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Chemotactic behavior for a self-phoretic Janus
particle near a patch source of fuel

Viviana Mancuso,ab Mihail N. Popescu c and William E. Uspal *ab

Many biological microswimmers are capable of chemotaxis, i.e., they can sense an ambient chemical

gradient and adjust their mechanism of motility to move towards or away from the source of the

gradient. Synthetic active colloids endowed with chemotactic behavior hold considerable promise

for targeted drug delivery and the realization of programmable and reconfigurable materials. Here, we

study the chemotactic behavior of a Janus particle, which converts ‘‘fuel’’ molecules, released at an

axisymmetric chemical patch located on a planar wall, into ‘‘product’’ molecules at its catalytic cap and

moves by self-phoresis induced by the product. The chemotactic behavior is characterized as a function

of the interplay between the rates of release (at the patch) and the consumption (at the particle) of fuel,

as well as of details of the phoretic response of the particle (i.e., its phoretic mobility). Among other

results, we find that, under certain conditions, the particle is attracted to a stable ‘‘hovering state’’ in

which it aligns its axis normal to the wall and rests (positions itself) at an activity-dependent distance

above the center of the patch.

1 Introduction

Synthetic microswimmers have gained significant attention in
recent years due to their potential applications in various
fields,1 including materials science,2 micro/nanotechnology,3

environmental remediation,4,5 and biomedicine.6,7 Among syn-
thetic microswimmers, catalytically active Janus particles (JPs),
capable of autonomous motion in response to self-generated
chemical gradients, present a particularly intriguing avenue for
exploration.8 These particles consume molecular ‘‘fuel’’ (i.e.,
reactant) available in the surrounding liquid solution by cata-
lyzing a chemical reaction over a region of their surface. The
free energy of the chemical reaction is used to induce the
particle’s mechanical motion through an interfacial molecular
mechanism known as phoresis.9–11 In brief, gradients in the
chemical composition of the solution along the surface of a
particle, in conjunction with molecular-scale interactions
between the particle surface and the various chemical species
(solvent, reactant, and reaction product) present in the
solution, drive hydrodynamic flow of the solution, leading to
directed ‘‘swimming’’ motion of the particle.9,10

For catalytic Janus particles, the reaction rate, and therefore
the interfacial swimming actuation, depends on the local
concentration of molecular fuel.8 This observation raises intri-
guing possibilities for controlling particle behavior. In particu-
lar, an understanding of how these particles respond to
external gradients of fuel concentration may allow for realiza-
tion of artificial chemotaxis, inspired by chemotaxis in biolo-
gical micro-organisms. Here, one can make a suggestive
analogy: in order to move towards regions with a higher
concentration of nutrients or other chemoattractants, micro-
organisms sense local concentrations and adjust their locomo-
tion mechanisms accordingly. A classical example is E. coli,
which can migrate towards a food source in liquid solution by
temporally sampling the local nutrient concentration, and,
acting on these measurements, suitably modulating a random
sequence of straight line ‘‘runs’’ and uncontrolled ‘‘tumbling’’
events that randomize the bacterium’s swimming direction.12

While E. coli performs temporal sampling, eukaryotic cells are
large enough to directly sense chemical gradients across their
body length using surface receptors.13–15 For instance, for the
amoeba Dictyostelium, an asymmetric distribution of bound
and unbound surface receptors can trigger polarization of
internal biochemical pathways, allowing this organism to steer
towards a food source.14 Neutrophils can chemotax towards
an inflammation site through similar mechanisms.16,17

Although Dictyostelium and neutrophil motility usually involves
contact with a solid surface, chemotaxis has also been observed
for these cells when freely suspended and swimming in
solution.18
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Motivated by the swimming-squirming analogy between the
motility of catalytic Janus particles and that of micro-
organisms,19–21 many studies have considered whether such
analogy extends towards an equivalent of chemotaxis of syn-
thetic swimmers exposed to spatial gradients in the concen-
tration of reactant. Here, we highlight a few of these studies;
comprehensive reviews are provided by ref. 22 and 23. In an
early work, Hong et al. studied the behavior of Pt/Au bimetallic
nano-rods in the vicinity of a gel soaked with hydrogen peroxide
‘‘fuel.’’ The rods were observed to accumulate at the gel.24

Subsequently, Byun et al. pointed out the possibility of hydro-
dynamic flows sourced by the fuel patch in this set-up, and
developed a framework for distinguishing advective and self-
propulsive contributions to particle motion.25 Baraban et al.
studied chemotactic behavior of tubular micro-jets and
Pt@SiO2 Janus spheres in a microfluidic device.26 A solution
containing hydrogen peroxide was continuously injected in one
inlet port of the device, leading to a gradient of chemical ‘‘fuel’’
perpendicular to the direction of flow. The microswimmers
exhibited a tendency to orient towards the region of high fuel
concentration and accumulate in that region. In a similar
microfluidic set-up, catalase-coated and urease-coated lipo-
somes were observed to migrate towards and away from,
respectively, regions of high substrate concentration.27 More
recently, Xiao et al. used stop-flow microfluidic gradient gen-
eration to study chemotactic behavior of Cu@SiO2 Janus
spheres, finding a tendency of these particles to align their
cap towards higher fuel concentration.28 By stopping the flow,
they could eliminate any potential contribution of surface-
assisted cross-stream migration to particle motion.29 In an
effort to realize chemotactic active colloids that use biocompa-
tible fuels, Mou et al. fabricated ZnO-based Janus spheres
fuelled by dissolved carbon dioxide.30 They observed these
Janus particles to chemotax towards a carbon dioxide source
through reorientation. Additionally, Zhou et al. studied bottle-
shaped particles powered by internalized enzymatic decompo-
sition of glucose.31 Similarly, they found that ‘‘opening’’ of a
bottle will rotate towards a glucose source, leading to chemo-
tactic migration.

To shed some light on mechanisms underlying experimental
results, Popescu et al. presented a framework for understand-
ing how the microscopic coupling between the orientation of a
self-phoretic Janus particle and an ambient chemical gradient
can lead to chemotaxis, defined to be active reorientation of the
swimming direction with respect to the gradient.32 Active
reorientation distinguishes chemotaxis from chemokinesis,
defined as a variation of particle speed due to ambient
chemical gradients.32,33 As a microscopic mechanism that
induces reorientation, Popescu et al. pinpointed a crucial role
for a quantitative difference in chemi-osmotic response of the
catalytic and inert ‘‘faces’’ of the particle to a chemical
gradient,32 which is the equivalent for the active particles of
the classic result of Anderson concerning the electrophoresis of
colloids with non-uniform zeta potential.10 The importance of a
contrast in phoretic mobilities of the two ‘‘faces’’ for inducing
alignment of the particle with an externally maintained

gradient had also been noted in the context of thermophoretic
Janus particles.34 Building upon the analysis by Saha et al.,35

Tătulea-Codrean and Lauga presented a comprehensive
theoretical model for the motion of a self-phoretic Janus
particle in a linear background reactant gradient in unconfined
solution.36 They assumed that the reaction rate is proportional
to the reactant concentration (i.e., first-order kinetics), consid-
ered the phoretic response to both the reactant and product
gradients, and developed comprehensive analytical expressions
for the translational and angular velocity of a Janus particle
with arbitrary orientation with respect to the background
gradient. Using these results, they considered the dispersion
of a dilute suspension of such Janus particles exposed to a
linear gradient in fuel. Finally, we mention that chemotaxis of
chemically-powered micromotors in a fuel gradient has also
been studied by means of mesoscopic particle-based
simulations.37,38

Moving from the single-particle behavior to the context of
suspensions, chemotaxis has been noted to play a role in phase
separation, clustering, and other collective phenomena in
systems of self-phoretic active colloids.39 When these particles
interact through self-generated chemical gradients, the sign of
chemotactic alignment, i.e., the attractive or repulsive charac-
ter, determines whether these systems form finite-size clusters,
or collapse into a single large cluster.40 Saha et al. distinguished
four modes of response of an active colloid to an ambient
chemical gradient, including chemotactic alignment, and
mapped out a phase diagram of collective behaviors induced by
chemotaxis.35 Chemotactic alignment can cooperate or com-
pete with other interparticle interactions, especially activity-
sourced hydrodynamic interactions.41–43 For instance, it has
been shown that activity-induced fluid stirring can disrupt
chemotactic pattern formation.43

Preceding theoretical studies have laid the groundwork for
understanding chemotaxis of catalytic Janus particles. How-
ever, important aspects of the problem still remain to be
explored. For instance, most experiments involve a spatially
localized and finite-sized source of fuel (i.e., a ‘‘patch’’). A patch
will generate a fuel concentration field that has nonlinear
dependence on spatial position. It is only far away from the
patch, i.e., for distances from the patch that are much larger
than the characteristic length scale of the patch, that a linearly
varying field is a good approximation. However, nonlinear
gradients may play a significant role in determining particle
behavior, especially as the Janus particle approaches the patch.
Secondly, the interplay of the characteristic sizes of the patch
and particle may be important, especially as the particle
approaches the patch. Thirdly, in experimental realizations,
the patch is usually associated with a confining boundary, such
as when the patch is the surface of another colloidal particle, or
when the patch is imprinted on a planar substrate. A solid
confining boundary will modify the chemical and hydrody-
namic fields sourced by patch and the Janus particle, affecting
particle motion. Here, we recall that even an inert planar wall
can induce wall-bounded ‘‘sliding’’ and ‘‘hovering’’ states of a
catalytic Janus particle.44
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In this study, we investigate the motion of a Janus particle
activated by a finite-sized, spatially localized patch source of
‘‘fuel’’ in a confining geometry. Specifically, we consider the
motion of a catalytic Janus particle near a chemical patch with
axisymmetric shape that continuously emits chemical fuel. The
model assumes first-order chemical kinetics and therefore
resolves the dependence of the catalytic activity of the particle
on the local concentration of reactant and motion by self-
phoresis induced solely by the product. Using first-order
kinetics, the model can probe the relative significance of
reaction rate (rate of fuel consumption by the particle) and fuel
diffusion.45,46 Moreover, the model also explicitly considers the
sizes of the particle and the patch, thus going beyond a far-field
point particle and point source analysis (which is recovered in
the limiting case of large distances). In large part, this study
will focus on an axisymmetric configuration of the particle and
patch, in which the particle center is located above the patch
center, and the particle axis is aligned with the patch normal,
with the general aim of understanding the conditions under
which a Janus particle will navigate towards or away from the
patch. Although this focus will limit our direct consideration of
chemotactic reorientation, it is the logical starting point for
understanding general three-dimensional motion.

In summary, our study provides foundations for under-
standing how a Janus particle responds to a localized, not
point-like, source of fuel. The distinctive features include the
consideration of a non-uniform reactant concentration field
within the solution, sourced by a chemically active patch, as
well as the role of confining geometry. Our main finding is that,
under certain conditions, these features induce a novel ‘‘hover-
ing’’ state in which the particle remains motionless at a steady
height above the patch on the wall. The precise value of the
hovering height depends on the dimensionless reaction rate
(Damköhler number), as well as the material properties of the
particle (phoretic surface mobility) and the details of the
geometry (the shape of the particle, the shape of the patch,
the size ratio, etc.) Depending on these parameters, the hover-
ing state can be stable or unstable against vertical perturba-
tions of the particle position. We also briefly investigate the
stability of the hovering state against general three-
dimensional (3D) motions. We show that the hovering state
can indeed be stable in 3D, and attracts a particle from an
arbitrary initial position and orientation that is not an axisym-
metric configuration. Therefore, our study provides proof of
concept that a fuel-releasing chemical patch can attract a Janus
particle through chemotaxis.

