidden layers, and an output layer. Each layer
comprises interconnected neurons, with data flowing uniquely
in a unidirectional manner, from input to output (Fig. 2a). The
initial layer of the MLP receives input data, typically presented
as feature vectors. Each neuron within this layer corresponds to
a specific feature of the input data. The MLP may embody one or
multiple hidden layers, tasked with hierarchical feature
extraction and abstract representation learning. Neurons within
the hidden and output layers calculate a weighted summation
of inputs, followed by the application of an activation function,
which introduces non-linearity, facilitating the network’s ability
to discern intricate patterns. The connections between neurons
in consecutive layers are associated with trainable parameters
termed weights. Each neuron usually has a bias term, contrib-
uting to the overall transformation. The weights and biases are
typically initialized randomly at the outset of training and
adjusted iteratively during the optimization process. Common
activation functions include sigmoid, rectified linear unit
(ReLU), and hyperbolic tangent, each offering distinct charac-
teristics influencing the network’'s performance and training
velocity. The final layer of the MLP generates the ultimate

Environ. Sci.: Adv., 2024, 3, 1537-1551 | 1539
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Fig. 1 Schemes related to the radial basis function (a); additive regression (b).

predictions or representations of the input data, contingent on
the task at hand. MLPs learn by minimizing a loss function
quantifying the disparity between predicted and actual outputs.
The backpropagation algorithm iteratively updates the weights
based on the gradients of the loss function, thereby enhancing
the model's performance. Conventional optimization tech-
niques such as stochastic gradient descent (SGD) or its variants
are employed to optimize the network's weights and biases.
Training data is often partitioned into batches to enhance
computational efficiency during optimization.

Random forest (RF), introduced by Breiman,* represents an
ensemble learning technique comprising multiple regression
trees, where each tree is independently constructed and

1540 | Environ. Sci.. Adv, 2024, 3, 1537-1551

contributes to the final prediction through averaging. The
fundamental components of an RF are regression trees, which
partition the input data space into segments based on feature
values to formulate predictions (Fig. 2b). RF employs a bagging
approach, randomly sampling the training data with replace-
ment to generate multiple datasets for each decision tree,
thereby promoting diversity and robustness. During the
construction of each regression tree, a random subset of
features is considered at each split, mitigating the risk of
overfitting and bolstering generalization. The regression trees
are recursively grown by selecting the optimal feature and split
point at each node, based on mean squared error. RFs
frequently impose a maximum depth restriction on the trees to

© 2024 The Author(s). Published by the Royal Society of Chemistry
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forestall excessively deep trees and potential overfitting. RFs
strike a balance between variance reduction (through prediction
averaging) and bias control (via multiple regression trees).
Furthermore, amalgamating numerous regression trees further
mitigates the risk of overfitting and enhances RFs’ resilience to
noisy data. RFs demonstrate efficacy on high-dimensional and
large-scale datasets, showcasing robust generalization
capabilities.

The elastic net algorithm® is a versatile regression method
that combines the strengths of lasso and ridge regression.
Unlike lasso, which tends to select only one variable from
a group of correlated predictors, and ridge regression, which
doesn't perform feature selection, the elastic net method strikes
a balance between the two.

At its core, the elastic net algorithm aims to minimize the
loss function by adding a regularization term that penalizes the
size of the coefficients. This regularization term consists of
a combination of L1 and L2 penalties. The L1 penalty encour-
ages sparsity by shrinking some coefficients to zero, promoting
feature selection. Meanwhile, the L2 penalty encourages smaller
coefficients overall, helping to prevent overfitting.

By adjusting the hyperparameter alpha, users can control the
relative influence of the L1 and L2 penalties. A higher alpha

© 2024 The Author(s). Published by the Royal Society of Chemistry

value emphasizes the L1 penalty, favoring sparsity and feature
selection, while a lower alpha value emphasizes the L2 penalty,
encouraging smaller coefficients overall.

One of the key advantages of the elastic net algorithm is its
ability to handle datasets with a large number of features,
especially when some of these features are correlated. It effec-
tively addresses the limitations of both lasso and ridge regres-
sion, making it a valuable tool in regression analysis,
particularly in high-dimensional data settings.