2 Model

Fig. 1 schematically depicts the key components of our model.
A planar wall confines the suspension containing the Janus
particle to the upper half space. At a region (the patch) posi-
tioned on the planar wall, reactant molecules are released into
the surrounding solution. These rapidly diffuse throughout the
solution; upon contact with the catalytically active side (the red

hemisphere in Fig. 1) of the Janus particle (JP), they are
converted, with certain probability (encoded by the rate of the
chemical catalytic reaction), into product molecules. The
chemical reaction can be simplified as R - a�P, with R and P
representing a generic reactant and product, respectively, and a
as the stoichiometric factor; in the following we set a = 1, for
simplicity. Since the reaction exclusively occurs on one side of
the JP, it leads to inhomogeneities in the spatial distribution of
product and reactant molecules around the JP. We assume that
the motion of the JP emerges through a phoretic response
solely to the gradients in the density of product molecules and
further assume that this can be summarized by a phoretic
actuation (active slip velocity, depicted schematically in Fig. 1
by the green arrows) of the suspension at the surface of the
particle, as in the classic framework by Anderson.10 This gives
rise to bulk hydrodynamic flow and motion of the particle.
Under the typical assumptions of low Reynolds number flow of
the solution and overdamped motion of the colloidal particle,
which are very reasonable approximations in many experi-
ments, in the absence of an external driving field acting on
the particle, the force and torque induced by the interfacial flow
are instantaneously balanced by translational and rotational
hydrodynamic drag on the particle.

From a mathematical standpoint, the model described
above means determining a chemical field, which consists of

Fig. 1 Illustration of a spherical Janus particle (JP) and the patch-
activated self-diffusiophoresis process. A Janus particle of radius Rp is
suspended in a liquid solution near a planar wall (grey). A circular patch
with radius Rd (orange) is located on the wall. The patch continuously
releases reactant molecules (small red dots) into the solution. Reactant
molecules are converted (red and blue arrows) into product molecules
(small blue dots) at the catalytic cap of the Janus particle (red). The
resulting gradient in product molecule concentration along the surface
of the particle leads to an interfacial flow (green arrows), and therefore
directed motion (black arrow).
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the spatial distributions of reactant and product molecules,
and a hydrodynamic field induced by the active actuation at the
surface of the particle, as well as the overdamped motion of the
particle. These points will be addressed in the next subsections.
Before proceeding, here we discuss several approximations,
already alluded to in the previous paragraph, which are sug-
gested by the typical experimental studies of micrometer sized
colloids in aqueous suspensions (these seem to be also the
most suitable set-ups for realizations of the model system
considered by us). These will allow significant simplifications
of the mathematical description.

First, for systems involving suspensions with density and
viscosity similar to that of water, particles with sizes typically in
the order of micrometers, and flow and particle velocities
typically in the order of micrometers per second, viscous forces
dominate over inertia. This is quantified by the Reynolds

number Re � rjUjRp

m
, where r is the density of the fluid, |U|

a characteristic velocity (e.g., the translational velocity of the
particle), and m is the dynamic viscosity. Using Rp B 1 mm,
|U| B 1 mm s�1, r B 1000 kg m�3, and m B 10�3 Pa s renders
Re B 10�6 { 1. Accordingly, the hydrodynamics is governed by
the Stokes equation, and, consistently, the motion of the
particle is in the overdamped regime.

Second, by the Stokes–Einstein relation, diffusion of the
molecularly sized reactant and product species in aqueous
solutions is fast, implying that the transport of the reactant
and product species by diffusion dominates over that by
advection. This assumption is substantiated by the value of
the Péclet number (Pe), which compares the time scales of
diffusion and advection over a lengthscale comparable to that
of the particle size: the same numbers as above render D B
10�9 m2 s�1 for Å-sized molecules and thus Pe = |U|Rp/D E
10�3 { 1. Consequently, the advection term can be neglected in
the continuity equation for the product. This is a major simpli-
fication because it effectively decouples the equations governing
the chemical field from the hydrodynamics of the solution.

2.1 Chemical field

The fast diffusion of the molecular species, Pe { 1, additionally
justifies the assumption that, on the time scale of particle
motion, the chemical field is quasi-relaxed to the steady-state
distribution corresponding to the instantaneous position of the
particle. Furthermore, we also assume that the molecules
exhibit ‘‘ideal-gas-like’’ behavior, implying that the distribution
of each species remains unaffected by the presence of other
molecules.

Given these considerations, the reactant chemical field cr is
modeled by the Laplace equation,

r2cr = 0, (1a)

subject to the boundary conditions (BC):
– at infinity

lim
jrj!1

cr ¼ 0; (1b)

meaning that no reactant molecules are present at a consider-
able distance from the patch;

– release of reactant molecules at the patch at the wall (the
plane z = 0):

�Dr[rcr�ẑ]|z=0 = QK(r)|z=0, (1c)

where Dr denotes the reactant diffusion coefficient, ẑ the
normal vector of the wall defined to point into the fluid, K(r)
a function that specifies the shape of the patch and charac-
terizes the spatial distribution of activity, which equals 1 at the
patch and 0 outside, and Q (with units of m�2 s�1) denotes the
number of reactant molecules released per unit area, per unit
time. We assume Q to be constant in time and space over the
area occupied by the patch;

– a sink at the active side, SA of the JP surface S where the
conversion of reactant into product is promoted, and a reflec-
tive surface at the inert side SI of the JP surface, i.e.,

�Dr[rcr�n̂]|S = �F[f (r)cr]|S. (1d)

We adopt first-order reaction kinetics, with the sink-strength
directly proportional to the concentration of the reactant spe-
cies, cr. The activity function f (r) characterizes the distribution
of the reaction over the JP surface (f (r) = 1 on SA and 0 on SI),
and the parameter F (units of m s�1) accounts for the rate of
reactant conversion.

As discussed, we consider in this study only the case of
patches with axisymmetric shapes, and thus we write K(r) = K(r)
(z = 0, implicitly) and define the origin of the coordinate system
at the center of the patch. The solution to the diffusion problem
outlined above is more conveniently expressed as the super-
position of a background field produced by the patch in the
absence of the JP, and a ‘‘disturbance’’ field, cr = cb

r + cd
r . The

background field obeys the Laplace equation, the boundary
condition at infinity, eqn (1b), and accounts for the boundary
condition at the wall eqn (1c). This problem can be solved
analytically using the separation of variables and the Fourier–
Bessel transform,47,48 yielding the solution:

cbr ðrÞ ¼
ð1
0

AðxÞe�xzJ0ðxrÞdx; (2)

where A(x) represents the Fourier–Bessel spectrum, and J0,1

denotes Bessel functions of the first kind. Since x has dimen-
sions of inverse length, note that A(x) has dimensions of
concentration times length. It can be found by applying the
boundary conditions and noting that the Bessel functions J0

obey the orthogonality relation:ð1
0

J0ðxrÞJ0ðx0rÞrdr ¼
dðx� x0Þ

x
;

where d(x � x0) is the Dirac delta function. The boundary
condition on the wall and the orthogonality relation give the
Fourier–Bessel spectrum:

Aðx0Þ ¼ C0

Rp

ð1
0

drrJ0ðx0rÞKðrÞ; (3)

where we define the characteristic concentration C0 � QRp/Dr.
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The Fourier–Bessel spectrum can be introduced into eqn (2),
completing the calculation of the background reagent chemical
field as:

cbr ðr; zÞ ¼
C0

Rp

ð1
0

dx
ð1
0

dr0r0J0ðxr0ÞKðr0Þ
� �

e�xzJ0ðxrÞ: (4)

The integral within the square brackets in eqn (4) can be
calculated exactly for a circular patch of radius Rd:ðRd

0

drrJ0ðxrÞ ¼
Rd

x
J1 xRdð Þ:

This leads to:

cbr ðr; zÞ ¼ C0
Rd

Rp

ð1
0

dx
1

x
J1 xRdð Þe�xzJ0ðxrÞ: (5)

Note that the factor of
Rd

Rp
is due to our choice to use the particle

size Rp as a characteristic length scale in the definition of C0.

The combination C0
Rd

Rp
¼ QRd

Dr
gives a characteristic concen-

tration Cc �
QRd

Dr
sourced by a circular patch of radius Rd.

Anticipating an extension of the type of geometries analysed
as a test for the theoretical far-field, point-particle predictions
(see the following section), we note here that from the solution
for the background reactant field sourced by a circular patch,
we can easily obtain the solution for the background field
sourced by, e.g., a ring-shaped patch. Specifically, the ring-
shaped patch has K(r) = 1 for Ri o r o Ro, and K(r) = 0
elsewhere. Due to the linearity of Laplace’s equation, we can
obtain the solution for a ring-shaped patch by subtracting the
background field for a circular patch of radius Rd = Ri from the
background field for a circular patch of radius Rd = Ro.

In terms of the – now known – background density field cb
r ,

the diffusion problem for the disturbance field is formulated as
follows. The field cd

r obeys the Laplace equation, the boundary
condition at infinity, eqn (1b), and – owing to cb

r already
fulfilling eqn (1c) – a zero normal current (reflective) boundary
condition at the wall. The concentration gradient along the
direction normal to the JP surface assumes the form:

[rcr�n̂]|S = [rcb
r �n̂ + rcd

r �n̂]|S,

which, when combined with eqn (1d), renders the BC at the JP
surface

rcbr � n̂þrcdr � n̂
� ���

S
¼ F

Dr
f ðrÞ cbr þ cdr

� �� ���
S
; (6)

or, in a non-dimensional form (with r̃ = r/Rp and c̃ = c/C0),

~r~cbr � n̂þ ~r~cdr � n̂
� ���

S
¼ Da f ð~rÞ ~cbr þ ~cdr

� �� ���
S

(7)

in terms of the dimensionless Damköhler number defined as

Da := FRp/Dr � FC0/Q. (8)

The Damköhler number contrasts the reaction rate (in the
numerator) with the diffusion rate (in the denominator);

alternatively, it can be seen, by the second expression, as
comparing the relative rates of supply of fuel by the patch
(the denominator) and consumption of fuel by the particle (the
numerator). At low Da values, the rate of molecular diffusion
surpasses the rate of chemical reactions. In this regime, reac-
tions become the limiting factor. Fuel is plentifully available for
the JP, but the product concentration, and therefore the particle
self-propulsion velocity, is limited by the slow catalytic reaction.
In contrast, at high Da values, chemical reactions prevail over
molecular diffusion, swiftly converting reactant molecules into
fuel and rendering diffusion the limiting factor. As a result, a
fuel-depleted boundary layer forms near the JP. When Da B 1,
the rates of both diffusion and reaction processes are compar-
able, ensuring a balanced interplay without a dominant mecha-
nism. The implications of these varying scenarios on the JP’s
behavior, especially in terms of the reactant field and the
particle velocity, merit further examination and are discussed
in subsequent sections. In typical experiments involving cata-
lytic Janus particles, the Damköhler number is usually consid-
ered to be around Da E 0.1, although explicit experimental
estimates are somewhat scarce.49 As various researchers have
noted,49–51 the size dependence of the propulsion velocity
experimentally observed by Ebbens et al.52 for platinum-on-
polystyrene Janus particles may be interpreted as a large Da
effect. Accordingly, in our study we will consider a broad range
of Da values, covering both small and large values.

Turning now to the distribution of product, we recall that at
the JP surface the R-molecules are converted into P-molecules.
At steady state, the product chemical distribution is the
solution of the Laplace equation,

r2cp = 0, (9a)

vanishing at infinity

lim
jrj!1

cp ¼ 0; (9b)

and obeying the BC at the JP particle surface

~r~cp � n̂
��
S
¼ �Da

Dr

Dp
f ðrÞ~cr½ �S: (9c)

The wall is assumed to be impenetrable to the product mole-
cule:

~r~cp � n̂
� ���

z¼0¼ 0: (9d)

For simplicity, in the followings we assume equal diffusion
coefficients, Dp = Dr.

2.2 Fluid actuation by active phoretic slip

As discussed, the interfacial flow driven by the spatially inho-
mogeneous distribution of the product concentration will be
accounted in our model by an active phoretic slip velocity vs,
which defines the relative velocity between the particle and the
fluid. For this we assume the classic expression9,10

vs(r) = �b(r)r8cp, (10)

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

5-
07

-2
02

5 
 6

:0
9:

16
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sm00733f


This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 8742–8764 |  8747

where r8cp defines the surface gradient of the product concen-
tration, and b defines the phoretic mobility, also known as the
surface mobility, with units of m5 s�1.

The latter is a material-dependent parameter that describes
the effective intermolecular interaction between the product
and the colloid surface. The value of this parameter quantifies
the strength of intermolecular forces, and the sign indicates
whether these interactions are attractive (positive sign) or
repulsive (negative sign). Moreover, the phoretic mobility can
be either uniform or non-uniform over the particle surface.
Typically, as the two sides of the Janus particle are composed of
different materials, their distinct chemical properties result in
separate and independent interactions with the product mole-
cules. Consequently, the parameter ‘‘b’’ assumes distinct values
bcb0 and bib0, on the cap and inert side, respectively. Here, bc

and bi are dimensionless quantities, while b0 4 0 is a char-
acteristic surface mobility. When considering the materials
commonly utilized in the design of self-phoretic Janus parti-
cles, such as Pt and SiO2, experimental evidence suggests that
the ratio bi/bc typically falls within the range of 0 to 0.3.53 This
parameter holds particular significance in this problem as it
can be adjusted to achieve specific motion dynamics.

Finally, we note that from the form of the slip velocity, we
can define a characteristic velocity V0 � b0C0/Rp. Substituting
our expression for C0, we obtain

V0 = b0Q/Dr. (11)

2.3 Hydrodynamic field

We assume that the flow is incompressible, giving the
condition

r�u = 0, (12)

where u(r) is the velocity of the fluid flow (the hydrodynamic
field). As noted, for Re { 1 the flow is the solution of the Stokes
equation,

r�r = 0; (13a)

for a Newtonian fluid, r = �pI + m[ru + ruT], where p(r) is the
pressure. This is subject to BCs of quiescent flow far from the
colloid,

u(|r| - N) = 0, (13b)

and of a prescribed slip at the surface of the particle,

u(r)|S = [V + X � (r � rp) + vs(r)]S, (13c)

where V and X represent the translational and angular velo-
cities of the Janus particle, respectively, vs(r) is the slip velocity,
and rp is the position of the particle center. Finally, we assume a
no-slip boundary condition on the wall:

u(r)|z=0 = 0. (13d)

To close the system of equations (recall that V and X are
unknown at this point), we consider the net force and the net

torque acting on the colloid, defined as Fnet and the Tnet

respectively. Since Re { 1, these instantaneously vanish:
Fnet E 0 and Tnet E 0. Both can be seen as the sum of
hydrodynamic and external contributions so that: Fnet = Fh +
Fext and Tnet = Th + Text. The hydrodynamic terms, Fh and Th, are
exerted by the fluid on the particle. On the other hand, Fext and
Text refer to external forces and torques acting on the system. In
this study, we assume that there are no external forces or
torques on the system. Consequently, the net force becomes:

Fnet ¼
ð
S

r � n̂dS ¼ 0: (14a)

Similarly, the net torque becomes:

Tnet ¼
ð
S

r� rp
� �

� r � n̂dS ¼ 0: (14b)

At this stage, the hydrodynamic problem has been fully
characterized and the analysis can be simplified by introducing
the Lorentz reciprocal theorem, which connects the slip velocity
and the translational and rotational velocities, leading to:54

V � Fa þX � Ta ¼ �
ð
S

vs � ra � n̂dS: (15)

Here, the subscript ‘‘a’’ denotes an auxiliary hydrodynamic
problem that has the same geometry as the hydrodynamic
problem formulated above, but with different boundary condi-
tions for the fluid velocity. The auxiliary force, torque, and
stress denoted as Fa, Ta, and ra, respectively, depend on the
specific choice of the auxiliary problem. Judicious selection of
auxiliary problem(s) with known or calculable solutions for Fa,
Ta, and ra allows specification of a linear system for the
unknown components of V and X. (Some may be known to
be zero a priori by symmetry.) Further details are available in
ref. 54.

3 Results

In the following, we assume an axisymmetric configuration of
the patch and the particle, as schematically illustrated for a
sphere by Fig. 1. We aim to understand whether the particle will
strictly move towards or away from the patch, or whether, under
some conditions, the particle can have a motionless ‘‘hovering’’
state at a fixed height above the patch. Additionally, for hover-
ing states, we seek to understand the dependence of the
hovering height on the system parameters (Da, bi, and bc), as
well as the stability of the hovering state against perturbations
in the particle height.

In the preceding, we did not assume any particular shape of
the Janus particle. In the following, we will mainly consider
spherical particles of radius Rp that are half-covered by catalyst.
We will also consider prolate spheroidal particles with semi-
major axis length Rp. The semi-minor axis length is quantified
by the aspect ratio re as reRp, where 0 o re r 1. Both spherical
and prolate spheroidal particles are assumed to have axisym-
metric catalyst coverage, and we will also consider the depen-
dence of hovering on the particle shape, i.e., the value of re.
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3.1 Concentration fields

As described above, the determination of the reactant and
product concentration fields is independent of, and logically
precedes, the determination of the particle velocity. Therefore,
we first consider these fields for a particle near a wall. The
background reactant field cb

r is obtained by numerical integra-
tion of eqn (5). We solve for the concentration fields cd

r and cp

using two approaches. Semi-analytically, we solve for the fields
using bipolar coordinates, as detailed in Appendix B. Numeri-
cally, we use the boundary element method (BEM).55 As dis-
cussed in Appendix B, the reason for using both these
approaches is that of cross-check and validation, in a couple
of cases, of the BEM. The latter is significantly faster, and it also
has the crucial advantage of a straightforward generalization to
more complex cases, e.g., particles of non-spherical shapes and
systems lacking axial-symmetry, that will be considered in
future studies. Unless explicitly mentioned, the results pre-
sented and discussed in the followings are obtained by using
the BEM method.

We briefly discuss the reactant background field, shown in
Fig. 2 for a circular patch with Rd = Rp. In the bulk liquid near
the patch (0.1 o z/Rp o 1 and |y|/Rp o 1.5), there is strong
spatial variation of the concentration. In very close vicinity of
the patch, z E 0 and |y|/Rp o 1, the reactant field is approxi-
mately uniform in the lateral direction. At this close distance,
the patch resembles a planar wall that uniformly releases
reactant. Since the only length scale in determination of the
background field for a circular patch is Rd, the values of the
dimensionless concentration for other values of Rd can be
easily inferred by rescaling of the coordinate axes and the
dimensionless concentration by Rd/Rp (see the prefactor in
eqn (5).)

Fig. 3 shows the reactant concentration (on the left) and
product concentration (on the right) for h/Rp = 1.2 and Da =
0.001, 1, 100. For the reactant, the insets (top-right corner)
provide a zoomed-in view of the region between the patch and
the JP, for a better visualization of the gradient. For the low
value of Da, diffusion is the predominant process. A particular
concentration, cr/C0 = 1 (yellow tone) reaches a distance on the
wall (z = 0) equal to y/Rp = 0.8. In the vicinity of the catalytic
‘‘pole’’ of the particle, located at z/Rp = 2.2, the reactant
concentration cr/C0 E 0.15 (bluish color). At Da = 1, the two

processes (reaction and diffusion) assume equal importance. At
high Da, the reactant is quickly consumed by the catalytic cap,
and therefore is less able to diffuse into the surrounding
solution. Here, cr/C0 = 1 reaches only y/Rp = 0.5 on the wall.
Moreover, the reactant concentration is nearly exhausted in the
vicinity of the catalytic pole (cr/C0 E 0.01, purple color.) In all
cases, the results obtained numerically, with the BEM, and
semi-analytically, using bipolar coordinates, show excellent
quantitative agreement (see Appendix B).

In addition, Fig. 3 shows (on the right) the product concen-
tration for the same height and values of Da. For the smallest
value of Da, Da = 0.001, the concentration is highest near the
catalytic pole. The maximum of the product concentration
being located at the catalytic pole is a typical scenario for
catalytic Janus spheres.46 Over the cap, the spatial gradient of
concentration is directed from the ‘‘equator’’ to the pole, with a
positive component in the z-direction. Over the inert region of
the particle, the spatial gradient is from the pole to the equator;
again, the z-component is positive. Recalling that vs(r) =
�b(r)r8cp, we expect that the slip velocity will have a positive
z-component where b is negative. Therefore, for bi o 0, the
inert region would drive swimming towards the wall. (Recall
from Fig. 1 that slip velocity induces translational motion in the
opposite direction.) Likewise, for bc o 0, the catalytic region
would also drive swimming towards the wall.

For the largest value of Da, however, we see an ‘‘inversion’’
effect. The concentration is highest near the ‘‘equator’’ of the
particle. Thus, on the catalytic side, the spatial gradient of the
concentration is directed from the catalytic ‘‘pole’’ to the
‘‘equator,’’ with a negative component in the z-direction. There-
fore, if bc o 0, the slip velocity on the cap will be directed from
the ‘‘pole’’ to the ‘‘equator,’’ and the catalytic cap would drive
swimming away from the wall. On the inert side, we still have a
spatial gradient from the ‘‘pole’’ to the ‘‘equator,’’ and a slip
velocity in the same direction for bi o 0. Therefore, the inert
side would still drive swimming towards the wall when bi o 0,
as in the low Da case.

From the foregoing, it is clear that, for a given configuration
of the particle and patch, the Damköhler number Da can have a
profound effect on the product concentration field. Increasing
Da for a particle at a given position can lead to a
‘‘concentration-inversion’’ effect. We can also show that, at a
given value of Da, the inversion effect depends on proximity to
the patch. In Fig. 4, we show the product concentration field for
a sphere with Da = 100 that is far away from the patch (h/Rp =
100). The product concentration is mostly uniform over the cap,
with a sharp decrease in the vicinity of the equator as one
approaches the equator from the catalytic pole. Therefore, there
is no inversion effect, and for bc o 0, the catalytic cap would
drive swimming towards the wall.

Now we are in a position to qualitatively infer the existence
of a ‘‘hovering’’ state. To simplify the following argument,
suppose bi = 0, such that the inert side of the particle does
not contribute to the particle velocity. For Da = 100 and bc o 0,
the catalytic cap drives swimming away from the wall when the
particle is at a height h/Rp = 1.2. For the same value of Da and

Fig. 2 Background reactant concentration c̃b
r sourced by a circular patch

with radius Rd = Rp. The patch is shown as a thick black line.
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the same bc o 0, the catalytic cap drives swimming towards
the wall when h/Rp = 100. Thus, we expect that at some

intermediate height 1.2 o h/Rp o 100, the velocity of the
particle will be zero. The particle will exhibit motionless
‘‘hovering’’ at this height (although it will continuously pump
the surrounding fluid.) The following section will confirm this
reasoning quantitatively.