2.3 Case study and dataset

Stretching approximately 3766 km from its source at Lake Itasca
in Minnesota to its mouth at the Gulf of Mexico, the Mississippi
River (Fig. 3) is one of the most important rivers in North
America. Throughout its course, the Mississippi River serves as
a vital lifeline for countless communities, ecosystems, and
industries. It has played a central role in shaping the cultural,
economic, and environmental landscape of the United States.
The Mississippi River basin, encompassing 31 U.S. states and
two Canadian provinces, drains approximately 40% of the
continental United States. Its catchment area spans 3.24 million
km?, ranking it as the third-largest drainage basin globally and
seventh in terms of both streamflow and sediment load.**** Its

Environ. Sci.: Adv,, 2024, 3, 1537-1551 | 1541
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vast watershed includes a diverse array of landscapes, from the
forested regions of the Upper Mississippi to the fertile agricul-
tural plains of the Midwest, and finally to the expansive deltaic
wetlands of the Mississippi River Delta.

The Mississippi River basin spans a vast area across the
central United States, encompassing a wide range of climatic
zones. The northern region experiences a continental climate
with cold winters and warm summers, with varying precipita-
tion and snowfall in winter. Moving to the central region, the
climate is characterized by hot summers and cold winters, with
moderate and evenly distributed precipitation throughout the
year. The southern region, in contrast, features a humid
subtropical climate with hot, humid summers and mild
winters, receiving significant rainfall and being prone to severe
weather, including thunderstorms and hurricanes.

Geologically, the Mississippi River basin is diverse. The
upper basin is dominated by glacial and fluvial deposits, with
bedrock composed of sedimentary rocks such as limestone,
sandstone, and shale. In the central basin, thick sequences of
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sedimentary rocks, including shale, limestone, and sandstone,
were formed in ancient marine environments. The lower basin
comprises extensive alluvial deposits from the Mississippi
River, including clay, silt, sand, and gravel. These fertile
deposits support agriculture and influence the river's hydrology,
sediment transport, and nutrient dynamics, which are critical
for dissolved oxygen levels.

Ecologically, the Mississippi River and its associated
wetlands provide an essential habitat for a rich diversity of plant
and animal species. It supports numerous fish species,
including economically valuable species such as catfish, bass,
and paddlefish. The river and its floodplains also serve as vital
stopover points for migratory birds, supporting millions of
waterfowl during their annual migrations.”” However, the Mis-
sissippi River also faces significant environmental challenges,
including water pollution, habitat loss, and the threat of inva-
sive species.

At Baton Rouge (Louisiana state), where the monitoring
station is located, the drainage area is equal to about 3.2 million

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Statistics for each variable

hgage (M) Qmean (ms Sil) Tmean (°C) PH DO (mg Lil)
Min 1.27 3766.13 2.30 6.90 5.10
Max 13.58 38794.02 31.40 8.30 13.30
Mean 7.41 18 160.05 18.56 7.77 8.35
Median 7.48 16 876.81 18.20 7.80 8.10
o 3.28 8637.30 8.30 0.19 1.98
1st quartile 4.54 10958.60 10.80 7.70 6.50
3rd quartile 9.93 23 899.38 27.10 7.90 10.20
Cv 0.44 0.48 0.45 0.02 0.24
Skew —0.07 0.45 0.13 —0.50 0.37

Table 2 Correlation matrix of the variables included in the initially
considered dataset

DO hgage Qmean Tmean PH
DO 1
Tgage 0.039 1
Omean 0.043 0.986 1
Tmean —0.953 —0.259 —0.261 1
pH 0.170 —0.637 —0.632 0.012 1

km?. In particular, the daily data related to gage height (gauge),
mean discharge (Qmean), mean water temperature (Tyean), PH,
and DO, from February 2016 to April 2024 were considered.
Table 1 provides the statistics for each variable.

The correlation matrix (Table 2) reveals that DO exhibits
a high correlation, equal to —0.95, solely with the average water
temperature.

The study and prediction of DO levels in the terminal stretch
of the Mississippi River, particularly in the Baton Rouge area, are
essential endeavours due to their ecological significance and the
potential impact of anthropogenic activities. The region's diverse
aquatic ecosystems warrant meticulous monitoring to assess
their health and biodiversity. The dense population and indus-
trialization of the area pose challenges, with discharges from
industrial, agricultural, and urban sources potentially affecting
water quality. Given the area's susceptibility to hypoxia, driven by
factors such as nutrient loading from agriculture and sediment
accumulation, forecasting dissolved oxygen levels has become
imperative for understanding and managing hypoxic risk.
Moreover, the Mississippi River and surrounding waters are vital
for commercial and recreational fishing, making it imperative to
mitigate the adverse effects of low dissolved oxygen levels on fish
populations and the overall aquatic environment.