Appendix B provides a quantitative comparison of reactant
concentration fields obtained with the BEM and via semi-
analytical solution in bipolar coordinates (Fig. 17). We note
that the agreement shown in Fig. 17 between the two meth-
odologies provides important validation of our implementation
of the boundary element method for first-order chemical
kinetics. Beyond the parameters shown in the figures, the
BEM can easily be extended to calculate chemical fields for
very large Da numbers and/or very large distances h, as well as
non-axisymmetric configurations. Moreover, the BEM straight-
forwardly handles other particle shapes, and is computationally
significantly faster.

3.2 Particle velocity

Having characterized how the reactant and product fields
depend on the particle configuration and Damköhler number,
we now turn to investigating the vertical motion of the particle,
i.e., motion towards or away from the patch. In Appendix B, as
an additional cross-check and validation for the boundary
element method, we provide a brief comparison of velocities
obtained with the BEM and using bipolar coordinates.

Fig. 3 Concentration of the chemical reactant (left) and product (right) for a cap-up sphere near a chemical patch for various values of the Damköhler
number Da. The particle is located at h/Rp = 1.2, and the patch size is Rd = Rp. The insets in the top right corner show an enlargement of the region
between the patch and the JP. At high values of Da, the reaction rate is fast compared to the rate of diffusion, causing the reactant to spread less laterally.
Furthermore, the maximum of the product concentration shifts to the JP equator, i.e., there is a ‘‘concentration inversion’’ effect.

Fig. 4 Concentration of the chemical product for a cap-up sphere
located far away from the wall (h/Rp = 100) with Da = 100. The concen-
tration is mostly uniform over the cap, with a sharp drop as one
approaches the ‘‘equator’’ from the catalytic pole (note that the yellow
region is thinner near the equator.) This variation is in contrast with the
‘‘inversion’’ effect seen for Da = 100 in Fig. 3. The patch size is Rd = Rp, and
the concentration was computed with the BEM.
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Throughout the rest of Section 3, we use the BEM to determine
both the concentration fields cd

r and cp, as well as to solve the
necessary auxiliary hydrodynamic problems as outlined in
Section 2.2.

3.2.1 Uniform phoretic mobility. We first consider the case
of uniform phoretic mobility, bi = bc. As a starting point, we
consider a spherical particle near a patch that has the same
radius as the sphere (Rd = Rp). Fig. 5 shows how the vertical
velocity Vz depends on height h for different values of the
Damköhler number Da. In the top panel, the sphere has a
cap-up configuration, and in the bottom panel, the sphere is
cap-down. In each panel, the sign of bi = bc is chosen to give a
positive value of Vz. The log–log scaling of the plots reveals the
dependence of Vz on h is described by a power law for h/Rp c 1.
It also also evident that, for Da c 1 and h/Rp c 1, the Vz vs. h
curves, which are calculated for different values of Da, collapse
onto a universal power law scaling.

The power law behavior can be recovered in the framework
of a far-field, ‘‘point-particle’’ theory. We model the reactant
background concentration as being due to a point source
located at the origin:

cbr ðrÞ �
2AdQ

4pDrjrj
; (16)

where Ad is the area of the patch. The factor of two in the
numerator is due to confinement of the reactant in the upper
half space by the wall. The background reactant concentration
in the vicinity of the Janus particle can be expanded as follows:

cb
r (r) = cb

r (rp) + rcb
r |r=rp

�(r � rp) + . . ., (17)

where the position of the particle is rp = hẑ. In this expansion,
each successive term introduces another factor of h/Rp. There-
fore, we generally expect that the first term, cb

r (rp), will provide
the leading-order contribution to the velocity of the Janus
particle. Focusing on the contribution of this term to Vz, we
can interpret it as being due to an effectively uniform reactant
field in the vicinity of the particle.

From Fig. 5, it is apparent that for low values of Da, each Vz

vs. h curve is associated with its own power law. Therefore, in
the far-field, point-particle framework, we first consider the
scenario that Da { 1. In this scenario, the consumption of the
fuel by the particle is negligible, and we approximate cr(r) E cb

r

(r). Moreover, in the limit Da - 0, we expect to recover results
from zeroth order kinetics, i.e., results for a Janus particle with
a boundary condition �Dp[rcp�n̂] = k on the catalytic cap,
where k = Fcb

r (rp). For this boundary condition, it is known that
a Janus particle in free space (unconfined solution), with its
symmetry axis aligned with the z-axis, will have velocity

Vz ¼
b0k
Dp

~Vfs, where Ṽfs is a dimensionless constant. Therefore,

we obtain the scaling

Vz ¼
AdQFb0 ~Vfs

2pDrDph
: (18)

Using the assumption that Dp = Dr, the definitions of V0 and Da,
and defining the dimensionless patch area Ãd = Ad/pRp

2, we
obtain the far-field expression

Vz=V0 ¼
~AdDa ~Vfs

2

Rp

h
: (19)

For a spherical Janus particle with uniform surface mobility,
Ṽfs = �1/4. The sign of Ṽfs is determined by the orientation of
the cap (up or down) and the sign of bi = bc. Values of Ṽfs

for spheroidal particles can be calculated analytically or
numerically.54,56

The predicted scaling, plotted as dashed-dotted lines in
Fig. 5, shows good agreement with the Da { 1 data. In order
to emphasize the universality of this scaling for Da { 1, in
Fig. 6 we show data for Da = 0.001 and Da = 0.01 for cap-up and
cap-down spheres activated by circular patches of different
sizes Rd, a cap-up prolate particle activated by a circular patch,
and a cap-up sphere activated by a ring-shaped patch. We
exploit our scaling to collapse the data onto a universal curve.

Fig. 5 Dependence of the vertical velocity Vz on the height h for a sphere
with uniform surface mobility near a circular patch. Predicted low Da and
high Da scalings are given by dotted-dashed and dashed lines, respec-
tively. The sign of the surface mobility is chosen to give a positive velocity.
The patch has the same radius as the particle (Rd/Rp = 1).
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Now we turn to the opposite limit, Da - N. From our data
in Fig. 5, it is apparent that the function Vz vs. h/Rp for different
values of Da collapses onto a universal curve as Da - N. In
other words, the far-field scaling for Vz vs. h/Rp loses depen-
dence on Da as Da - N. We give arguments in Appendix A
rationalizing this loss of dependence on Da. Moreover, in
Appendix A, we argue that the prefactor of the scaling Vz/V0

B ÃdRp/h should be the dimensionless number 0.15 for a
sphere. This predicted scaling is shown on Fig. 5, and has good
agreement with the numerical data.

3.2.2 Non-uniform phoretic mobility. Taking advantage of
the linearity of the hydrodynamic problem, for non-uniform
phoretic mobility (bi a bc) we can obtain the particle velocity by
superposing the velocity obtained for (bi = 1, bc = 0) and the
velocity obtained for (bi = 0, bc = 1). Specifically, the particle
velocity is Vz(h/Rp; bi,bc) = biVz(h/Rp; bi = 1, bc = 0) + bcVz(h/Rp; bi =
0, bc = 1). Therefore, in what follows, we will focus on the two
cases of (bi = 1, bc = 0) and (bi = 0, bc = 1), and then consider
general values of bi and bc.

In Fig. 7, we show the results for a cap-up sphere for the
cases of bc = 0, bi = 1 and bc = 1, bi = 0. In the first case (phoretic
slip only on the inert side), we obtain a similar result as in the
case of uniform mobility. Again, the low Da curves are
described by the scaling law given in eqn (19). In this case,
the value of Ṽfs appearing in the low Da scaling is Ṽfs = 1/8. We
also obtain collapse for the Da c 1 curves, although for higher
values of Da than in the case of uniform mobility.

Turning to the second case (phoretic slip only on the
catalytic side), we obtain some intriguing behavior. Specifically,
for Da c 1, we find that the curves have negative Vz at low
values of h/Rp, but switch over to positive Vz at high values of h/
Rp. Accordingly, each of these curves intersect Vz = 0 at some
crossover height hc(Da). These crossover points can be identi-
fied as hovering states. Since the slope of Vz vs. h at the
crossover height in Fig. 7 is positive, the states shown in that
figure are unstable against perturbations of the particle height.
However, changing bc = 1 to bc = �1 would invert the sign of the
velocity Vz, and therefore change the sign of the slope, which
would make the hovering states stable against vertical
perturbations.

Another intriguing aspect of bi = 0, bc = 1 can be observed for
the Da c 1 curves. Specifically, they follow a Vz B (Rp/h)2 power
law at intermediate heights, and cross over to a Vz B (Rp/h)
power law at large heights. The crossover behavior is especially
apparent for Da = 350, shown in Fig. 8. The observed crossover

Fig. 6 In the limit Da - 0, the velocity Vz as a function of height h can be
collapsed onto a universal curve, given by eqn (19), for various particle
shapes, patch sizes, and patch shapes. Except where indicated in the
legend, the shape of the particle is assumed to be spherical, the configu-
ration is assumed to be cap-up, and the shape of the patch is assumed to
be circular. The surface mobility is assumed to be uniform, with the sign
chosen to give a positive velocity. For the prolate particle, re = 1/3, and Ṽfs

was determined numerically as Ṽfs = 0.1247. For the ring, the outer radius is
Ro/Rp = 2.5 and the inner radius is Ri/Rp = 1.5.

Fig. 7 Dependence of the vertical velocity Vz on the height h for a cap-up
sphere with non-uniform surface mobility near a circular patch with
Rd = Rp.
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between power laws can rationalized by the far-field perturba-
tion theory developed for Da c 1 in Appendix A. As shown
there, in the limit Da - N, and for a uniform background
concentration of reactant, the product concentration on the cap
would be uniform: c̃(N)

p = c̃b
r (rp) on the cap, where the super-

script (N) indicates the Da -N limit. Therefore, for bc = 1 and
bi = 0, there would not be a surface gradient of product
concentration on the region of the particle surface with a
non-zero phoretic mobility. The particle velocity would there-
fore be zero. However, in this limit (Da - N), the particle can
still self-propel if there is a background reactant gradient. Since
the background reactant field is sourced by a patch at the
origin, the gradient in the vicinity of the particle, rcb

r |r=rp
,

decays as rcb
r |r=rp

B (Rp/h)2. Therefore, the contribution to
velocity that is leading order in inverse powers of Da is V(N)

z B
(Rp/h)2.

To complete the picture, we must explain the Vz B Rp/h
scaling at h/Rp c 1 and the crossover between the two power
laws. Here, we note that there is a subleading O(Da�1) con-
tribution to particle velocity for Da c 1. As detailed in Appen-
dix A, the subleading contribution does give particle motion in
a uniform background concentration of reactant. Therefore, the

subleading contribution to velocity goes as V ð1Þz 	
1

Da

Rp

h

	 

.