2.4 Evaluation metrics

The accuracy of the forecast models was assessed using four
different evaluation metrics:

(1) Coefficient of determination (R*): this is a statistical
measure that represents the proportion of the variance in the
dependent variable that is explained by the independent vari-
ables in a regression model. It ranges from 0 to 1, with higher
values indicating a better fit of the model to the data.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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< i i\2
Z (DOp' — DOy')
R—1- 1 . &
> (POw - DOW')
DO,,' = measured dissolved oxygen for the /" data and DOy’ =
predicted dissolved oxygen rate for the ™ data,

DOy = mean of the measured dissolved oxygen.

(2) Mean absolute error (MAE): this is a measure of the
average absolute difference between predicted and measured
values. It is calculated by taking the average of the absolute
differences between each predicted value and its corresponding
actual value.

32[DOy — DOy/|
MAE = % (2)
where s = number of samples.

(3) Mean absolute percentage error (MAPE): this is a measure
of the average percentage difference between predicted and
measured values. It is calculated by taking the average of the
absolute percentage differences between each predicted value
and its corresponding actual value, expressed as a percentage.

n

2
MAPE = =!

DOp’ — DOy’
DOy’
3
: ©)
(4) Root mean squared error (RMSE): this is a measure of the
square root of the average squared difference between predicted
and measured values. It is calculated by taking the square root
of the average of the squared differences between each pre-
dicted value and its corresponding actual value.

(DOp' — DOW')?

M-

RMSE =

S

2.5 Model development

Given that in the investigated case study Tpean iS the sole
exogenous variable highly correlated with dissolved oxygen, to
assess its predictive significance, two distinct input variable
scenarios were considered in the modelling: scenario A,
including Tiean and a certain number of preceding DO values,
and scenario B, comprising solely the aforementioned number
of preceding DO values, while entirely disregarding exogenous
variables. Therefore, the predictors include a series of lagged
DO values, alongside the DO of the current day and the mean
daily temperature, which is the sole exogenous climatic variable
considered. Notably, to streamline and expedite model devel-
opment, lagged temperature values were omitted from the input
variables. It is appropriate to point out that despite this omis-
sion, the lagged DO values inherently encapsulate information
from these temperature readings.

The optimal number of lagged values, denoted as n, and the
hyperparameters of the models underwent determination via
a Bayesian optimization (BO) procedure. Bayesian optimization
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has emerged as an effective method for optimizing functions
presenting challenges in evaluation and entailing significant
computational costs. This methodology involves a sequential
model-based approach, leveraging a probabilistic model to
capture the intricacies of the function under optimization. As
new data points surface, the model undergoes progressive
refinement through Bayesian inference, assimilating prior
knowledge about the function and uncertainties surrounding
the model. This algorithm adeptly navigates the exploration-
exploitation trade-off within the search space, leading to the
discovery of the global optimum with fewer objective function
evaluations compared to alternative optimization techniques.

While a detailed procedural exposition is omitted herein for
brevity, interested readers can explore pertinent literature for
deeper insights.”® In this study, the Root Mean Square Error
(RMSE) was designated as the metric to be minimized.

For training the predictive models, 80% of the data was used,
while the remaining 20% was used for testing. Preliminary tests
showed that this division was optimal for both achieving
adequate model training and having a sufficiently long testing
period. Before processing, the data underwent normalization.

The multi-step prediction was executed utilizing a hybrid
direct-recursive procedure. In this methodology, a distinct
model is formulated for each time step to be forecasted.
However, each model leverages predictions from preceding
time steps as new lagged DO values to predict future DO values.
Given the inherent uncertainty of future values during the
forecasting process, the previously predicted values serve as
a realistic estimate of the actual values.

3. Results

In this section, the performances of the two models (AR-RBF
and MLP-RF) were evaluated with different forecast horizons
(1 day ahead to 15 days ahead) and input combinations
(scenarios A and B). Table 3 presents detailed values of the
evaluation metrics considered, with reference to forecast hori-
zons of 1, 3, 7, and 15 days for both the training and testing
phases. Conversely, Fig. 4 illustrates the variation of the metrics
characterizing the error, specifically focusing on the testing
phase, across all forecast horizons ranging from 1 to 15 days.