Here, the superscript (1) indicates that this contribution to the

velocity Vz is O(Da�1). For a fixed, finite value of Da, this V ð1Þz 	

1

Da

Rp

h

	 

scaling will eventually dominate the leading order

V(N)
z B (Rp/h)2 scaling for sufficiently large h. The crossover

height hc can be estimated from
Rp

hc

	 
2

	 1

Da

Rp

hc

	 

, or hc/Rp B

Da. In order to test this prediction, we show the crossover
height as a function of Da in Fig. 9. We find that a linear relation-
ship does indeed capture the dependence of hc/Rp on Da.

Our analysis explained the crossover phenomenon mathe-
matically. A physical explanation can be inferred from the
‘‘inversion’’ of the product concentration observed for Da =
100 in Fig. 3. When a particle is close to the patch, it

experiences a strong reactant concentration gradient. There-
fore, for the diffusion-limited regime (Da c 1), the region of
the catalyst near the ‘‘equator’’ has a higher rate of reaction
than the region near the ‘‘pole,’’ due to the much
greater availability of fuel closer to the patch. This effect
explains the importance of the reactant gradient rcb

r in deter-
mining the particle velocity for Da c 1 and h o hc. However,
when the particle is far away from the patch, as in Fig. 4, the
reactant gradient is much weaker. Therefore, the product
concentration field is qualitatively the same as for a particle
in a uniform background reactant field, i.e., the maximum is at
the pole.

Now we consider a cap-down particle. For bi = �1, bc = 0,
shown in Fig. 10, top panel, we obtain a similar behavior with
that exhibited by a cap-up configuration with bi = 1 and bc = 0.
For bi = 0, bc = �1, shown in Fig. 10, bottom panel, we do not
obtain any change in the sign of Vz. Accordingly, there are no
hovering states for these parameters. However, for the high Da
curves, we still observe a transition from Vz B (Rp/h)2 behavior
at intermediate heights h, to Vz B (Rp/h) behavior at large
heights h. The Vz B (Rp/h)2 scaling is most evident for the
largest value of Da, Da = 5000. This curve follows a Vz B (Rp/h)2

scaling for a broad range of heights, with only a slight deviation
for the largest height considered. The transition to Vz B (Rp/h)
behavior is clearly evident for curves with 10 r Da r 200.

Having characterized the cases (bi = �1, bc = 0) and (bi = 0,
bc =�1), we now turn to scenarios in which both parameters are
non-zero. As a specific example, Fig. 11 shows Vz vs. h for a cap-
up sphere with bi = �0.3 and bc = �1. It can be seen that there is
a crossover for all Da Z 50. Moreover, the crossover heights are
close to the wall: hc/Rp o 10 for each curve with crossover.
Thirdly, at crossover, the slope of Vz vs. h is negative, indicating
that the hovering state is stable against vertical perturbations.
Given these observations, we conclude that bi = �0.3 and bc =
�1 are particularly favorable values of the surface mobility for

Fig. 8 Dependence of Vz on h for a cap-up sphere with bc = 1, bi = 0, and
Da = 350. Crossover between two power law scalings is clearly visible.

Fig. 9 Crossover height hc as a function of Da for a spherical, cap-up
Janus particle with bc = 1, bi = 0. The particle is near a circular patch with
radius Rd = Rp. We approximate the crossover height by the value where
the particle velocity Vz is zero, as seen in the bottom panel of Fig. 7. The
red line in the figure is a linear fit hc/Rp = 0.172 Da + 2.253. As discussed in
the text, we predict a linear dependence of hc/Rp on Da using perturbation
theory.
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realizing stable hovering states near the wall. Fig. 11 also shows
the scaling predicted by eqn (19) for Da { 1.

By varying bi and bc and identifying the existence and
location of hovering states, we determine a hovering ‘‘phase
diagram’’ in the parameter space bi/bc and Da, as shown in
Fig. 12 for a cap-up sphere near a circular patch with Rd = Rp.
The ratio bi/bc is chosen as the horizontal axis because the sign
of bc only affects the vertical stability of the hovering state (i.e.,
the slope of Vz vs. h at the crossover point), and not the
existence of a hovering state. Additionally, the phase diagram
is restricted to hovering states that occur for 1 r h/Rp r 10. In
comparison with the previously considered case of bi = 0 and
bc = 1, for which the hovering state occurred for high values of
Da, there are also hovering states for Da o 1 for �1.0 o bi/bc o
�0.3. More generally, ‘‘low’’ and ‘‘high’’ Da regimes can be
distinguished from Fig. 12 on the basis of two features. The
first feature concerns the dependence of the hovering height

and phase boundaries on Da. In the low Da regime, there is no
such dependence, and the left and right borders of the hovering
region are vertical lines. In the high Da regime, hovering height
does depend on Da, and the left and right borders are curved.
The second feature concerns the dependence on bi/bc. The
hovering states in the low Da regime occur at significantly
lower bi/bc than the hovering states in the high Da regime. In
consideration of these two features, we identify Da E 1 as the
border between the low and high Da regimes.

Considering the product concentration field shown in Fig. 3
for low Da (Da = 0.001), it is apparent that the low Da hovering
states are not due to the ‘‘inversion’’ effect. Instead, it is likely

Fig. 10 Dependence of the vertical velocity Vz on the height h for a cap-
down sphere with non-uniform surface mobility near a circular patch with
Rd = Rp.

Fig. 11 Dependence of the vertical velocity Vz on the height h for a cap-
up sphere with bc = �1 and bi = �0.3 near a circular patch with Rd = Rp.

Fig. 12 Hovering ‘‘phase diagram’’ illustrating the existence (symbols) and
location (colour code) of hovering states as a function of the parameters
Da and bi/bc. The results correspond to a sphere in a cap-up orientation
near a circular patch with Rd = Rp, and the phase diagram is restricted to
hovering states with 1 r h/Rp r 10.
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that they have the same origin as the hovering states demon-
strated in ref. 44, i.e., hydrodynamic and chemical interactions
with the wall. Note that ref. 44 assumed zeroth-order chemical
kinetics, which can be obtained from first-order kinetics in the
limit Da - 0. Additionally, ref. 44 considered an inert wall and
uniform background concentration of ‘‘fuel.’’ In contrast with
the present work, the problem considered in ref. 44 gives
hovering states in the range 1.02 r h/Rp r 7 for �1.4 t
bi/bc t �0.95 for a Janus sphere that is half covered by catalyst.
Therefore, although the Da { 1 hovering states obtained here
may have the same physical origin as in ref. 44, we find that
sourcing the reactant field with a finite-sized patch can have a
significant effect on the range of parameters that give a hover-
ing state. Moreover, we note that the hovering states in ref. 44
are ‘‘degenerate’’ in that they can occur at any position in the
plane of the wall (i.e., any x � y position), due to translational
symmetry. In the present work, hovering states are localized
directly above the patch (x = 0 and y = 0).

We also consider the phase diagrams for other patch sizes:
Rd/Rp = 1/3 (Fig. 13, top) and Rd/Rp = 3 (Fig. 13, bottom). The
dependencies of the phase behavior on Da and bi/bc described
for Rd = Rp remain consistent when varying the patch size.
However, there are quantitative differences between all three phase diagrams. Notably, for the smaller patch, there is a larger

range of bi/bc that gives a hovering state, for both small and
large Da. For the larger patch, the range of bi/bc giving a
hovering state at low Da is more narrow than for Rd/Rp = 1.
The range at high Da is similar, although shifted to the left.

The ‘‘edge case’’ bi = �bc merits some additional considera-
tion, as a particle with these mobility parameters in a uniform
background concentration would be motionless in the limit
Da - 0. In other words, Ṽfs = 0. However, recalling that the
patch creates a concentration gradient rcb

r , we expect a scaling

law Vz=V0 	 Da
Rp

h

	 
2

for Da - 0. We indeed recover this

scaling for Da { 1, as shown in Fig. 14. (The numerical
prefactor listed in the legend is determined from Tătulea-
Codrean and Lauga.36) For high Da, there is no reason to expect
these mobility parameters to give zero velocity in a uniform

reactant field, and we indeed obtain a Vz=V0 	
Rp

h

	 

scaling

for Da c 1. For intermediate values of Da, there is crossover

between the two scaling laws: Vz=V0 	
Rp

h

	 
2

for small h/Rp,

and Vz=V0 	
Rp

h

	 

for large h/Rp. This crossover is evident

even for Da as low as Da = 0.001. Given previous results on
crossover, we expect this crossover to result from a competition
between leading and subleading terms, although in this case
for an expansion in powers of Da, instead of inverse powers of
Da. We defer a more detailed examination to later work.

4 Discussion

Our analysis has focused on the dynamics for an axisymmetric
configuration of the particle and the patch. A logical next step

Fig. 13 Hovering ‘‘phase diagrams’’ for a cap-up sphere near a circular
patch with radius Rd = 1/3 (above) and Rd = 3 (below). The diagrams
illustrate the existence (symbols) and location (colour code) of hovering
states as a function of the parameters Da and bi/bc. The phase diagrams
are restricted to hovering states with 1 r h/Rp r 10.

Fig. 14 Dependence of the vertical velocity Vz on the height h for a cap-
up sphere with bc = �1 and bi = 1 near a circular patch with Rd = Rp.
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would be to investigate general three-dimensional motion. In
particular, for the hovering states, an important question is
whether they are stable against general three-dimensional
perturbations, such as displacement lateral to the patch axis,
or rotation of the particle axis away from the ẑ direction.

As a first step towards this direction of investigation, we
show in Fig. 15 an example of a three-dimensional trajectory,
computed using the BEM and a quaternion-based rigid-body
dynamics method57 (see Appendix C for a brief discussion of
this method). This demonstrates that a prolate spheroid with
phoretic mobilities bi = �0.4 and bc = �1, Damköhler number
Da = 100, and aspect ratio re = 1/3 is attracted to the hovering
state from an arbitrarily chosen initial position and orientation.
The initial position of the particle (xp/Rp = 4, yp/Rp = 0, and
zp/Rp = 7) is located off the patch axis. Additionally, the initial
particle orientation is neither aligned with the patch axis, nor
with the plane defined by the patch axis and the patch-to-
particle vector. Specifically, the initial orientation of the spher-
oid is y = 601 and j = 51. Here, y is the angle between the
particle orientation vector p̂ and ẑ, where p̂ is defined to point
from the inert pole (black) to catalytic pole (red) of the particle.
The quantity j is the angle between p̂ and x̂. Accordingly, all
potential symmetries of the patch-and-particle configuration
are broken. Despite this fact, the particle is able to steer to the
patch, align its axis with the patch normal, and remain in
the hovering state for the rest of the simulation. Fig. 15 shows
the rod trajectory and the time evolution of its configuration.
Since the azimuthal angle j is not well-defined when y = 0, we
use p> = p̂�(ẑ � r̂p) to characterize the component of the
orientation vector p̂ that is out of the plane defined by the
patch normal ẑ and the particle position rp. Here, r̂p = rp/|rp|.

Interestingly, for spheres, we did not observe this long-time
stability for any of the parameters tested. For some parameters,
we found that the spheres could initially steer themselves
towards the hovering state, but subsequently exhibited a slow
drift away from the patch axis over a longer timescale. An
example trajectory, illustrating such a behavior, is shown in
Fig. 16. This observation suggests that shape may have a crucial
role in promoting stable ‘‘docking,’’ most likely by a tendency
for elongated particles to align with nonlinear gradients.58 In
future work, we will undertake a systematic examination of the
three-dimensional linear stability of the hovering state as a
function of particle aspect ratio, Da, and surface mobilities.
This examination will settle whether slender shape and a high
value of Da are indeed necessary conditions for three-
dimensional stability.

Throughout this manuscript, we have neglected the effect of
thermal fluctuations. The stiffness of the hovering states with
respect to perturbations in vertical position can be quantified
by evaluating the slope of the Vz/V0 vs. h/Rp curve at the
hovering height. Specifically, denoting the slope by m, the
characteristic relaxation time for vertical perturbations is t =
Rp/|m|V0. For Da = 50 and surface mobility parameters bi = �0.3
and bc = �1, we obtain |m| E 0.0017 (Fig. 11). For comparison
with experiments, we consider a particle with Rp = 2.5 mm that
typically moves with speed V = 9 mm s�1 in a uniform

Fig. 15 (top panel) Three-dimensional trajectory of a prolate spheroid
(re = 1/3, bi = �0.4, bc = �1, Da = 100) near a circular patch with Rd = Rp. The
catalytic cap is shown in red. The particle is initially located off the patch axis
(xp/Rp = 4, yp/Rp = 0, and zp/Rp = 7.) Additionally, the particle is tilted towards
the surface (y = 601) and slightly away from the patch (j = 51), where y and j
are described in the text. The particle is attracted to a hovering state. (middle
panel) Time evolution of the position components xp and zp, as well as of the
angle y. (bottom panel) Time evolution of yp and p>, the component of the
particle orientation vector p̂ that is out of the plane defined by ẑ and the patch-
to-particle vector rp.
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background concentration of molecular ‘‘fuel.’’3,59 Numerically,
we obtain that V E 0.1V0 for Da = 50, and thus t E 16 s. This
relaxation time can be compared against the characteristic
timescale for translational diffusion, tt = Rp

2/D = 6pmRp
3/kBT,

where D is the diffusion coefficient of the particle, and the
second equality assumes a spherical particle. In ref. 44, tt was
calculated as tt E 70 s. Since t o tt, we expect the hovering
state to be robust against thermal fluctuations in the vertical
direction. Similar arguments can be made for a hovering state
with a small value of Da. For example, for Da = 0.1, bi = 0.5, and
bc = �1, and using the same dimensional particle radius and
speed as before, we obtain V E 0.006V0 and |m| E 0.0003,
giving t E 6 s (i.e., this state is even more robust against
thermal fluctuation, as the relaxation back to hovering happens
on even shorter timescales than in the large Da example.)
Future work on three-dimensional motion can address stability
against translational diffusion in a horizontal direction, as well
as stability against rotational diffusion.

Although we observed hovering states over a wide range of
Da, from Da = 0.0001 to Da = 5000, our detailed analysis
(Appendix A) largely focused on the high Da regime. This focus
was driven by the novelty of the patch-induced ‘‘concentration
inversion’’ mechanism for inducing near-wall hovering states.
In comparison, the low Da hovering states are most likely due
to chemical and hydrodynamic interactions with the wall.
Comparatively, this latter mechanism is rather well-known,
and can be analyzed using singular solutions to the Laplace
and Stokes equations (including image singularities to account
for the presence of the wall).44,60 Future work could take this
approach, building on our eqn (19), to obtain mechanistic
insight into low Da hovering.

5 Conclusions

We have investigated the motion of a catalytic Janus particle
activated by a patch that continuously releases reactant
(‘‘fuel’’). The patch has an axisymmetric shape and finite size,
and is located on a solid planar wall that confines the liquid
solution. The Janus particle has a spherical or spheroidal shape
and an axisymmetric distribution of catalyst. Our model expli-
citly resolves transport of the fuel to the particle from the patch
and its local consumption and depletion by the particle. We
have shown that, under certain conditions of Damköhler
number Da (dimensionless rate of reaction), phoretic mobility
(chemi-osmotic response of the particle), patch size, and other
parameters (e.g., shape of the particle), there is a ‘‘hovering’’
state in which the particle remains motionless at a certain
height above the patch. In the hovering state, the particle
position is directly above the center of the patch, and the
particle’s axis of symmetry is aligned with the wall normal.
Depending on the system parameters, this hovering state can
be stable against perturbations of the particle position in the
vertical direction. By using perturbation theory, we system-
atically examined the dependence of the hovering height on
Da for high Damköhler number.

Our study focused on an axisymmetric configuration of the
particle and patch. However, we laid the groundwork for
consideration of general three-dimensional motion, and
demonstrated that the hovering state can be stable against
general three-dimensional perturbations. Specifically, we
demonstrated that a particle with arbitrary initial orientation
and position can steer to a chemical patch, i.e., exhibit chemo-
taxis. Three-dimensional motion would therefore be a natural
direction for continuation of our work. This direction could
address the phase diagram for three-dimensional stability of
the hovering states, as well as how the system parameters can
be tuned to enlarge the basin of stability, i.e., enlarge the range
of initial orientations and positions from which a particle will
be attracted to the hovering state. Continuation of our study
could also probe the possible existence of other dynamical fixed
points, such as continuous ‘‘sliding’’ along the edge of a
circular patch. This sliding would be analogous to the orbiting
observed for active colloids near geometric obstacles.59,61,62

One can also imagine hovering states that are shifted away
from the center of the patch. In this scenario, axisymmetry
would imply that there is a continuous ring of degenerate
hovering states. For a non-axisymmetric patch, such as a square
or star-shaped patch, there could be hovering states at a
discrete set of spatial positions. Three-dimensional Brownian
motion of the colloid can also be straightforwardly included in
the framework of our model.29,63

Our results for a particle near a patch-decorated planar wall
may have implications for bound pair formation or ‘‘docking’’
of two freely suspended colloidal particles.64–66 We recall that a
planar wall can be regarded as a sphere with infinite radius of
curvature. To our knowledge, a situation in which a reactant
source is localized to one particle, and a catalytic region to a
second particle, has not previously been considered in the

Fig. 16 Three-dimensional trajectory of a sphere (bi = �0.2, bc = �1, Da =
20) near a circular patch with Rd = Rp. The red dot shows the spatial
location of the hovering state. The sphere initially steers towards the
hovering state, but slowly drifts away from the hovering state towards
the edge of the patch. Once it reaches the vicinity of the edge, it quickly
moves away from the patch. The initial conditions are xp/Rp = 1, yp/Rp = 0,
zp/Rp = 5, y = 351, and j = 51.
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literature, especially for first-order kinetics. Temporal variation
of the rate of release for a particle/particle system could be
exploited for temporally sequenced cargo pick-up and release.67

Incorporation of additional chemical species and/or nonlinear
chemical kinetics in our framework could allow for realization
of more complex particle behaviors.68

Finally, our findings may provide conceptual and technical
guidance for advanced applications involving active colloids. In
lab-on-a-chip systems, a chemical patch with a time-varying
rate of release could be used for programmed ‘‘trap-and-
release’’ of an active colloid. A planar surface decorated with
many patches could template assembly of an active colloidal
crystal. In materials science applications, a material that is
impregnated with reactant, and which releases the reactant
upon damage, could recruit active colloids to the damage site.69

(Alternatively, the scenario can be that of locating corrosion
spots on metal surfaces.) Additionally, for drug delivery appli-
cations, the chemical patch in this study could model an in vivo
biological source of reactant.6 A stably hovering particle that
continuously releases a drug would provide a highly concen-
trated and localized dose. For biomedical applications, future
consideration of aspects such as those of a non-Newtonian
carrier fluid70 or the effect of ambient flow29 would enhance the
realism of our model. One could also consider a patch
embedded in a fluid–fluid interface or a bilayer membrane as
a model for binding sites at biological interfaces.71
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Appendices
A. High Da expansion

We expand the (dimensionless) reactant field for Da c 1 as
follows:

~crð~rÞ ¼ ~cð1Þr ð~rÞ þ
1

Da
~cð1Þr ð~rÞ þ

1

Da2
~cð2Þr ð~rÞ þ . . . (20)

The governing equation ~r2~cr ¼ 0 becomes

~r2~cð1Þr ð~rÞ þ
1

Da
~r2~cð1Þr ð~rÞ þ

1

Da2
~r2~cð2Þr ð~rÞ þ . . . ¼ 0: (21)

Therefore, each term c̃(. . .)
r obeys Laplace’s equation. The bound-

ary condition on the catalytic cap becomes

~r~cð1Þr � n̂þ 1

Da
~r~cð1Þr � n̂þ

1

Da2
~r~cð2Þr � n̂þ . . .

¼ Da~cð1Þr þ ~cð1Þr þ
1

Da
~cð2Þr þ . . .

(22)

At O(Da), we obtain c̃(N)
r = 0 on the catalytic cap. We also note

the boundary condition on the cap for the subleading problem,

obtained at O(1) as ~c
ð1Þ
r ¼ ~r~c

ð1Þ
r � n̂.

On the inert side of the particle, we have

~r~cð1Þr � n̂þ 1

Da
~r~cð1Þr � n̂þ

1

Da2
~r~cð2Þr � n̂þ . . . ¼ 0: (23)

Thus, for all fields c̃(. . .)
r , we obtain the no-flux boundary condi-

tion ~r~c
ð...Þ
r � n̂ ¼ 0 on the inert face.

The boundary conditions for c̃(N)
r on the wall and at infinity

are the same as given for c̃r in Section 3. Therefore, the
inhomogeneity in the boundary condition on the wall for c̃r is
accounted for in the leading order problem. For all i Z 1, the

boundary condition on the wall is ~r~c
ðiÞ
r � n̂ ¼ 0, and the bound-

ary condition at infinity is c̃(i)
r = 0.

Thus, we have a well-defined boundary value problem for
c̃(N)

r , with so-called mixed boundary conditions on the JP51 (i.e.,
Dirichlet on the cap and Neumann on the inert face.)

Now we turn to the product concentration. Again, we expand
as follows:

~cpð~rÞ ¼ ~cð1Þp ð~rÞ þ
1

Da
~cð1Þp ð~rÞ þ

1

Da2
~cð2Þp ð~rÞ þ . . . (24)

Again, each term c̃(. . .)
p obeys Laplace’s equation. The boundary

condition on the catalytic cap becomes

~r~cð1Þp � n̂þ 1

Da
~r~cð1Þp � n̂þ

1

Da2
~r~cð2Þp � n̂þ . . .

¼ �Da~cð1Þr � ~cð1Þr �
1

Da
~cð2Þr þ . . .

(25)

At O(Da), we recover the previous result that c̃Nr = 0 on the

catalytic face. At O(1), we have ~r~c
ð1Þ
p � n̂ ¼ �~c

ð1Þ
r on the cap. This

boundary condition can be simplified to remove dependence
on the subleading term c̃(1)

r . From eqn (22), we obtain

~c
ð1Þ
r ¼ ~r~c

ð1Þ
r � n̂ on the cap. Therefore, the leading order term

in the product flux on the cap can be obtained from the
solution of the boundary value problem for c̃(N)

r as
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~r~c
ð1Þ
p � n̂ ¼ � ~r~c

ð1Þ
r � n̂. This result makes intuitive sense on

physical grounds; consumption of reactant molecules entails
corresponding production of product molecules. Similarly, we

can obtain ~r~c
ð1Þ
p � n̂ ¼ � ~r~c

ð1Þ
r � n̂ on the cap.

On the inert side of the particle, we have

~r~cð1Þp � n̂þ 1

Da
~r~cð1Þp � n̂þ

1

Da2
~r~cð2Þp � n̂þ . . . ¼ 0: (26)

We again have ~rcð...Þp � n̂ ¼ 0 on the inert side for all fields c(. . .)
p .