To ensure a fair and consistent comparison of the different
methods, the same training and testing sets were applied across
all models evaluated in this study. Specifically, as stated above,
80% of the data was used for training and 20% for testing,
maintaining the temporal order of the time-series data to prevent
information leakage. Each model was trained and tested using
the same data partitions, allowing for a direct comparison of
their performance metrics. This consistency ensures that the
differences in model performance are attributable to the models
themselves and not to variations in the data.

Both the training and testing phases showed that irre-
spective of the input combination (scenario A or B), both
models tended towards deteriorating performance with
increasing forecast horizons, as evidenced by increased MAE,
MAPE, and RMSE values. However, the best predictions were
observed for AR-RBF scenario A that, for the testing stage,
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showed R® values between 0.995 (1 day ahead) and 0.883 (15
days ahead). The MLP-RF model in scenario A slightly under-
performed the AR-RBF model in scenario A, with R> values
between 0.995 (1 day ahead) and 0.873 (15 days ahead). Scenario
B showed a slightly inferior performance, especially at lower
forecast horizons. For longer forecast horizons, the gap with
scenario A widened. Interestingly, in scenario B, MLP-RF
showed slightly higher R* values and also higher error metrics
values than AR-RBF.

Fig. 5-8 compare the measured and predicted DO during the
testing stage for the different models, input combinations, and
1-day ahead and 7-day ahead forecasting horizons.

It seems clear that for the 1-day forecasting horizon, both
models, with their two input combinations, demonstrated
a high capacity to predict not only the ordinary values of DO but
also peaks, maximums, and minimums. Scenarios A and B
showed major discrepancies as the forecasting horizon
increased. While both AR-RBF and MLP-RF predicted the DO
trend with good accuracy, scenario B appeared to be much
noisier in its forecasts, with greater oscillations of DO than
those present in the testing stage.

Therefore, as the forecasting horizon increases, considering
the average temperature as an additional exogenous variable
represents a strength in DO prediction.

It must be pointed out that temperature is a key environ-
mental factor influencing water's capacity to hold oxygen;
warmer water holds less DO than cooler water. Therefore,
changes in average temperature can directly impact DO levels.
By incorporating average temperature as an exogenous variable,
the models can capture this relationship, enhancing their
ability to predict DO fluctuations more accurately. Including
temperature provides a more comprehensive view of the envi-
ronmental conditions affecting DO, making the predictions
more reliable and robust across different scenarios and fore-
casting horizons.

Abox plot representation of the relative error evaluated for the
testing stage for all models and input combinations is provided
in Fig. 9. The relative error was computed as the ratio of the
difference between predicted and measured values to the
measured values. For a 1 day ahead forecasting horizon, the
median values of the relative error were close to 0 for all models
and input combinations, with interquartile ranges (IQRs)
computed as the difference between the third and first quartile,
between 0.014 (AR-RBF scenario B) and 0.0152 (AR-RBF scenario
A). As the forecasting horizon increases, the median values
become increasingly negative, indicating a more pronounced
tendency to underestimate the DO. This trend is more evident for
MLP-RF compared to AR-RBF. With AR-RBF, the median values
remain closer to zero even for 15-day ahead horizons (—0.009 for
AR-RBF scenario A and —0.026 for AR-RBF scenario B).

For both models and input combinations, an increase in the
IQR was observed as the forecasting horizon increased, reach-
ing values between 0.094 (MLP-RF scenario A) and 0.136 (AR-
RBF scenario B) for the 15-day ahead prediction. This
widening IQR suggests that not only were the median errors
shifting (as indicated by becoming increasingly negative) but
there was also more dispersion in the prediction errors. In other

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Evaluation metrics. The color bar ranges from red (lower performance) to green (higher performance). The number of data points used
for training is 2377, and the number of data points used for testing is 597

. Forecast horizon (days ahead)
Stage Metrics 1 3 7 5

R? 0.998 0.989 0.968 0.936

Training MAE (mg L") 0.07 0.16 0.28 0.40

MAPE (%) 0.93 2.07 3.60 5.20

AR-RBF RMSE (mg L") 0.10 0.21 0.36 0.50
scenario A R? 0.995 0.979 0.947 0.883
Testing MAE (mg L") 0.09 0.20 0.34 0.54

MAPE (%) 1.04 2.38 3.96 6.19

RMSE (mg L") 0.13 0.27 0.45 0.68

R? 0.999 | 0.993 | 0975 | 0.935

Training MAE (mg L") 0.06 0.12 0.23 0.38

MAPE (%) 0.73 1.56 2.96 4.96

MLP-RF RMSE (mg L") 0.08 0.17 0.32 0.51
scenario A R? 0.995 0.979 0.944 0.873
Testing MAE (mg L") 0.09 0.21 0.37 0.63