The boundary conditions on the wall and infinity for all fields
c̃(..)

p are no-flux at the wall and vanishing concentration at
infinity.

Thus, we have obtained a boundary value problem for
c̃(N)

p with Neumann conditions on both sides of the JP, with
the prescribed product flux on the catalytic cap obtained from
the solution to the problem for c̃(N)

r .
The product concentration gradient determines the particle

velocity. We define

Vz = V(N)
z + V(1)

z + V(2)
z + . . . (27)

Here, for convenient comparison with numerical data, we
choose to include the dependence on Da in each term V(..)

z .
The dependence of each term V(..)

z on Da is given by the
corresponding term in the series expansion in eqn (24). There-
fore, for example, V(N)

z has no dependence on Da, V(1)
z B Da�1,

etc.
At this point, we have established that, in the limit Da -N,

the rate of production of product molecules on the cap

n̂ � ~r~cp 	 n̂ � ~r~c
ð1Þ
p no longer depends on Da. This result entails

that, for a given set of mobility parameters, the Vz vs. h/Rp

curves for different values of Da should collapse onto a uni-
versal curve as Da - N. This is observed for Da c 1 curves in
various figures (e.g., Fig. 5), although the values of Da for
which collapse is observed depends on the mobility para-
meters. Additionally, for some mobility parameters, collapse
of a Da curve may occur over a limited range of heights h. For
instance, in Fig. 10, collapse is observed at lower values of h/Rp.
The curves with higher Da exhibit collapse for a larger range of
h/Rp.

A.1 Uniform phoretic mobility

For the case of uniform phoretic mobility, we can obtain the
scaling law for the universal curve, including the numerical
prefactor, through the following arguments. We approximate
the JP as being in unconfined solution, immersed in a uniform
background concentration c̃b

r (r̃p). We use the approximation in
eqn (16) for the background reactant concentration. In dimen-
sionless form, we have

~cbr ~rp
� �

�
~Ad

2

Rp

h
: (28)

Based on this approximation, we expect Vz/V0 B Rp/h. Now we
have obtained a mixed boundary value problem for c̃(N)

r :
~r2~c

ð1Þ
r ¼ 0 in the solution, c̃(N)

r (r̃) - c̃b
r (r̃p) as |r̃ � r̃p| - N,

n̂ � ~r~c
ð1Þ
r ¼ 0 on the inert side of the JP, and c̃(N)

r = 0 on the

catalytic cap. This is the boundary value problem formulated by
Davis and Yariv for a sphere in the Da - N limit in ref. 50.
They obtain the coefficients Bn in a harmonic expansion,

~c
ð1Þ
r ð~rÞ ¼ ~cbr ~rp

� �
þ
P1
n¼0

Bn~r
�ðnþ1ÞPnðcos yÞ. Here, r̃ = |r̃ � r̃p|

denotes distance from the JP center, non-dimensionalized by
Rp; Pn(x) is the Legendre polynomial of degree n; and y denotes
polar angle in a spherical coordinate system with its origin at
the particle center. The polar angle y is measured with respect
to a vector pointing from the inert pole of the JP to the
catalytic pole.

Davis and Yariv also obtain the Janus particle velocity for the
case of a sphere with uniform phoretic mobility.50 However,
they assume – in contrast with the present manuscript – that
the slip velocity is driven by the surface gradient of the reactant
concentration, and not by the gradient of a product concen-
tration. Since the product concentration field obeys Neumann
conditions over the whole surface of the JP, we cannot imme-
diately use this result. However, if we write the product concen-

tration field as ~c
ð1Þ
p ¼

P
An~r

�ðnþ1ÞPnðcos yÞ, we obtain that An =
�Bn for all n. Therefore, their result that V(N)

z /V0 = �0.3c̃b
r (r̃p)

applies here. (The sign of the velocity is determined by the cap-
up or cap-down character of the particle.) We therefore obtain

that Vz=V0 ¼ �0:15 ~Ad
Rp

h
as Da - N. Aside from the sign, this

result is independent of the cap-up or cap-down character of
the particle, since it was obtained using the approximation of a
uniform background concentration of reactant.

A.2 Crossover behavior for bc = 1, bi = 0

Here, we consider the case bc = 1 and bi = 0, which gives a
crossover between two scaling laws.

In order to obtain this crossover, we argue that, at leading
order in Da as Da - N, the particle velocity is zero for a
uniform background concentration of reactant. The reason is
the following. We recall that in the leading order problem, i.e.,
the problem for c̃(N)

r , the boundary condition on the catalytic
cap is c̃(N)

r = 0. Additionally, assuming a uniform background
concentration of reactant c̃b

r (r̃p), and neglecting the confining
wall, we recall that c̃(N)

r and c̃(N)
p can be written as harmonic

expansions, with the coefficients related by An = �Bn. Since
c̃(N)

r = 0 on the cap, the coefficients Bn are such as to precisely
cancel the background concentration c̃b

r (r̃p) on the cap. In other

words, on the catalytic cap,
P

BnPnðcos yÞ ¼ �~cbr ~rp
� �

. From
An = �Bn, it follows that, on the catalytic cap,

~c
ð1Þ
p ¼

P
AnPnðcos yÞ ¼ ~cbr ~rp

� �
.

At this point, we have obtained that the product concen-
tration on the cap is uniform as Da - N, for a uniform
background concentration of reactant. In the case bc = 1, bi =
0, only the cap is osmotically responsive, i.e., we can only have
slip on the cap. However, since the slip is proportional to the
surface gradient of product concentration, we obtain that the
slip is zero over the entire surface of the particle. Therefore, to
leading order in Da as Da -N, the particle does not move in a
uniform background concentration of reactant.
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However, we can still obtain motion in the leading order
problem by considering the role of the second term in eqn (17),
which represents a linear gradient in the background reactant
concentration. At leading order, the reactant concentration can

be written as ~c
ð1Þ
r ¼ ~r~cbr

��
~r¼~rp � ~r� ~rp

� �
þ
P1
n¼0

Cn~r
�ðnþ1ÞPnðcos yÞ.

We still have the boundary conditions c̃(N)
r = 0 on the catalytic

cap and n̂ � ~r~c
ð1Þ
r ¼ 0 on the inert face. Therefore, the values of

Cn must be such as to cancel the linearly varying background
reactant concentration on the catalytic face. Concerning
the product concentration, we can write this field as

~c
ð1Þ
p ¼

P1
n¼0

Dn~r
�ðnþ1ÞPnðcos yÞ, with the same boundary condi-

tions as before. By the same arguments, we obtain Dn = �Cn.
Therefore, the product concentration varies with position on
the catalytic face. This spatial variation is sufficient to give
motion of the particle when bc = 1 and bi = 0. Since the

background gradient ~r~cbr decays as (Rp/h)2, we obtain that
V(N)

z /V0 B (Rp/h)2. The sign will depend on the cap-up or cap-
down character of the particle, since the linear gradient in
background reactant concentration is not isotropic.

We briefly argue that the subleading problem will give a
contribution to velocity V(1)

z /V0 B Da�1(Rp/h). Approximating
the JP as being in unconfined solution, we have the boundary
condition c̃(1)

r (r̃) - 0 as |r̃ � r̃p| - N, and we write

~c
ð1Þ
r ¼

P
En~r

�ðnþ1ÞPnðcos yÞ. We recall that the boundary condi-

tions on the JP are ~c
ð1Þ
r ¼ n̂ � ~r~c

ð1Þ
r on the catalytic cap, and

n̂ � ~r~c
ð1Þ
r ¼ 0 on the inert face. This is a mixed boundary value

problem, giving the dual series equations
P

EnPnðcos yÞ ¼
�
P
ðnþ 1ÞBnPnðcos yÞ on the catalytic face, andP

Enðnþ 1ÞPnðcos yÞ ¼ 0 on the inert face, where the Bn are
known from solution of the leading order problem. Now, for
the particle to remain motionless, the reactant field must take a
constant value on the catalytic face. We recall that the coeffi-
cients Bn give a constant value of the reactant on the catalytic
face and no-flux on the inert face. By uniqueness of solutions to
linear equations, we deduce that En = aBn. (The constant a is
included to allow for the scenario in which c̃(N)

r and c̃(1)
r take

different uniform values on the cap.) However, from the
dual series equations, it is clear that En cannot be a constant
multiple a of Bn: En a aBn. Therefore, the field c̃(1)

r cannot
take a uniform value on the cap and also satisfy the no-flux
boundary condition on the inert face. Since the field

~c
ð1Þ
p ¼

P
Fn~r
�ðnþ1ÞPnðcos yÞ, where Fn = �En, it follows that c̃(1)

p

is non-uniform on the cap. Therefore, in the subleading pro-
blem, the particle can move in a uniform background reactant
concentration. We thus obtain V(1)

z /V0 B Da�1(Rp/h).

B. Solution in bipolar coordinates

Since the set-up considered in this study possesses axial
symmetry and involves Laplace or Stokes equations with
boundary conditions on a sphere and on a wall, an analytic
solution in terms of series in bipolar coordinates is possible as
discussed in the followings. The bipolar coordinates solution

will then be used for cross-check and validation of the results
obtained with the BEM method in a couple of examples.

B.1 Bipolar coordinates. Parametrization of the set-up

The bipolar coordinates (x,Z) with �N o x o N and 0 r Z r
p are defined via the cylindrical coordinates z Z 0 and s Z 0
(the distance from the z-axis) as72,73

z ¼ K
sinh x

cosh x� cos Z
s ¼ K

sin Z
cosh x� cos Z

; (29)

where

K ¼ Rp sinh x0 (30)

and

x0 = arccosh(h/Rp). (31)

These choices are such that the manifold x = x0 corresponds to
the spherical surface of radius Rp centered at z = h (i.e., the
surface of the particle). The third coordinate is f (azimuthal
angle), defined in the usual way. Since the system in which one
is interested has axial symmetry, we search for axisymmetric
solutions for the disturbance of the density of reactant, cb

r and
for the density of product molecules, cp as well as for the
hydrodynamics. (Accordingly, there is no dependence on f,
the possibility of symmetry-breaking solutions not being
considered here).

The metric factors, which enter in the calculation of gradi-
ents and area elements (e.g.,r = exgx

�1qx + eZgZ
�1qZ + efgf

�1qf),
are given by

gx ¼ gZ ¼
K

cosh x� o
;

gf ¼ gx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� o2
p

; where o:¼ cos Z:

(32)

In terms of the bipolar coordinates system introduced
above, the plane z = 0 of the wall corresponds to x = 0, while
the surface at infinity is parametrized by x = 0, Z = 0 (o = 1). The
activity distribution K(s) / K(o) is calculated by noting that x =
0, s = 0 (the center of the patch) corresponds to Z = p (o = �1)
while x = 0, s = Rd (the circumference of the patch)
corresponds to

od ¼
� h

�
Rp

� �2þ Rd

�
Rp

� �2þ1
h
�
Rp

� �2þ Rd

�
Rp

� �2�1 : (33)

Accordingly,

KðoÞ ¼
1; �1 
 o 
 od

0; od oo 
 1


: (34)

Similarly, the activity distribution f (rJ) / f (o), where rJ

denotes positions on the surface of the Janus particle, is
calculated by noting that: (i) the ‘‘south’’ pole (s = 0, z = h �
R) corresponds to (x = x0, o = �1), (ii) the ‘‘north’’ pole (s = 0,
z = h + R) corresponds to x = x0, o = +1; and (iii) the ‘‘equator’’
{s = R, z = h} corresponds to x = x0,

oe = (cosh x0)�1 = Rp/h. (35)
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Accordingly, the distribution f (rJ) - f (cu),(cd)(o;x0) (corres-
ponding to the ‘‘cap up’’ and ‘‘cap down’’ configurations; only
here we indicate explicitly, as a reminder, that this distribution
depends on the location of the sphere) is given by

f ðcuÞðoÞ ¼
0; �1 
 o 
 oe

1; oe oo 
 1

(
;

f ðcdÞðoÞ ¼
1; �1 
 o 
 oe

0; oe oo 
 1

(
:

(36)

Finally, the normal unit vectors (oriented into the fluid) at the
wall and at the particle, respectively, nw and np, are given by
nw = ez = ex and np = �ex.