MAPE (%) 1.07 2.47 4.28 7.18

RMSE (mg L) 0.13 0.28 0.48 0.78
R’ 0.998 0.988 0.958 0.882

Training MAE (mg L") 0.07 0.17 0.31 0.53

MAPE (%) 0.94 2.12 3.92 6.61

AR-RBF RMSE (mg L") 0.10 0.22 0.41 0.69
scenario B R? 0.995 0976 | 0.929 | 0.783
Testing MAE (mg L") 0.08 0.20 0.37 0.69

MAPE (%) 1.03 2.40 4.37 7.85

RMSE (mg L) 0.13 0.29 0.50 0.91

R? 0.998 0.989 0.958 0.865

Training MAE (mg L") 0.06 0.15 0.29 0.54

MAPE (%) 0.82 1.85 3.62 6.66

MLP-RF RMSE (mg L) 0.09 0.21 0.41 0.74
scenario B R? 0.995 0.977 0.933 0.796
Testing MAE (mg L") 0.09 0.21 0.39 0.75

MAPE (%) 1.07 2.47 4.43 8.22

RMSE (mg L") 0.13 0.28 0.51 0.93

words, the model's predictions became less consistent with the
forecasting horizon increases, reflecting increased uncertainty
in long-term forecasts.

Therefore, as the forecasting horizon increases, models can
no longer capture the actual variability and dynamics of DO
concentrations. This constant underestimation implies that
models may not fully account for all the complex factors
affecting DO over longer periods, leading to progressively larger
prediction errors.

As a consequence, the number of outliers also increased
from a few, for the 1-day ahead horizon, to many for the 15-day
ahead horizon, highlighting heightened prediction challenges
with extended horizons.

4. Discussion

4.1 Impact of forecast horizons and input combinations on
model performance

The forecast horizon significantly impacts model performance,
which has been well demonstrated in previous studies. For

© 2024 The Author(s). Published by the Royal Society of Chemistry

example, Woelmer et al?*® found that the forecast horizon
impacts model predictability on near-term phytoplankton fore-
casts; Di Nunno et al.” found that with the increase in the forecast
horizon, the model tends to perform worse for the forecasting of
lake surface water temperatures. The modelling results in the
present study showed a reduction in model performance with the
increase in the forecast horizon for both models.

Typically, the results also indicate that the MLP-RF model is
more applicable in the absence of exogenous input variables,
while the AR-RBF model exhibited greater performance when
including water temperature as an exogenous input. In partic-
ular, in this study, water temperature and previous DO values
were used as model input to forecast DO considering that water
temperature correlated well with DO (correlation coefficient =
—0.95), while the other factors like gage height, flow, and pH
showed insignificant correlation with DO. The good model
performance demonstrated that this choice is appropriate.
Previous studies also showed that water temperature is the
predominant driver of riverine DO.?**** For example, Rajesh and
Rehana** showed that water temperature is the main factor

Environ. Sci.: Adv., 2024, 3, 1537-1551 | 1545
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Fig. 4 Model performance for scenarios A and B, testing stage, with different forecast horizons: MAE (a); MAPE (b), and RMSE (c).

impacting DO in Indian rivers, and Zhi et al.*® found that water
temperature outweighs light and flow as the primary controller
of DO in US rivers. Since water temperature data are more
accessible and available compared with other water quality
data, the choice of water temperature and previous DO values as
model input to forecast DO is very promising. Notably, scenario
B, by disregarding exogenous variables like mean water

1546 | Environ. Sci.: Adv, 2024, 3, 1537-1551

temperature, still works well for short-term forecasts, though
the modelling errors are relatively large for medium-term fore-
casts with large forecast horizons. The results indicate that in
regions without enough water temperature measurements,
using previous DO values as model input to forecast DO is
acceptable, especially for short-term forecasts using the
proposed models.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 DO prediction — MLP-RF — scenario B — testing stage.