B.2 The disturbance concentration of reactant, cd
r (r), in

bipolar coordinates

The disturbance field cd
r is the solution of Laplace equation

subject to a vanishing field BC at infinity, the Robin BC at the
surface of the particle expressed in eqn (7), and the zero normal
current BC at the wall (the activity at the patch being accounted
for by the BC on cb

r ). In bipolar coordinates, the solution of the
Laplace equation obeying the vanishing BC at infinity can be
expressed in terms of the Legendre polynomials Pn as74

cdr ðrÞ ¼ C0ðcoshx�oÞ1=2

�
X
n�0

An sinh nþ 1

2

	 

x

� �
þBn cosh nþ 1

2

	 

x

� � �
PnðoÞ;

(37)

The dimensionless coefficients An and Bn are determined from
the two remaining boundary conditions as follows. By noting
the orthogonality of the Legendre polynomials,ð1

�1
doPnðoÞPmðoÞ ¼

2

2nþ 1
dn;m; (38)

the zero normal current boundary condition at the wall (x = 0)
straightforwardly implies

An = 0, n Z 0. (39)

By using this result and the orthogonality of the Legendre
polynomials, the boundary condition at the surface of the JP
renders for the auxiliary unknowns

xn:¼ Bn cosh nþ 1

2

	 

x0

� �
(40)

the following infinite system of linear equations:

X
n�0

Hknxn ¼
ð1
�1
doT o; x0;R;Dað ÞPnðoÞ; k ¼ 0; 1; . . . (41)

where

Hkn:¼
ð1
�1
doPnðoÞPkðoÞ

sinh x0
2

cosh x0 � oð Þ1=2


þDa nþ 1

2

	 

f ðoÞ cosh x0 � oð Þ3=2tanh nþ 1

2

	 

x0

� ��
;

(42)

Tðo; . . .Þ:¼ � sinh x0
Rd

Rp
ex � r~cbr rJð Þ þDaf ðoÞ~cbr rJð Þ

� �
; (43)

and rp = (x0,o). In practice, the system is solved by truncating at
a sufficient large order Nmax, i.e., setting Bn4Nmax

= 0.
For the results presented in the manuscript we have used

Nmax = 10 and numerically solved the system using the software
Mathematica (version 14.0); this was sufficient to pass the
cross-check against the corresponding BEM results (see the
good agreement between the two shown by the results in
Fig. 17.) If very accurate calculations of the concentrations are
needed, additional analytical manipulations of the equations
derived above may be necessary, as discussed by ref. 75.

Fig. 17 Concentration of the chemical reactant for a cap-up sphere near a chemical patch for Da = 0.1,10. The particle is located at h/Rp = 1.2, and the
patch size is Rd = Rp. On the left, results were obtained using the BEM, and on the right, results were obtained using bipolar coordinates. The plots show
good qualitative and quantitative agreement.
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B.3 Concentration of product in bipolar coordinates

Similarly with the case of the boundary value problem for the
disturbance density field, the solution of the Laplace equation
for the density of product, accounting for the BC at infinity
(vanishing concentration) and for the BC at the wall (zero
normal current), is expressed as

cpðrÞ ¼ C0ðcosh x� oÞ1=2

�
X
n�0

Fn cosh nþ 1

2

	 

x

� �
PnðoÞ: (44)

The boundary condition at the surface of the JP (eqn (9c)) takes
the form

Dp
1

gx

@cpðx;oÞ
@x

� �
x¼x0
¼ þFcr x0;oð Þf ðoÞ;

with c̃r(r) := cr(r)/C0 and

D := Dr/Dp, (45)

after employing the recursion relation76

nþ 1

2

	 

oPnðoÞ ¼

ðnþ 1ÞPnþ1ðoÞ þ nPn�1ðoÞ
2

; (46)

and a couple of straightforward algebra manipulations to
convert products of hyperbolic functions into sums of hyper-
bolic functions, the lhs can be re-arranged in a single series in
Legendre polynomials. By projecting on the corresponding
Legendre polynomial (using the orthogonality relation) it
renders

ðnþ 1Þ Fn � Fnþ1ð Þ sinh nþ 3

2

	 

x0

� �

þ n Fn � Fn�1ð Þ sinh n� 1

2

	 

x0

� �

¼ 2nþ 1ð ÞDDa

ð1
�1

f ðoÞ~cr x0;oð ÞPnðoÞ
cosh x0 � oð Þ1=2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

:¼pn

; n � 0;

(47)

with the convention F�1 = 0. Recalling that c̃r(x0,o;Da) is a
known function (calculated in the previous section), the quan-
tity pn in the rhs is known (as also noted in the previous
subsections, additional analytical simplifications may be pos-
sible, see ref. 51) and eqn (47) turns into an infinite system of
linear equations. The system is solved by truncating at suffi-
ciently large n, i.e., by setting Fn4Nmax

= 0 and by employing the
auxiliary variable rn = Fn � Fn�1: at n = 0 one directly obtains r0,
and then the rn is solved recurrently. The Fns are then obtained
by first summing up all the rn40, which gives F0, and subse-
quently rn by recurrence from their definition and the known rn.
This concludes the derivation of the density cp(r) of product
molecules. As for the disturbance of the reactant concentration,
the results are validated by the cross-check against the corres-
ponding BEM results. We again find very good agreement
between the two methods (detailed results are omitted for
brevity.)

B.4 Velocity of the particle in terms of bipolar coordinates

The calculation of the velocity of the particle, which has a
prescribed phoretic slip actuation vs(r) on its surface, near a no-
slip wall follows from the expression, eqn (15), derived via the
Lorentz reciprocal theorem. Since this calculation has been
discussed in detail by ref. 77 and 78, here we provide only a
succinct description.

Owing to the symmetry of the system, only motion along the
z-axis occurs; accordingly, only one auxiliary problem is needed
in eqn (15), and this is chosen as the motion of a chemically
inert spherical particle, of same radius Rp and located at the
same height h with velocity V0 = V0ez. This was studied by ref. 73,
which provides the force Fa in the form of the well-known wall-
correction of the Stokes formula and outlines the solution for
the hydrodynamic flow in terms of a stream function Ca(x,o :=
cos Z) = V0Rp

2ca(x,o), where 0 r x r x0 while ca(x,o) is
dimensionless, which admits the series representation in bipo-
lar coordinates as:73,74

ðcosh x� oÞ3=2cðsÞ

¼
Xþ1
n¼1

Kn cosh n� 1

2

	 

x

� �
þ Ln sinh n� 1

2

	 

x

� �

þMn cosh nþ 3

2

	 

x

� �
þNn sinh nþ 3

2

	 

x

� ��
� Gnþ1

�1=2ðoÞ;

(48)

where

Gn
�1=2ðoÞ ¼ Pn�2ðoÞ � PnðoÞ

2n� 1
(49)

denotes the Gegenbauer polynomial of order n and degree �1/
2.73 The dimensionless coefficients Kn, Ln, Mn, and Nn depend
on x0 and are determined by the boundary conditions at the
wall and at the particle for the velocity field. For the no-slip
boundary conditions corresponding to the auxiliary problem
considered here, these coefficients are determined analytically
in closed form;73 the expressions, which are somewhat cumber-
some and not particularly insightful, can be found in, e.g., ref.
73 and 78, and thus we do not list them here.

The phoretic slip velocity in the rhs of eqn (15) is given by

Vs rJð Þ ¼ �b0b rJð ÞrkcP rJð Þ

¼ �V0b rJð Þ
Rp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� o2
p

gZ

@~cp
@o

 !�����
x¼x0

eZ; (50)

the derivative on the rhs is calculated analytically, using the
series representation derived in the previous subsection.

Since the unit vector along the direction normal to the
surface of the particle is n = �ex, the integrand in the rhs of
eqn (15) will involve only the contraction ex�ra�eZ of the shear
stress tensor of the auxiliary problem with the unit vectors ex,Z,
evaluated at x = x0. This contraction is given by (see also ref. 78),

ex � ra � eZ ¼
m
gx

@u0x
@Z
þ
@u0Z
@x

	 

� 1

gx
u0Z
@gZ
@x
þ u0x

@gx
@Z

	 
� �
: (51)

The velocity components u0x;Z of the auxiliary problem, which
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are needed for the calculation of the contraction, are in turn
evaluated from the stream function of the auxiliary problem as
(see Chapter 4-4 in ref. 72)

u0x ¼ �
1

sgZ

@Ca

@Z
; u0Z ¼

1

sgx

@Ca

@x
: (52)

After performing the derivatives analytically, the integral in
the rhs of eqn (15) is computed numerically and the integrand
is approximated by truncating the series representations corres-
ponding to the phoretic slip and of the stress-tensor contrac-
tion to the first Nmax = 30 terms, which seems sufficient as long
as h/Rp \ 1.1.

In Fig. 18, we show the velocity of a cap-up sphere with non-
uniform surface mobility near a circular patch with radius Rd =
Rp, computed with the boundary element method and using
bipolar coordinates. The two methods show close quantitative
agreement for the range of h/Rp and values of Da shown. The
system defined by truncating eqn (47) to n equations is
observed to have slow convergence with n for larger h/Rp and
higher Da. Accordingly, we use the BEM for velocity data shown
in Section 3.

C Rigid-body dynamics method

We briefly describe the quaternion-based simulation method,
modified from Theers et al.,57 used to obtain three-dimensional
trajectories. The particle orientation is encoded by a quaternion
q = (q0,q1,q2,q3) of unit length. In each simulation, the initial
value of q is set as q(0) = (1,0,0,0). The particle orientation
vector p̂(t) at an arbitrary time t can be obtained from the initial
orientation vector p̂(0) according to p̂(t) = DT�p̂(0), where the
3 � 3 matrix D(q) is given by eqn (14) in Theers et al.

The trajectory of a particle is obtained as follows. At each
simulation timestep, we use the BEM to compute the particle’s
translational velocity V(t) and angular velocity X(t), which
depend on the particle’s instantaneous position rp(t) and
orientation q(t). The position and orientational quaternion
are then integrated forward in time using a predictor-
corrector Euler method with timestep Dt:

rp(t + Dt) = rp(t) + V(t)Dt, (53)

q� ¼ 1

2
WTðqðtÞÞ �XðtÞDt; (54)

and

q(t + Dt) = q* + lqq(t). (55)

Here, W is a 3 � 4 matrix

W ¼
�q1 q0 q3 �q2
�q2 �q3 q0 q1
�q3 q2 �q1 q0

0
@

1
A: (56)

In each timestep, the quaternion is maintained at unit length
using a force of constraint (Lagrange multiplier) lq:

lq ¼ �q� � qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q� � qð Þ2� q�j j2�1

� �
jqj2

r
: (57)
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