4.2 Modelling performance by comparison with previous
studies

Compared with previous ML-based studies on DO modelling in
US rivers, the models proposed in this study showed superior

1548 | Environ. Sci.. Adv, 2024, 3, 1537-1551

performance. For example, Zhi et al.** employed a DL model to
predict DO for US rivers with a mean RMSE of 1.2 mg L. As
seen in Fig. 4, the RMSE values of the two models for scenario
A with different forecast horizons during both the training and

© 2024 The Author(s). Published by the Royal Society of Chemistry
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testing periods are all below 0.8 mg L™, lower than that re-
ported by Zhi et al.>® Another example was reported by Mog-
hadam et al,* which used a deep recurrent neural network
model to model daily DO for Fanno Creek in Oregon, consid-
ering three forecast horizons (1 day ahead, 3 days ahead, and 7
days ahead). The RMSE values for 1-day ahead, 3-day ahead,
and 7-day ahead predictions by Moghadam et al. (2021) are
0.43 mg L', 0.682 mg L', and 0.817 mg L™ ", respectively. In
comparison, the RMSE values in our study are 0.13 mg L™,
0.28 mg L', and 0.46 mg L' for scenario A, indicating the
better performance of our models. Dumbre et al.'® proposed
a polynomial regression model to establish a mathematical
link between water temperature and DO for the prediction of
DO in the Mississippi River, considering Baton Rouge as
a monitoring station, in line with the present study. The
authors did not extend the study as the prediction horizon
increased. However, for a 1 day ahead prediction, they ach-
ieved the R” value of 0.96, which is good but lower than those
found in the present study (R* = 0.995-0.999).
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While these comparisons highlight the robustness of the
developed models, the authors acknowledge the limitation that
the datasets and environmental conditions vary across different
studies. Direct comparisons are challenging because the
models have been trained and tested on different datasets with
varying characteristics. This variability can significantly influ-
ence the models' performance and generalizability. To address
this limitation and enhance the comparability of DO prediction
models, future research should aim to establish standardized
datasets that can be used to benchmark different models. Such
datasets would allow for a more accurate assessment of model
performance across various studies and watersheds, facilitating
a better understanding of the strengths and limitations of
different modelling approaches.

4.3 Limitations and future developments of the study

The AR-RBF model, concerning short and medium-term DO
predictions, has exhibited forecasting capability practically
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Fig.9 Box plots for scenarios A and B, testing stage, with different forecast horizons: 1 day ahead (a); 3 days ahead (b); 7 days ahead (c); 15 days

ahead (d).
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equivalent, or in some cases superior, to that of the stacked
MLP-RF model, which had previously demonstrated high
performance in hydrological forecasting.®”**%”

However, it is important to emphasize that the proposed
models have been applied to a case study characterized by
a limited influence of flow velocity and depth on dissolved
oxygen. In the future, the proposed methodology will need to be
tested for DO prediction on rivers with different hydrological
regimes. Testing the approach on rivers with diverse hydrological
features is crucial for its generalizability and robustness.
Different rivers may respond differently to predictors, challenging
the methodology to adapt and perform under varied conditions.
These tests help identify potential weaknesses and biases,
refining the approach to enhance the accuracy. Moreover, rivers
with diverse characteristics offer broader practical applications,
ensuring the global relevance of the methodology. Additionally,
rivers flowing through regions with different climates, such as
Mediterranean or semi-arid regions, should also be considered.
These climates present unique challenges due to varying precip-
itation patterns, evaporation rates, and water usage practices,
which can significantly influence DO levels. From this perspec-
tive, incorporating different machine learning or deep-learning
algorithms, along with additional exogenous inputs, could
enhance the reliability of DO forecasting.

5. Conclusion

Two different prediction models with different input combi-
nations and forecast horizons of up to 15 days were developed
for the prediction of the DO in the Mississippi River. The
proposed models were obtained by leveraging the AR of RBF
neural networks and by stacking MLP and RF. In addition, two
input scenarios were considered. The first, scenario A, includes
the mean water temperature and the preceding DO values as
input, and the second, scenario B, includes only the preceding
DO values as input. The key findings can be summarized as
follows:

- Both the AR-RBF and the stacked MLP-RF models are
capable of providing excellent short-term forecasts and suffi-
ciently accurate forecasts for medium-term horizons, up to 15
days. They faithfully reproduce both the extreme values and the
fluctuations of DO.

- Both models exhibit a reduction in accuracy as the fore-
casting horizon is extended. This reduction is more pronounced
when the input variables do not include the average water
temperature.

- Referring to the longer forecasting horizons considered in
the study, AR-RBF exhibits a more limited bias compared to the
stacked MLP-RF model.

Overall, the accurate predictions made with both models
make them promising tools for proper DO prediction in rivers.

Data availability

The data related to the Mississippi River are available on the
USGS website at the following link: https://waterdata.usgs.gov/
monitoring-location/07374000.
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